1
|
Qiu Q, Yang M, Gong D, Liang H, Chen T. Potassium and calcium channels in different nerve cells act as therapeutic targets in neurological disorders. Neural Regen Res 2025; 20:1258-1276. [PMID: 38845230 PMCID: PMC11624876 DOI: 10.4103/nrr.nrr-d-23-01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/18/2024] [Accepted: 04/07/2024] [Indexed: 07/31/2024] Open
Abstract
The central nervous system, information integration center of the body, is mainly composed of neurons and glial cells. The neuron is one of the most basic and important structural and functional units of the central nervous system, with sensory stimulation and excitation conduction functions. Astrocytes and microglia belong to the glial cell family, which is the main source of cytokines and represents the main defense system of the central nervous system. Nerve cells undergo neurotransmission or gliotransmission, which regulates neuronal activity via the ion channels, receptors, or transporters expressed on nerve cell membranes. Ion channels, composed of large transmembrane proteins, play crucial roles in maintaining nerve cell homeostasis. These channels are also important for control of the membrane potential and in the secretion of neurotransmitters. A variety of cellular functions and life activities, including functional regulation of the central nervous system, the generation and conduction of nerve excitation, the occurrence of receptor potential, heart pulsation, smooth muscle peristalsis, skeletal muscle contraction, and hormone secretion, are closely related to ion channels associated with passive transmembrane transport. Two types of ion channels in the central nervous system, potassium channels and calcium channels, are closely related to various neurological disorders, including Alzheimer's disease, Parkinson's disease, and epilepsy. Accordingly, various drugs that can affect these ion channels have been explored deeply to provide new directions for the treatment of these neurological disorders. In this review, we focus on the functions of potassium and calcium ion channels in different nerve cells and their involvement in neurological disorders such as Parkinson's disease, Alzheimer's disease, depression, epilepsy, autism, and rare disorders. We also describe several clinical drugs that target potassium or calcium channels in nerve cells and could be used to treat these disorders. We concluded that there are few clinical drugs that can improve the pathology these diseases by acting on potassium or calcium ions. Although a few novel ion-channel-specific modulators have been discovered, meaningful therapies have largely not yet been realized. The lack of target-specific drugs, their requirement to cross the blood-brain barrier, and their exact underlying mechanisms all need further attention. This review aims to explain the urgent problems that need research progress and provide comprehensive information aiming to arouse the research community's interest in the development of ion channel-targeting drugs and the identification of new therapeutic targets for that can increase the cure rate of nervous system diseases and reduce the occurrence of adverse reactions in other systems.
Collapse
Affiliation(s)
- Qing Qiu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Mengting Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Danfeng Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| | - Haiying Liang
- Department of Pharmacy, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Tingting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Oblasov I, Bal NV, Shvadchenko AM, Fortygina P, Idzhilova OS, Balaban PM, Nikitin ES. Ca 2+-permeable AMPA receptor-dependent silencing of neurons by KCa3.1 channels during epileptiform activity. Biochem Biophys Res Commun 2024; 733:150434. [PMID: 39068818 DOI: 10.1016/j.bbrc.2024.150434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Ca2+-activated KCa3.1 channels are known to contribute to slow afterhyperpolarization in pyramidal neurons of several brain areas, while Ca2+-permeable AMPA receptors (CP-AMPARs) may provide a subthreshold source of Ca2+ elevation in the cytoplasm. The functionality of these two types of channels has also been shown to be altered by epileptic disorders. However, the link between KCa3.1 channels and CP-AMPARs is poorly understood, and their potential interaction in epilepsy remains unclear. Here, we address this issue by overexpressing the KCNN4 gene, which encodes the KCa3.1 channel, using patch clamp, imaging, and channel blockers in an in vitro model of epilepsy in neuronal culture. We show that KCNN4 overexpression causes strong hyperpolarization and substantial silencing of neurons during epileptiform activity events, which also prevents KCNN4-positive neurons from firing action potentials (APs) during experimentally induced status epilepticus. Intracellular blocker application experiments showed that the amplitude of hyperpolarization was strongly dependent on CP-AMPARs, but not on NMDA receptors. Taken together, our data strongly suggest that subthreshold Ca2+ elevation produced by CP-AMPARs can trigger KCa3.1 channels to hyperpolarize neurons and protect them from seizures.
Collapse
Affiliation(s)
- Ilya Oblasov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Natalia V Bal
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Anastasya M Shvadchenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Polina Fortygina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Olga S Idzhilova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485
| | - Evgeny S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova str., Moscow, Russia, 117485.
| |
Collapse
|
3
|
Mullagulova AI, Timechko EE, Solovyeva VV, Yakimov AM, Ibrahim A, Dmitrenko DD, Sufianov AA, Sufianova GZ, Rizvanov AA. Adeno-Associated Viral Vectors in the Treatment of Epilepsy. Int J Mol Sci 2024; 25:12081. [PMID: 39596149 PMCID: PMC11593886 DOI: 10.3390/ijms252212081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Epilepsy is a brain disorder characterized by a persistent predisposition to epileptic seizures. With various etiologies of epilepsy, a significant proportion of patients develop pharmacoresistance to antiepileptic drugs, which necessitates the search for new therapeutic methods, in particular, using gene therapy. This review discusses the use of adeno-associated viral (AAV) vectors in gene therapy for epilepsy, emphasizing their advantages, such as high efficiency of neuronal tissue transduction and low immunogenicity/cytotoxicity. AAV vectors provide the possibility of personalized therapy due to the diversity of serotypes and genomic constructs, which allows for increasing the specificity and effectiveness of treatment. Promising orientations include the modulation of the expression of neuropeptides, ion channels, transcription, and neurotrophic factors, as well as the use of antisense oligonucleotides to regulate seizure activity, which can reduce the severity of epileptic disorders. This review summarizes the current advances in the use of AAV vectors for the treatment of epilepsy of various etiologies, demonstrating the significant potential of AAV vectors for the development of personalized and more effective approaches to reducing seizure activity and improving patient prognosis.
Collapse
Affiliation(s)
- Aysilu I. Mullagulova
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Elena E. Timechko
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Valeriya V. Solovyeva
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Alexey M. Yakimov
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Ahmad Ibrahim
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
| | - Diana D. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology, Krasnoyarsk State Medical University, Partizana Zheleznyaka 1, Krasnoyarsk 660022, Russia; (E.E.T.); (A.M.Y.); (D.D.D.)
| | - Albert A. Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow 119991, Russia;
- The Research and Educational Institute of Neurosurgery, Peoples’ Friendship University of Russia, Moscow 117198, Russia
| | - Galina Z. Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia;
| | - Albert A. Rizvanov
- Institute for Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (A.I.M.); (V.V.S.); (A.I.)
- Division of Medical and Biological Sciences, Academy of Sciences of the Republic of Tatarstan, Kazan 420111, Russia
| |
Collapse
|
4
|
Zhao T, Wang L, Chen F. Potassium channel-related epilepsy: Pathogenesis and clinical features. Epilepsia Open 2024; 9:891-905. [PMID: 38560778 PMCID: PMC11145612 DOI: 10.1002/epi4.12934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Variants in potassium channel-related genes are one of the most important mechanisms underlying abnormal neuronal excitation and disturbances in the cellular resting membrane potential. These variants can cause different forms of epilepsy, which can seriously affect the physical and mental health of patients, especially those with refractory epilepsy or status epilepticus, which are common among pediatric patients and are potentially life-threatening. Variants in potassium ion channel-related genes have been reported in few studies; however, to our knowledge, no systematic review has been published. This study aimed to summarize the epilepsy phenotypes, functional studies, and pharmacological advances associated with different potassium channel gene variants to assist clinical practitioners and drug development teams to develop evidence-based medicine and guide research strategies. PubMed and Google Scholar were searched for relevant literature on potassium channel-related epilepsy reported in the past 5-10 years. Various common potassium ion channel gene variants can lead to heterogeneous epilepsy phenotypes, and functional effects can result from gene deletions and compound effects. Administration of select anti-seizure medications is the primary treatment for this type of epilepsy. Most patients are refractory to anti-seizure medications, and some novel anti-seizure medications have been found to improve seizures. Use of targeted drugs to correct aberrant channel function based on the type of potassium channel gene variant can be used as an evidence-based pathway to achieve precise and individualized treatment for children with epilepsy. PLAIN LANGUAGE SUMMARY: In this article, the pathogenesis and clinical characteristics of epilepsy caused by different types of potassium channel gene variants are reviewed in the light of the latest research literature at home and abroad, with the expectation of providing a certain theoretical basis for the diagnosis and treatment of children with this type of disease.
Collapse
Affiliation(s)
- Tong Zhao
- Hebei Children's HospitalShijiazhuangHebeiChina
| | - Le Wang
- Hebei Children's HospitalShijiazhuangHebeiChina
| | - Fang Chen
- Hebei Children's HospitalShijiazhuangHebeiChina
| |
Collapse
|
5
|
Waris A, Ullah A, Asim M, Ullah R, Rajdoula MR, Bello ST, Alhumaydhi FA. Phytotherapeutic options for the treatment of epilepsy: pharmacology, targets, and mechanism of action. Front Pharmacol 2024; 15:1403232. [PMID: 38855752 PMCID: PMC11160429 DOI: 10.3389/fphar.2024.1403232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Epilepsy is one of the most common, severe, chronic, potentially life-shortening neurological disorders, characterized by a persisting predisposition to generate seizures. It affects more than 60 million individuals globally, which is one of the major burdens in seizure-related mortality, comorbidities, disabilities, and cost. Different treatment options have been used for the management of epilepsy. More than 30 drugs have been approved by the US FDA against epilepsy. However, one-quarter of epileptic individuals still show resistance to the current medications. About 90% of individuals in low and middle-income countries do not have access to the current medication. In these countries, plant extracts have been used to treat various diseases, including epilepsy. These medicinal plants have high therapeutic value and contain valuable phytochemicals with diverse biomedical applications. Epilepsy is a multifactorial disease, and therefore, multitarget approaches such as plant extracts or extracted phytochemicals are needed, which can target multiple pathways. Numerous plant extracts and phytochemicals have been shown to treat epilepsy in various animal models by targeting various receptors, enzymes, and metabolic pathways. These extracts and phytochemicals could be used for the treatment of epilepsy in humans in the future; however, further research is needed to study the exact mechanism of action, toxicity, and dosage to reduce their side effects. In this narrative review, we comprehensively summarized the extracts of various plant species and purified phytochemicals isolated from plants, their targets and mechanism of action, and dosage used in various animal models against epilepsy.
Collapse
Affiliation(s)
- Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ata Ullah
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Muhammad Asim
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong, Hong Kong SAR, China
| | - Rafi Ullah
- Department of Botany, Bacha Khan University Charsadda, Charsadda, Pakistan
| | - Md. Rafe Rajdoula
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Stephen Temitayo Bello
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong, Hong Kong SAR, China
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
6
|
Nikitin ES, Postnikova TY, Proskurina EY, Borodinova AA, Ivanova V, Roshchin MV, Smirnova MP, Kelmanson I, Belousov VV, Balaban PM, Zaitsev AV. Overexpression of KCNN4 channels in principal neurons produces an anti-seizure effect without reducing their coding ability. Gene Ther 2024; 31:144-153. [PMID: 37968509 DOI: 10.1038/s41434-023-00427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
Gene therapy offers a potential alternative to the surgical treatment of epilepsy, which affects millions of people and is pharmacoresistant in ~30% of cases. Aimed at reducing the excitability of principal neurons, the engineered expression of K+ channels has been proposed as a treatment due to the outstanding ability of K+ channels to hyperpolarize neurons. However, the effects of K+ channel overexpression on cell physiology remain to be investigated. Here we report an adeno-associated virus (AAV) vector designed to reduce epileptiform activity specifically in excitatory pyramidal neurons by expressing the human Ca2+-gated K+ channel KCNN4 (KCa3.1). Electrophysiological and pharmacological experiments in acute brain slices showed that KCNN4-transduced cells exhibited a Ca2+-dependent slow afterhyperpolarization that significantly decreased the ability of KCNN4-positive neurons to generate high-frequency spike trains without affecting their lower-frequency coding ability and action potential shapes. Antiepileptic activity tests showed potent suppression of pharmacologically induced seizures in vitro at both single cell and local field potential levels with decreased spiking during ictal discharges. Taken together, our findings strongly suggest that the AAV-based expression of the KCNN4 channel in excitatory neurons is a promising therapeutic intervention as gene therapy for epilepsy.
Collapse
Affiliation(s)
- Evgeny S Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia.
| | - Tatiana Y Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, Saint Petersburg, Russia
| | - Elena Y Proskurina
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, Saint Petersburg, Russia
| | | | - Violetta Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Matvey V Roshchin
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Maria P Smirnova
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Ilya Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025, Moscow, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, RAS, 117485, Moscow, Russia
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223, Saint Petersburg, Russia.
| |
Collapse
|
7
|
Lai H, Gao M, Yang H. The potassium channels: Neurobiology and pharmacology of tinnitus. J Neurosci Res 2024; 102:e25281. [PMID: 38284861 DOI: 10.1002/jnr.25281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 01/30/2024]
Abstract
Tinnitus is a widespread public health issue that imposes a significant social burden. The occurrence and maintenance of tinnitus have been shown to be associated with abnormal neuronal activity in the auditory pathway. Based on this view, neurobiological and pharmacological developments in tinnitus focus on ion channels and synaptic neurotransmitter receptors in neurons in the auditory pathway. With major breakthroughs in the pathophysiology and research methodology of tinnitus in recent years, the role of the largest family of ion channels, potassium ion channels, in modulating the excitability of neurons involved in tinnitus has been increasingly demonstrated. More and more potassium channels involved in the neural mechanism of tinnitus have been discovered, and corresponding drugs have been developed. In this article, we review animal (mouse, rat, hamster, and guinea-pig), human, and genetic studies on the different potassium channels involved in tinnitus, analyze the limitations of current clinical research on potassium channels, and propose future prospects. The aim of this review is to promote the understanding of the role of potassium ion channels in tinnitus and to advance the development of drugs targeting potassium ion channels for tinnitus.
Collapse
Affiliation(s)
- Haohong Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minqian Gao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| |
Collapse
|
8
|
Belete TM. Recent Progress in the Development of New Antiepileptic Drugs with Novel Targets. Ann Neurosci 2023; 30:262-276. [PMID: 38020406 PMCID: PMC10662271 DOI: 10.1177/09727531231185991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background Epilepsy is a chronic neurological disorder that affects approximately 50-70 million people worldwide. Epilepsy has a significant economic and social burden on patients as well as on the country. The recurrent, spontaneous seizure activity caused by abnormal neuronal firing in the brain is a hallmark of epilepsy. The current antiepileptic drugs provide symptomatic relief by restoring the balance of excitatory and inhibitory neurotransmitters. Besides, about 30% of epileptic patients do not achieve seizure control. The prevalence of adverse drug reactions, including aggression, agitation, irritability, and associated comorbidities, is also prevalent. Therefore, researchers should focus on developing more effective, safe, and disease-modifying agents based on new molecular targets and signaling cascades. Summary This review overviews several clinical trials that help identify promising new targets like lactate dehydrogenase inhibitors, c-jun n-terminal kinases, high mobility group box-1 antibodies, astrocyte reactivity inhibitors, cholesterol 24-hydroxylase inhibitors, glycogen synthase kinase-3 beta inhibitors, and glycolytic inhibitors to develop a new antiepileptic drug. Key messages Approximately 30% of epileptic patients do not achieve seizure control. The current anti-seizure drugs are not disease modifying, cure or prevent epilepsy. Lactate dehydrogenase inhibitor, cholesterol 24-hydroxylase inhibitor, glycogen synthase kinase-3 beta inhibitors, and mTOR inhibitors have a promising antiepileptogenic effect.
Collapse
Affiliation(s)
- Tafere Mulaw Belete
- Department of Pharmacology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia, Africa
| |
Collapse
|
9
|
Kodirov SA. Adam, amigo, brain, and K channel. Biophys Rev 2023; 15:1393-1424. [PMID: 37975011 PMCID: PMC10643815 DOI: 10.1007/s12551-023-01163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023] Open
Abstract
Voltage-dependent K+ (Kv) channels are diverse, comprising the classical Shab - Kv2, Shaker - Kv1, Shal - Kv4, and Shaw - Kv3 families. The Shaker family alone consists of Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5, Kv1.6, and Kv1.7. Moreover, the Shab family comprises two functional (Kv2.1 and Kv2.2) and several "silent" alpha subunits (Kv2.3, Kv5, Kv6, Kv8, and Kv9), which do not generate K current. However, e.g., Kv8.1, via heteromerization, inhibits outward currents of the same family or even that of Shaw. This property of Kv8.1 is similar to those of designated beta subunits or non-selective auxiliary elements, including ADAM or AMIGO proteins. Kv channels and, in turn, ADAM may modulate the synaptic long-term potentiation (LTP). Prevailingly, Kv1.1 and Kv1.5 are attributed to respective brain and heart pathologies, some of which may occur simultaneously. The aforementioned channel proteins are apparently involved in several brain pathologies, including schizophrenia and seizures.
Collapse
Affiliation(s)
- Sodikdjon A. Kodirov
- Department of Biological Sciences, University of Texas at Brownsville, Brownsville, TX 78520 USA
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
- Instituto de Medicina Molecular, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Almazov Federal Heart, Blood and Endocrinology Centre, Saint Petersburg, 197341 Russia
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Linz, Austria
| |
Collapse
|
10
|
Yu C, Deng XJ, Xu D. Gene mutations in comorbidity of epilepsy and arrhythmia. J Neurol 2023; 270:1229-1248. [PMID: 36376730 DOI: 10.1007/s00415-022-11430-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
Epilepsy is one of the most common neurological disorders, and sudden unexpected death in epilepsy (SUDEP) is the most severe outcome of refractory epilepsy. Arrhythmia is one of the heterogeneous factors in the pathophysiological mechanism of SUDEP with a high incidence in patients with refractory epilepsy, increasing the risk of premature death. The gene co-expressed in the brain and heart is supposed to be the genetic basis between epilepsy and arrhythmia, among which the gene encoding ion channel contributes to the prevalence of "cardiocerebral channelopathy" theory. Nevertheless, this theory could only explain the molecular mechanism of comorbid arrhythmia in part of patients with epilepsy (PWE). Therefore, we summarized the mutant genes that can induce comorbidity of epilepsy and arrhythmia and the possible corresponding treatments. These variants involved the genes encoding sodium, potassium, calcium and HCN channels, as well as some non-ion channel coding genes such as CHD4, PKP2, FHF1, GNB5, and mitochondrial genes. The relationship between genotype and clinical phenotype was not simple linear. Indeed, genes co-expressed in the brain and heart could independently induce epilepsy and/or arrhythmia. Mutant genes in brain could affect cardiac rhythm through central or peripheral regulation, while in the heart it could also affect cerebral electrical activity by changing the hemodynamics or internal environment. Analysis of mutations in comorbidity of epilepsy and arrhythmia could refine and expand the theory of "cardiocerebral channelopathy" and provide new insights for risk stratification of premature death and corresponding precision therapy in PWE.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
11
|
Zahra A, Liu R, Han W, Meng H, Wang Q, Wang Y, Campbell SL, Wu J. K Ca-Related Neurological Disorders: Phenotypic Spectrum and Therapeutic Indications. Curr Neuropharmacol 2023; 21:1504-1518. [PMID: 36503451 PMCID: PMC10472807 DOI: 10.2174/1570159x21666221208091805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/14/2022] Open
Abstract
Although potassium channelopathies have been linked to a wide range of neurological conditions, the underlying pathogenic mechanism is not always clear, and a systematic summary of clinical manifestation is absent. Several neurological disorders have been associated with alterations of calcium-activated potassium channels (KCa channels), such as loss- or gain-of-function mutations, post-transcriptional modification, etc. Here, we outlined the current understanding of the molecular and cellular properties of three subtypes of KCa channels, including big conductance KCa channels (BK), small conductance KCa channels (SK), and the intermediate conductance KCa channels (IK). Next, we comprehensively reviewed the loss- or gain-of-function mutations of each KCa channel and described the corresponding mutation sites in specific diseases to broaden the phenotypic-genotypic spectrum of KCa-related neurological disorders. Moreover, we reviewed the current pharmaceutical strategies targeting KCa channels in KCa-related neurological disorders to provide new directions for drug discovery in anti-seizure medication.
Collapse
Affiliation(s)
- Aqeela Zahra
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
- Department of Zoology, University of Sialkot, Sialkot 51310, Pakistan
| | - Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Wenzhe Han
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hui Meng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - YunFu Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Susan L. Campbell
- Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| |
Collapse
|
12
|
Blockade of Kv1.3 Potassium Channel Inhibits Microglia-Mediated Neuroinflammation in Epilepsy. Int J Mol Sci 2022; 23:ijms232314693. [PMID: 36499018 PMCID: PMC9740890 DOI: 10.3390/ijms232314693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Epilepsy is a chronic neurological disorder whose pathophysiology relates to inflammation. The potassium channel Kv1.3 in microglia has been reported as a promising therapeutic target in neurological diseases in which neuroinflammation is involved, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and middle cerebral artery occlusion/reperfusion (MCAO/R). Currently, little is known about the relationship between Kv1.3 and epilepsy. In this study, we found that Kv1.3 was upregulated in microglia in the KA-induced mouse epilepsy model. Importantly, blocking Kv1.3 with its specific small-molecule blocker 5-(4-phenoxybutoxy)psoralen (PAP-1) reduced seizure severity, prolonged seizure latency, and decreased neuronal loss. Mechanistically, we further confirmed that blockade of Kv1.3 suppressed proinflammatory microglial activation and reduced proinflammatory cytokine production by inhibiting the Ca2+/NF-κB signaling pathway. These results shed light on the critical function of microglial Kv1.3 in epilepsy and provided a potential therapeutic target.
Collapse
|
13
|
Wang S, Li Z, Ding X, Zhao Z, Zhang M, Xu H, Lu J, Dai L. Integrative Analyses Identify KCNJ15 as a Candidate Gene in Patients with Epilepsy. Neurol Ther 2022; 11:1767-1776. [PMID: 36168094 DOI: 10.1007/s40120-022-00407-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Although there is accumulating evidence that genetic factors play a vital role in the pathogenesis of epilepsy, few epilepsy-associated genes have been identified. Additionally, the role of KCNJ15 in epilepsy has not been evaluated so far. METHODS Here, we performed differentially expressed gene analysis, expression quantitative trait loci analysis, gene co-expression analysis, and protein-protein interaction analysis to evaluate the role of KCNJ15 in epilepsy. RESULTS Analysis of gene expression and expression quantitative trait loci data revealed that KCNJ15 was significantly downregulated in patients with epilepsy (adjusted P = 0.0146 and log2 Fold change = - 1.0025), and an epilepsy-associated polymorphism (rs2833098) was linked to altered KCNJ15 expression level in human temporal lobe brain tissue (P = 0.0036). Gene co-expression analysis revealed that KCNJ15 was co-expressed with genes that have been reported to be associated with epilepsy in human brain tissue. Furthermore, protein-protein interaction analysis revealed strong supportive evidence for the role of KCNJ15 in epilepsy. CONCLUSION Our results show that KCNJ15 may be a candidate target for epilepsy. Functional analysis of KCNJ15 may provide novel insights for epilepsy treatment.
Collapse
Affiliation(s)
- Shitao Wang
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China.
| | - Zongyou Li
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Xiangqian Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University, Shandong, China
| | - Zongyou Zhao
- Department of Neurology, Funan County People's Hospital, Funan, Anhui, China
| | - Mengen Zhang
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Hui Xu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Jinghong Lu
- Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, Anhui, China
| | - Lili Dai
- Department of Geriatrics, Funan County People's Hospital, Funan, Anhui, China.
| |
Collapse
|
14
|
Nikitin ES, Balaban PM, Zaitsev AV. Prospects for Gene Therapy of Epilepsy Using Calcium-Acivated Potassium Channel Vectors. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Garofalo B, Bonvin AM, Bosin A, Di Giorgio FP, Ombrato R, Vargiu AV. Molecular Insights Into Binding and Activation of the Human KCNQ2 Channel by Retigabine. Front Mol Biosci 2022; 9:839249. [PMID: 35309507 PMCID: PMC8927717 DOI: 10.3389/fmolb.2022.839249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/11/2022] [Indexed: 01/29/2023] Open
Abstract
Voltage-gated potassium channels of the Kv7.x family are involved in a plethora of biological processes across many tissues in animals, and their misfunctioning could lead to several pathologies ranging from diseases caused by neuronal hyperexcitability, such as epilepsy, or traumatic injuries and painful diabetic neuropathy to autoimmune disorders. Among the members of this family, the Kv7.2 channel can form hetero-tetramers together with Kv7.3, forming the so-called M-channels, which are primary regulators of intrinsic electrical properties of neurons and of their responsiveness to synaptic inputs. Here, prompted by the similarity between the M-current and that in Kv7.2 alone, we perform a computational-based characterization of this channel in its different conformational states and in complex with the modulator retigabine. After validation of the structural models of the channel by comparison with experimental data, we investigate the effect of retigabine binding on the two extreme states of Kv7.2 (resting-closed and activated-open). Our results suggest that binding, so far structurally characterized only in the intermediate activated-closed state, is possible also in the other two functional states. Moreover, we show that some effects of this binding, such as increased flexibility of voltage sensing domains and propensity of the pore for open conformations, are virtually independent on the conformational state of the protein. Overall, our results provide new structural and dynamic insights into the functioning and the modulation of Kv7.2 and related channels.
Collapse
Affiliation(s)
| | - Alexandre M.J.J. Bonvin
- Faculty of Science—Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Andrea Bosin
- Department of Physics, University of Cagliari, Cagliari, Italy
| | | | - Rosella Ombrato
- Angelini Pharma S.p.A., Rome, Italy
- *Correspondence: Rosella Ombrato, ; Attilio V. Vargiu,
| | - Attilio V. Vargiu
- Department of Physics, University of Cagliari, Cagliari, Italy
- *Correspondence: Rosella Ombrato, ; Attilio V. Vargiu,
| |
Collapse
|
16
|
Marini C, Giardino M. Novel treatments in epilepsy guided by genetic diagnosis. Br J Clin Pharmacol 2021; 88:2539-2551. [PMID: 34778987 DOI: 10.1111/bcp.15139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
In recent years, precision medicine has emerged as a new paradigm for improved and more individualized patient care. Its key objective is to provide the right treatment, to the right patient at the right time, by basing medical decisions on individual characteristics, including specific genetic biomarkers. In order to realize this objective researchers and physicians must first identify the underlying genetic cause; over the last 10 years, advances in genetics have made this possible for several monogenic epilepsies. Through next generation techniques, a precise genetic aetiology is attainable in 30-50% of genetic epilepsies beginning in the paediatric age. While committed in such search for novel genes carrying disease-causing variants, progress in the study of experimental models of epilepsy has also provided a better understanding of the mechanisms underlying the condition. Such advances are already being translated into improving care, management and treatment of some patients. Identification of a precise genetic aetiology can already direct physicians to prescribe treatments correcting specific metabolic defects, avoid antiseizure medicines that might aggravate functional consequences of the disease-causing variant or select the drugs that counteract the underlying, genetically determined, functional disturbance. Personalized, tailored treatments should not just focus on how to stop seizures but possibly prevent their onset and cure the disorder, often consisting of seizures and its comorbidities including cognitive, motor and behaviour deficiencies. This review discusses the therapeutic implications following a specific genetic diagnosis and the correlation between genetic findings, pathophysiological mechanisms and tailored seizure treatment, emphasizing the impact on current clinical practice.
Collapse
Affiliation(s)
- Carla Marini
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| | - Maria Giardino
- Child Neurology and Psychiatric Unit, Pediatric Hospital G. Salesi, United Hospitals of Ancona, Ancona, Italy
| |
Collapse
|