1
|
De Santis A, Grifagni D, Orsetti A, Lenci E, Rosato A, D’Onofrio M, Trabocchi A, Ciofi-Baffoni S, Cantini F, Calderone V. A Structural Investigation of the Interaction between a GC-376-Based Peptidomimetic PROTAC and Its Precursor with the Viral Main Protease of Coxsackievirus B3. Biomolecules 2024; 14:1260. [PMID: 39456193 PMCID: PMC11506516 DOI: 10.3390/biom14101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
The conservation of the main protease in viral genomes, combined with the absence of a homologous protease in humans, makes this enzyme family an ideal target for developing broad-spectrum antiviral drugs with minimized host toxicity. GC-376, a peptidomimetic 3CL protease inhibitor, has shown significant efficacy against coronaviruses. Recently, a GC-376-based PROTAC was developed to target and induce the proteasome-mediated degradation of the dimeric SARS-CoV-2 3CLPro protein. Extending this approach, the current study investigates the application of the GC-376 PROTAC to the 3CPro protease of enteroviruses, specifically characterizing its interaction with CVB3 3CPro through X-ray crystallography, NMR (Nuclear Magnetic Resonance) and biochemical techniques. The crystal structure of CVB3 3CPro bound to the GC-376 PROTAC precursor was obtained at 1.9 Å resolution. The crystallographic data show that there are some changes between the binding of CVB3 3CPro and SARS-CoV-2 3CLPro, but the overall similarity is strong (RMSD on C-alpha 0.3 Å). The most notable variation is the orientation of the benzyloxycarbonyl group of GC-376 with the S4 subsite of the proteases. NMR backbone assignment of CVB3 3CPro bound and unbound to the GC-376 PROTAC precursor (80% and 97%, respectively) was obtained. This information complemented the investigation, by NMR, of the interaction of CVB3 3CPro with the GC-376 PROTAC, and its precursor allows us to define that the GC-376 PROTAC binds to CVB3 3CPro in a mode very similar to that of the precursor. The NMR relaxation data indicate that a quench of dynamics of a large part of the protein backbone involving the substrate-binding site and surrounding regions occurs upon GC-376 PROTAC precursor binding. This suggests that the substrate cavity, by sampling different backbone conformations in the absence of the substrate, is able to select the suitable one necessary to covalently bind the substrate, this being the latter reaction, which is the fundamental step required to functionally activate the enzymatic reaction. The inhibition activity assay showed inhibition potency in the micromolar range for GC-376 PROTAC and its precursor. Overall, we can conclude that the GC-376 PROTAC fits well within the binding sites of both proteases, demonstrating its potential as a broad-spectrum antiviral agent.
Collapse
Affiliation(s)
- Alessia De Santis
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Deborah Grifagni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Andrea Orsetti
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Elena Lenci
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Antonio Rosato
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Mariapina D’Onofrio
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Andrea Trabocchi
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Francesca Cantini
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Vito Calderone
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| |
Collapse
|
2
|
Song N, Zheng W, Song B, Zheng J. Allosteric Regulation and Inhibition of Coronavirus 3CLpro Revealed by HDX-MS. Chembiochem 2024; 25:e202400001. [PMID: 38720172 DOI: 10.1002/cbic.202400001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/03/2024] [Indexed: 07/03/2024]
Abstract
Coronavirus (CoV) infections have caused contagious and fatal respiratory diseases in humans worldwide. CoV 3-chymotrypsin-like proteases (3CLpro or Mpro) play an important role in viral maturation, and maintenance of their dimeric conformation is crucial for viral activity. Therefore, allosterically regulated dimerization of 3CLpro can be employed as a drug development target. Here, we investigated the allosteric regulatory mechanism of 3CLpro dimerization by using hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) technology. We found that the FLAG tag directly coupled to the N-finger of 3CLpro significantly increased HDX kinetics at the dimer interface, and 3CLpro transformed from a dimer to a monomer. The 3CLpro mutants of SARS-CoV-2, which are monomeric, also exhibited increased deuterium exchange. Binding of the allosteric inhibitor Gastrodenol to most betacoronavirus 3CLpros led to increased allosteric deuterium exchange, resulting in the monomeric conformation of the CoV 3CLpro upon binding. Molecular dynamics (MD) simulation analysis further indicated the molecular mechanism of action of Gastrodenol on CoV 3CLpro: binding of Gastrodenol to SARS-CoV-2 3CLpro destroyed the hydrogen bond in the dimer interface. These results suggest that Gastrodenol may be a potential broad-spectrum anti-betacoronavirus drug.
Collapse
Affiliation(s)
- Ning Song
- Immunological Disease Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, 201203, Shanghai, PR China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, 101408, Beijing, PR China
| | - Wen Zheng
- CADD computer-aided protein Design Simulator, Hubei Yuanda Biotechnology Co., Ltd., Building B6, Optics Valley Biological City, Hongshan District, 430000, Wuhan, Hubei, PR China
| | - Bin Song
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, 200025, Shanghai, PR China
| | - Jie Zheng
- Immunological Disease Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, 201203, Shanghai, PR China
- University of Chinese Academy of Sciences, No. 1 Yanqihu East Rd, Huairou District, 101408, Beijing, PR China
| |
Collapse
|
3
|
Morone MV, Chianese A, Dell’Annunziata F, Folliero V, Lamparelli EP, Della Porta G, Zannella C, De Filippis A, Franci G, Galdiero M, Morone A. Ligand-Free Silver Nanoparticles: An Innovative Strategy against Viruses and Bacteria. Microorganisms 2024; 12:820. [PMID: 38674764 PMCID: PMC11052337 DOI: 10.3390/microorganisms12040820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The spread of antibiotic-resistant bacteria and the rise of emerging and re-emerging viruses in recent years constitute significant public health problems. Therefore, it is necessary to develop new antimicrobial strategies to overcome these challenges. Herein, we describe an innovative method to synthesize ligand-free silver nanoparticles by Pulsed Laser Ablation in Liquid (PLAL-AgNPs). Thus produced, nanoparticles were characterized by total X-ray fluorescence, zeta potential analysis, transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate the nanoparticles' cytotoxicity. Their potential was evaluated against the enveloped herpes simplex virus type 1 (HSV-1) and the naked poliovirus type 1 (PV-1) by plaque reduction assays and confirmed by real-time PCR and fluorescence microscopy, showing that nanoparticles interfered with the early stage of infection. Their action was also examined against different bacteria. We observed that the PLAL-AgNPs exerted a strong effect against both methicillin-resistant Staphylococcus aureus (S. aureus MRSA) and Escherichia coli (E. coli) producing extended-spectrum β-lactamase (ESBL). In detail, the PLAL-AgNPs exhibited a bacteriostatic action against S. aureus and a bactericidal activity against E. coli. Finally, we proved that the PLAL-AgNPs were able to inhibit/degrade the biofilm of S. aureus and E. coli.
Collapse
Affiliation(s)
- Maria Vittoria Morone
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.V.M.); (A.C.); (F.D.); (C.Z.); (A.D.F.); (M.G.)
| | - Annalisa Chianese
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.V.M.); (A.C.); (F.D.); (C.Z.); (A.D.F.); (M.G.)
| | - Federica Dell’Annunziata
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.V.M.); (A.C.); (F.D.); (C.Z.); (A.D.F.); (M.G.)
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, 84081 Baronissi, Italy; (V.F.); (E.P.L.); (G.D.P.); (G.F.)
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, 84081 Baronissi, Italy; (V.F.); (E.P.L.); (G.D.P.); (G.F.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, 84081 Baronissi, Italy; (V.F.); (E.P.L.); (G.D.P.); (G.F.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano, Italy
| | - Carla Zannella
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.V.M.); (A.C.); (F.D.); (C.Z.); (A.D.F.); (M.G.)
| | - Anna De Filippis
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.V.M.); (A.C.); (F.D.); (C.Z.); (A.D.F.); (M.G.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, 84081 Baronissi, Italy; (V.F.); (E.P.L.); (G.D.P.); (G.F.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (M.V.M.); (A.C.); (F.D.); (C.Z.); (A.D.F.); (M.G.)
| | - Antonio Morone
- Consiglio Nazionale delle Ricerche, Instituto di Struttura della Materia U.O. di Tito Scalo, 85050 Potenza, Italy
| |
Collapse
|
4
|
Haapakoski M, Emelianov A, Reshamwala D, Laajala M, Tienaho J, Kilpeläinen P, Liimatainen J, Jyske T, Pettersson M, Marjomäki V. Antiviral functionalization of cellulose using tannic acid and tannin-rich extracts. Front Microbiol 2023; 14:1287167. [PMID: 38125579 PMCID: PMC10731304 DOI: 10.3389/fmicb.2023.1287167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Due to seasonally appearing viruses and several outbreaks and present pandemic, we are surrounded by viruses in our everyday life. In order to reduce viral transmission, functionalized surfaces that inactivate viruses are in large demand. Here the endeavor was to functionalize cellulose-based materials with tannic acid (TA) and tannin-rich extracts by using different binding polymers to prevent viral infectivity of both non-enveloped coxsackievirus B3 (CVB3) and enveloped human coronavirus OC43 (HCoV-OC43). Direct antiviral efficacy of TA and spruce bark extract in solution was measured: EC50 for CVB3 was 0.12 and 8.41 μg/ml and for HCoV-OC43, 78.16 and 95.49 μg/ml, respectively. TA also led to an excellent 5.8- to 7-log reduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infectivity. TA functionalized materials reduced infectivity already after 5-min treatment at room temperature. All the tested methods to bind TA showed efficacy on paperboard with 0.1 to 1% (w/v) TA concentrations against CVB3 whereas material hydrophobicity decreased activities. Specific signatures for TA and HCoV-OC43 were discovered by Raman spectroscopy and showed clear co-localization on the material. qPCR study suggested efficient binding of CVB3 to the TA functionalized cellulose whereas HCoV-OC43 was flushed out from the surfaces more readily. In conclusion, the produced TA-materials showed efficient and broadly acting antiviral efficacy. Additionally, the co-localization of TA and HCoV-OC43 and strong binding of CVB3 to the functionalized cellulose demonstrates an interaction with the surfaces. The produced antiviral surfaces thus show promise for future use to increase biosafety and biosecurity by reducing pathogen persistence.
Collapse
Affiliation(s)
- Marjo Haapakoski
- Department of Biological and Environmental Sciences/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Aleksei Emelianov
- Department of Chemistry/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Dhanik Reshamwala
- Department of Biological and Environmental Sciences/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Mira Laajala
- Department of Biological and Environmental Sciences/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Jenni Tienaho
- Production Systems Unit, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Petri Kilpeläinen
- Production Systems Unit, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jaana Liimatainen
- Production Systems Unit, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Tuula Jyske
- Production Systems Unit, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Mika Pettersson
- Department of Chemistry/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Sciences/Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
5
|
Mitrofanova LB, Makarov IA, Gorshkov AN, Runov AL, Vonsky MS, Pisareva MM, Komissarov AB, Makarova TA, Li Q, Karonova TL, Konradi AO, Shlaykhto EV. Comparative Study of the Myocardium of Patients from Four COVID-19 Waves. Diagnostics (Basel) 2023; 13:diagnostics13091645. [PMID: 37175037 PMCID: PMC10178873 DOI: 10.3390/diagnostics13091645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Few studies have compared COVID-19 patients from different waves. This study aims to conduct a clinical and morphological analysis of patients who died from COVID-19 during four waves. METHODS The study involved 276 patients who died from COVID-19 during four waves, including 77 patients in the first wave, 119 patients in the second wave, and 78 patients in the third wave. We performed a histological examination of myocardium samples from autopsies and additionally analyzed the samples by PCR. We conducted immunohistochemistry of the myocardium for 21 samples using antibodies against CD3, CD45, CD8, CD68, CD34, Ang1, VWF, VEGF, HLA-DR, MHC1, C1q, enteroviral VP1, and SARS-CoV-2 spike protein. We also did immunofluorescent staining of three myocardial specimens using VP1/SARS-CoV-2 antibody cocktails. Further, we ran RT-ddPCR analysis for 14 RNA samples extracted from paraffin-embedded myocardium. Electron microscopic studies of the myocardium were also performed for two samples from the fourth wave. RESULTS Among the 276 cases, active myocarditis was diagnosed in 5% (15/276). Of these cases, 86% of samples expressed VP1, and individual cells contained SARS-CoV-2 spike protein in 22%. Immunofluorescence confirmed the co-localization of VP1 and SARS-CoV-2 spike proteins. ddPCR did not confidently detect SARS-CoV-2 RNA in the myocardium in any myocarditis cases. However, the myocardium sample from wave IV detected a sub-threshold signal of SARS-CoV-2 by qPCR, but myocarditis in this patient was not confirmed. Electron microscopy showed several single particles similar to SARS-CoV-2 virions on the surface of the endothelium of myocardial vessels. A comparison of the cardiovascular complication incidence between three waves revealed that the incidence of hemorrhage (48 vs. 24 vs. 17%), myocardial necrosis (18 vs. 11 vs. 4%), blood clots in the intramural arteries (12 vs. 7 vs. 0%), and myocarditis (19 vs. 1 vs. 6%) decreased over time, and CD8-T-killers appeared. Immunohistochemistry confirmed the presence of endotheliitis in all 21 studied cases. CONCLUSIONS This study compared myocardial damage in patients who died during three COVID-19 waves and showed a decrease in the incidence of endotheliitis complications (thrombosis, hemorrhage, necrosis) and myocarditis over time. However, the connection between myocarditis and SARS-CoV-2 infection remains unproven.
Collapse
Affiliation(s)
| | | | - Andrey Nikolaevich Gorshkov
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Smorodintsev Research Institute of Influenza, St. Petersburg 197376, Russia
| | - Andrey Leonidovich Runov
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- D.I. Mendeleyev Institute for Metrology, St. Petersburg 190005, Russia
| | - Maxim Sergeevich Vonsky
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- D.I. Mendeleyev Institute for Metrology, St. Petersburg 190005, Russia
| | | | | | | | - Qingli Li
- East China Normal University, Shanghai 200241, China
| | | | | | | |
Collapse
|
6
|
Direct-Acting Antivirals and Host-Targeting Approaches against Enterovirus B Infections: Recent Advances. Pharmaceuticals (Basel) 2023. [DOI: 10.3390/ph16020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Enterovirus B (EV-B)-related diseases, which can be life threatening in high-risk populations, have been recognized as a serious health problem, but their clinical treatment is largely supportive, and no selective antivirals are available on the market. As their clinical relevance has become more serious, efforts in the field of anti-EV-B inhibitors have greatly increased and many potential antivirals with very high selectivity indexes and promising in vitro activities have been discovered. The scope of this review encompasses recent advances in the discovery of new compounds with anti-viral activity against EV-B, as well as further progress in repurposing drugs to treat these infections. Current progress and future perspectives in drug discovery against EV-Bs are briefly discussed and existing gaps are spotlighted.
Collapse
|
7
|
Le TTV, Do PC. Molecular docking study of various Enterovirus—A71 3C protease proteins and their potential inhibitors. Front Microbiol 2022; 13:987801. [PMID: 36246267 PMCID: PMC9563145 DOI: 10.3389/fmicb.2022.987801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common infection that primarily affects children in preschool and kindergarten; however, there is yet no vaccination or therapy available. Despite the fact that current research is only focused on numerous strains of Enterovirus—A71 (EV-A71) 3C protease (3Cpro), these investigations are entirely separate and unrelated. Antiviral agents must therefore be tested on several EV strains or mutations. In total, 21 previously reported inhibitors were evaluated for inhibitory effects on eight EV-A71 3Cpro, including wild-type and mutant proteins in this study, and another 29 powerful candidates with inhibitory effects on EV-A71 were investigated using the molecular docking approach. This method is to determine the broad-spectrum of the antiviral agents on a range of strains or mutants because the virus frequently has mutations. Even though Rupintrivir is reported to pass phase I clinical trial, 4-iminooxazolidin-2-one moiety (FIOMC) was shown to have a broader anti-3Cpro spectrum than Rupintrivir. Meanwhile, Hesperidin possessed a better 3Cpro inhibitory capability than FIOMC. Thus, it could be considered the most promising candidate for inhibiting various strains of EV-A71 3Cpro proteins in the newly anti-EV compounds group. Furthermore, the mutation at E71A has the most significant impact on the docking results of all ligands evaluated. Future in vitro experiments on Hesperidin’s ability to inhibit 3Cpro activity should be conducted to compare with FIOMC’s in vitro results and validate the current in silico work.
Collapse
Affiliation(s)
- Tran Thao Vy Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phuc-Chau Do
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- *Correspondence: Phuc-Chau Do,
| |
Collapse
|
8
|
Compendium of analytical methods for sampling, characterization and quantification of bioaerosols. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|