1
|
Ginatempo F, Manzo N, Spampinato DA, Loi N, Burgio F, Rothwell JC, Deriu F. A Novel Paired Somatosensory-Cerebellar Stimulation Induces Plasticity on Cerebellar-Brain Connectivity. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1121-1127. [PMID: 37897625 PMCID: PMC11102379 DOI: 10.1007/s12311-023-01622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
The cerebellum receives and integrates a large amount of sensory information that is important for motor coordination and learning. The aim of the present work was to investigate whether peripheral nerve and cerebellum paired associative stimulation (cPAS) could induce plasticity in both the cerebellum and the cortex. In a cross-over design, we delivered right median nerve electrical stimulation 25 or 10 ms before applying transcranial magnetic stimulation over the cerebellum. We assessed changes in motor evoked potentials (MEP), somatosensory evoked potentials (SEP), short-afferent inhibition (SAI), and cerebellum-brain inhibition (CBI) immediately, and 30 min after cPAS. Our results showed a significant reduction in CBI 30 minutes after cPAS, with no discernible changes in MEP, SEP, and SAI. Notably, cPAS10 did not produce any modulatory effects on these parameters. In summary, cPAS25 demonstrated the capacity to induce plasticity effects in the cerebellar cortex, leading to a reduction in CBI. This novel intervention may be used to modulate plasticity mechanisms and motor learning in healthy individuals and patients with neurological conditions.
Collapse
Affiliation(s)
- Francesca Ginatempo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | | | - Danny A Spampinato
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Nicola Loi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | | | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
- Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU, Sassari, Sassari, Italy.
| |
Collapse
|
2
|
Christova M, Sylwester V, Gallasch E, Fresnoza S. Reduced Cerebellar Brain Inhibition and Vibrotactile Perception in Response to Mechanical Hand Stimulation at Flutter Frequency. CEREBELLUM (LONDON, ENGLAND) 2024; 23:67-81. [PMID: 36502502 PMCID: PMC10864223 DOI: 10.1007/s12311-022-01502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The cerebellum is traditionally considered a movement control structure because of its established afferent and efferent anatomical and functional connections with the motor cortex. In the last decade, studies also proposed its involvement in perception, particularly somatosensory acquisition and prediction of the sensory consequences of movement. However, compared to its role in motor control, the cerebellum's specific role or modulatory influence on other brain areas involved in sensory perception, specifically the primary sensorimotor cortex, is less clear. In the present study, we explored whether peripherally applied vibrotactile stimuli at flutter frequency affect functional cerebello-cortical connections. In 17 healthy volunteers, changes in cerebellar brain inhibition (CBI) and vibration perception threshold (VPT) were measured before and after a 20-min right hand mechanical stimulation at 25 Hz. 5 Hz mechanical stimulation of the right foot served as an active control condition. Performance in a Grooved Pegboard test (GPT) was also measured to assess stimulation's impact on motor performance. Hand stimulation caused a reduction in CBI (13.16%) and increased VPT but had no specific effect on GPT performance, while foot stimulation had no significant effect on all measures. The result added evidence to the functional connections between the cerebellum and primary motor cortex, as shown by CBI reduction. Meanwhile, the parallel increase in VPT indirectly suggests that the cerebellum influences the processing of vibrotactile stimulus through motor-sensory interactions.
Collapse
Affiliation(s)
- Monica Christova
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Neue Stiftingtalstraße 6/D05, 8010, Graz, Austria.
- Institute of Physiotherapy, University of Applied Sciences FH-Joanneum, Graz, Austria.
| | | | - Eugen Gallasch
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Neue Stiftingtalstraße 6/D05, 8010, Graz, Austria
| | - Shane Fresnoza
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
3
|
Taiwo FT, Adebayo PB. Neuroimaging findings in DYT1 dystonia and the pathophysiological implication: A systematic review. Brain Behav 2023; 13:e3023. [PMID: 37165749 PMCID: PMC10275528 DOI: 10.1002/brb3.3023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Primary generalized dystonia due to the DYT1 gene is an autosomal dominant disorder caused by a GAG deletion on chromosome 9q34. It is a well-defined, genetically proven, isolated dystonia syndrome. However, its pathophysiology remains unclear. OBJECTIVES This study was aimed at profiling the functional neuroimaging findings in DYT1 dystonia and harmonizing the pathophysiological implications for DYT1 dystonia from the standpoint of different neuroimaging techniques. METHODS A systematic review was conducted using identified studies published in English from Medline, PsycINFO, Embase, CINAHL, and the Cochrane Database of Systematic Reviews (CDSR), between 1985 and December 2019 (PROSPERO protocol CRD42018111211). RESULTS All DYT1 gene carriers irrespective of clinical penetrance have reduced striatal GABA, dopamine receptors and increased metabolic activity in the lentiform nucleus, supplementary motor area, and cerebellum in addition to an abnormal cerebellothalamocortical pathway. Nonmanifesting carriers on the other hand have a disruption of the distal (thalamocortical) segment and have larger putaminal volumes than manifesting carriers and healthy controls. Activation of the midbrain, thalamus, and sensorimotor cortex was only found in the manifesting carriers. CONCLUSIONS Therefore, we propose that DYT1 dystonia is a cerebellostriatothalamocortical network disorder affecting either the structure or function of the different structures or nodes in the network.
Collapse
Affiliation(s)
- Funmilola T. Taiwo
- Neurology Unit, Department of MedicineUniversity College HospitalIbadanNigeria
| | - Philip B. Adebayo
- Neurology Section, Department of Internal MedicineAga Khan UniversityDar es SalaamTanzania
| |
Collapse
|
4
|
Asan AS, McIntosh JR, Carmel JB. Targeting Sensory and Motor Integration for Recovery of Movement After CNS Injury. Front Neurosci 2022; 15:791824. [PMID: 35126040 PMCID: PMC8813971 DOI: 10.3389/fnins.2021.791824] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
The central nervous system (CNS) integrates sensory and motor information to acquire skilled movements, known as sensory-motor integration (SMI). The reciprocal interaction of the sensory and motor systems is a prerequisite for learning and performing skilled movement. Injury to various nodes of the sensorimotor network causes impairment in movement execution and learning. Stimulation methods have been developed to directly recruit the sensorimotor system and modulate neural networks to restore movement after CNS injury. Part 1 reviews the main processes and anatomical interactions responsible for SMI in health. Part 2 details the effects of injury on sites critical for SMI, including the spinal cord, cerebellum, and cerebral cortex. Finally, Part 3 reviews the application of activity-dependent plasticity in ways that specifically target integration of sensory and motor systems. Understanding of each of these components is needed to advance strategies targeting SMI to improve rehabilitation in humans after injury.
Collapse
Affiliation(s)
| | | | - Jason B. Carmel
- Departments of Neurology and Orthopedics, Columbia University, New York, NY, United States
| |
Collapse
|
5
|
Integrity of the Inferior Cerebellar Peduncle Correlates with Ambulatory Function after Hemorrhagic Stroke. J Stroke Cerebrovasc Dis 2021; 30:106164. [PMID: 34655972 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Cerebro-cerebellar connectivity plays a critical role in motor recovery after stroke; however, the underlying mechanism of walking recovery is unclear. The dorsal spinocerebellar pathway has been suggested as a biomarker of poststroke ambulatory function. We aimed to explore the association between ambulatory function and the dorsal spinocerebellar pathway's integrity after intracerebral hemorrhage (ICH). MATERIALS AND METHODS Twenty-seven patients with ICH who were admitted for inpatient rehabilitation during the subacute phase of stroke and 27 age-matched healthy controls were included retrospectively. Ambulatory function was assessed using the Berg Balance Scale and Mobility score. We measured the fractional anisotropy (FA) values of the corticospinal tract (CST) and inferior cerebellar peduncle (ICP) as the final route of the dorsal spinocerebellar pathway. The FA laterality indices, representing the degree of degeneration, were calculated. A Spearman correlation analysis and multivariate linear regression models were used to determine the associations between the FA laterality indices and ambulatory function. RESULTS An FA reduction was found in both the ipsilesional CST and contralesional ICP of the patients. The ICP FA laterality index exhibited a moderate correlation with ambulatory function (Berg Balance Scale, ρBBS=0.589; Mobility score, ρMS=0.619). On dividing the patient group into the moderate (mRS 3, 4) and severe disability (mRS 5) groups, a stronger correlation was found (ρBBS=0.777, ρMS=0.856, moderate disability; ρBBS=0.732, ρMS=0.797, severe disability). The ICP FA laterality index and age were independently associated with the Mobility score (R2=0.525). CONCLUSIONS ICP degeneration occurs after ICH, and its degree is associated with ambulatory function after ICH.
Collapse
|
6
|
Ahtam B, Waisbren SE, Anastasoaie V, Berry GT, Brown M, Petrides S, Afacan O, Prabhu SP, Schomer D, Grant PE, Greenstein PE. Identification of neuronal structures and pathways corresponding to clinical functioning in galactosemia. J Inherit Metab Dis 2020; 43:1205-1218. [PMID: 32592186 DOI: 10.1002/jimd.12279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/05/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
Classic galactosemia (OMIM# 230400) is an autosomal recessive disorder due to galactose-1-phosphate uridyltransferase deficiency. Newborn screening and prompt treatment with a galactose-free diet prevent the severe consequences of galactosemia, but clinical outcomes remain suboptimal. Five men and five women with classic galactosemia (mean age = 27.2 ± 5.47 years) received comprehensive neurological and neuropsychological evaluations, electroencephalogram (EEG) and magnetic resonance imaging (MRI). MRI data from nine healthy controls (mean age = 30.22 ± 3.52 years) were used for comparison measures. Galactosemia subjects experienced impaired memory, language processing, visual-motor skills, and increased anxiety. Neurological examinations revealed tremor and dysarthria in six subjects. In addition, there was ataxia in three subjects and six subjects had abnormal gait. Mean full scale IQ was 80.4 ± 17.3. EEG evaluations revealed right-sided abnormalities in five subjects and bilateral abnormalities in one subject. Compared to age- and gender-matched controls, subjects with galactosemia had reduced volume in left cerebellum white matter, bilateral putamen, and left superior temporal sulcus. Galactosemia patients also had lower fractional anisotropy and higher radial diffusivity values in the dorsal and ventral language networks compared to the controls. Furthermore, there were significant correlations between neuropsychological test results and the T1 volume and diffusivity scalars. Our findings help to identify anatomic correlates to motor control, learning and memory, and language in subjects with galactosemia. The results from this preliminary assessment may provide insights into the pathophysiology of this inborn error of metabolism.
Collapse
Affiliation(s)
- Banu Ahtam
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Susan E Waisbren
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Vera Anastasoaie
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Gerard T Berry
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Matthew Brown
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Stephanie Petrides
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Onur Afacan
- Computational Radiology Laboratory, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sanjay P Prabhu
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Donald Schomer
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - P Ellen Grant
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Patricia E Greenstein
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Wang Y, Sibaii F, Custead R, Oh H, Barlow SM. Functional Connectivity Evoked by Orofacial Tactile Perception of Velocity. Front Neurosci 2020; 14:182. [PMID: 32210753 PMCID: PMC7068713 DOI: 10.3389/fnins.2020.00182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
The cortical representations of orofacial pneumotactile stimulation involve complex neuronal networks, which are still unknown. This study aims to identify the characteristics of functional connectivity (FC) evoked by three different saltatory velocities over the perioral and buccal surface of the lower face using functional magnetic resonance imaging in twenty neurotypical adults. Our results showed a velocity of 25 cm/s evoked stronger connection strength between the right dorsolateral prefrontal cortex and the right thalamus than a velocity of 5 cm/s. The decreased FC between the right secondary somatosensory cortex and right posterior parietal cortex for 5-cm/s velocity versus all three velocities delivered simultaneously (“All ON”) and the increased FC between the right thalamus and bilateral secondary somatosensory cortex for 65 cm/s vs “All ON” indicated that the right secondary somatosensory cortex might play a role in the orofacial tactile perception of velocity. Our results have also shown different patterns of FC for each seed (bilateral primary and secondary somatosensory cortex) at various velocity contrasts (5 vs 25 cm/s, 5 vs 65 cm/s, and 25 vs 65 cm/s). The similarities and differences of FC among three velocities shed light on the neuronal networks encoding the orofacial tactile perception of velocity.
Collapse
Affiliation(s)
- Yingying Wang
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States.,Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.,Nebraska Center for Research on Children, Youth, Families and schools, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Fatima Sibaii
- Neuroimaging for Language, Literacy and Learning Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rebecca Custead
- Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hyuntaek Oh
- Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Steven M Barlow
- Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, United States.,Biomedical Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States.,Communication Neuroscience Laboratory, Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
8
|
Carson RG, Buick AR. Neuromuscular electrical stimulation-promoted plasticity of the human brain. J Physiol 2019; 599:2375-2399. [PMID: 31495924 DOI: 10.1113/jp278298] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
The application of neuromuscular electrical stimulation (NMES) to paretic limbs has demonstrated utility for motor rehabilitation following brain injury. When NMES is delivered to a mixed peripheral nerve, typically both efferent and afferent fibres are recruited. Muscle contractions brought about by the excitation of motor neurons are often used to compensate for disability by assisting actions such as the formation of hand aperture, or by preventing others including foot drop. In this context, exogenous stimulation provides a direct substitute for endogenous neural drive. The goal of the present narrative review is to describe the means through which NMES may also promote sustained adaptations within central motor pathways, leading ultimately to increases in (intrinsic) functional capacity. There is an obvious practical motivation, in that detailed knowledge concerning the mechanisms of adaptation has the potential to inform neurorehabilitation practice. In addition, responses to NMES provide a means of studying CNS plasticity at a systems level in humans. We summarize the fundamental aspects of NMES, focusing on the forms that are employed most commonly in clinical and experimental practice. Specific attention is devoted to adjuvant techniques that further promote adaptive responses to NMES thereby offering the prospect of increased therapeutic potential. The emergent theme is that an association with centrally initiated neural activity, whether this is generated in the context of NMES triggered by efferent drive or via indirect methods such as mental imagery, may in some circumstances promote the physiological changes that can be induced through peripheral electrical stimulation.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin 2, Ireland.,School of Psychology, Queen's University Belfast, Belfast, BT7 1NN, UK.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Alison R Buick
- School of Psychology, Queen's University Belfast, Belfast, BT7 1NN, UK
| |
Collapse
|
9
|
Pickford J, Apps R, Bashir ZI. Muscarinic Receptor Modulation of the Cerebellar Interpositus Nucleus In Vitro. Neurochem Res 2019; 44:627-635. [PMID: 30117095 PMCID: PMC6420442 DOI: 10.1007/s11064-018-2613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 11/25/2022]
Abstract
How the cerebellum carries out its functions is not clear, even for its established roles in motor control. In particular, little is known about how the cerebellar nuclei (CN) integrate their synaptic and neuromodulatory inputs to generate cerebellar output. CN neurons receive inhibitory inputs from Purkinje cells, excitatory inputs from mossy fibre and climbing fibre collaterals, as well as a variety of neuromodulatory inputs, including cholinergic inputs. In this study we tested how activation of acetylcholine receptors modulated firing rate, intrinsic properties and synaptic transmission in the CN. Using in vitro whole-cell patch clamp recordings from neurons in the interpositus nucleus, the acetylcholine receptor agonist carbachol was shown to induce a short-term increase in firing rate, increase holding current and decrease input resistance of interpositus CN neurons. Carbachol also induced long-term depression of evoked inhibitory postsynaptic currents and a short-term depression of evoked excitatory postsynaptic currents. All effects were shown to be dependent upon muscarinic acetylcholine receptor activation. Overall, the present study has identified muscarinic receptor activation as a modulator of CN activity.
Collapse
Affiliation(s)
- J Pickford
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK.
| | - R Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Z I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
10
|
Viaro R, Bonazzi L, Maggiolini E, Franchi G. Cerebellar Modulation of Cortically Evoked Complex Movements in Rats. Cereb Cortex 2018; 27:3525-3541. [PMID: 27329134 DOI: 10.1093/cercor/bhw167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intracortical microstimulation (ICMS) delivered to the motor cortex (M1) via long- or short-train duration (long- or short-duration ICMS) can evoke coordinated complex movements or muscle twitches, respectively. The role of subcortical cerebellar input in M1 output, in terms of long- and short-duration ICMS-evoked movement and motor skill performance, was evaluated in rats with bilateral lesion of the deep cerebellar nuclei. After the lesion, distal forelimb movements were seldom observed, and almost 30% of proximal forelimb movements failed to match criteria defining the movement class observed under control conditions. The classifiable movements could be evoked in different cortical regions with respect to control and many kinematic variables were strongly affected. Furthermore, movement endpoints within the rat's workspace shrunk closer to the body, while performance in the reaching/grasping task worsened. Surprisingly, neither the threshold current values for evoking movements nor the overall size of forelimb movement representation changed with respect to controls in either long- or short-duration ICMS. We therefore conclude that cerebellar input via the motor thalamus is crucial for expressing the basic functional features of the motor cortex.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy.,Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Laura Bonazzi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Emma Maggiolini
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Gianfranco Franchi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
11
|
Custead R, Oh H, Wang Y, Barlow S. Brain encoding of saltatory velocity through a pulsed pneumotactile array in the lower face. Brain Res 2017; 1677:58-73. [PMID: 28958864 DOI: 10.1016/j.brainres.2017.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/31/2017] [Accepted: 09/20/2017] [Indexed: 12/25/2022]
Abstract
Processing dynamic tactile inputs is a primary function of the somatosensory system. Spatial velocity encoding mechanisms by the nervous system are important for skilled movement production and may play a role in recovery of sensorimotor function following neurological insult. Little is known about tactile velocity encoding in mechanosensory trigeminal networks required for speech, suck, mastication, and facial gesture. High resolution functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of velocity encoding in the human orofacial somatosensory system during unilateral saltatory pneumotactile stimulation of perioral and buccal hairy skin in 20 neurotypical adults. A custom multichannel, scalable pneumotactile array consisting of 7 TAC-Cells was used to present 5 stimulus conditions: 5cm/s, 25cm/s, 65cm/s, ALL-ON synchronous activation, and ALL-OFF. The spatiotemporal organization of whole-brain blood oxygen level-dependent (BOLD) response was analyzed with general linear modeling (GLM) and fitted response estimates of percent signal change to compare activations associated with each velocity, and the main effect of velocity alone. Sequential saltatory inputs to the right lower face produced localized BOLD responses in 6 key regions of interest (ROI) including; contralateral precentral and postcentral gyri, and ipsilateral precentral, superior temporal (STG), supramarginal gyri (SMG), and cerebellum. The spatiotemporal organization of the evoked BOLD response was highly dependent on velocity, with the greatest amplitude of BOLD signal change recorded during the 5cm/s presentation in the contralateral hemisphere. Temporal analysis of BOLD response by velocity indicated rapid adaptation via a scalability of networks processing changing pneumotactile velocity cues.
Collapse
Affiliation(s)
- Rebecca Custead
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Hyuntaek Oh
- Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Yingying Wang
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| | - Steven Barlow
- Special Education and Communication Disorders, University of Nebraska, Lincoln, NE, USA; Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA; Center for Brain, Biology and Behavior, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
12
|
Summers SJ, Schabrun SM, Marinovic W, Chipchase LS. Peripheral electrical stimulation increases corticomotor excitability and enhances the rate of visuomotor adaptation. Behav Brain Res 2017; 322:42-50. [DOI: 10.1016/j.bbr.2017.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 10/20/2022]
|
13
|
Chen XY, Wang Y, Chen Y, Chen L, Wolpaw JR. The inferior olive is essential for long-term maintenance of a simple motor skill. J Neurophysiol 2016; 116:1946-1955. [PMID: 27535367 PMCID: PMC5144694 DOI: 10.1152/jn.00085.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/29/2016] [Indexed: 11/22/2022] Open
Abstract
The inferior olive (IO) is essential for operant down-conditioning of the rat soleus H-reflex, a simple motor skill. To evaluate the role of the IO in long-term maintenance of this skill, the H-reflex was down-conditioned over 50 days, the IO was chemically ablated, and down-conditioning continued for up to 102 more days. H-reflex size just before IO ablation averaged 62(±2 SE)% of its initial value (P < 0.001 vs. initial). After IO ablation, H-reflex size rose to 75-80% over ∼10 days, remained there for ∼30 days, rose over 10 days to above its initial value, and averaged 140(±14)% for the final 10 days of study (P < 0.01 vs. initial). This two-stage loss of down-conditioning maintenance correlated with IO neuronal loss (r = 0.75, P < 0.01) and was similar to the loss of down-conditioning that follows ablation of the cerebellar output nuclei dentate and interpositus. In control (i.e., unconditioned) rats, IO ablation has no long-term effect on H-reflex size. These results indicate that the IO is essential for long-term maintenance of a down-conditioned H-reflex. With previous data, they support the hypothesis that IO and cortical inputs to cerebellum combine to produce cerebellar plasticity that produces sensorimotor cortex plasticity that produces spinal cord plasticity that produces the smaller H-reflex. H-reflex down-conditioning appears to depend on a hierarchy of plasticity that may be guided by the IO and begin in the cerebellum. Similar hierarchies may underlie other motor learning.
Collapse
Affiliation(s)
- Xiang Yang Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York; .,Department of Biomedical Sciences, State University of New York, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and
| | - Yu Wang
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and
| | - Yi Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and
| | - Lu Chen
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York.,Department of Biomedical Sciences, State University of New York, Albany, New York.,Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and.,Department of Neurology, Columbia University, College of Physicians and Surgeons, New York, New York
| |
Collapse
|
14
|
Farias da Guarda SN, Conforto AB. Effects of somatosensory stimulation on corticomotor excitability in patients with unilateral cerebellar infarcts and healthy subjects - preliminary results. CEREBELLUM & ATAXIAS 2014; 1:16. [PMID: 26331040 PMCID: PMC4552362 DOI: 10.1186/s40673-014-0016-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/05/2014] [Indexed: 02/04/2023]
Abstract
Background In healthy humans, somatosensory stimulation in the form of 2 h-repetitive peripheral afferent nerve stimulation (SS) increases excitability of the contralateral motor cortex. In this preliminary study, we explored effects of SS on excitability to transcranial magnetic stimulation (TMS) in patients with unilateral cerebellar infarcts and age-matched controls. Methods Ten patients with infarcts in one cerebellar hemisphere and six age-matched controls participated in the study. Each subject participated in one session of active, and one session of sham SS delivered to the median nerve ipsilateral to the cerebellar infarct in patients, and to the homologous nerve in controls. Before and after each session, the following TMS measures were performed: resting motor threshold (rMT), motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF). Amplitudes of motor evoked potentials were normalized to amplitudes of supramaximal M responses (MEP/M ratios). Results In the control group, there was a significant increase in rMT, and a significant increase in MEP/M ratios after active, but not after sham SS. There were no significant differences in rMT or MEP/M ratios in the group of patients after active or sham SS. There were no significant differences in SICI or SICF after active or sham SS in either group. Conclusion Consistent with results reported in rodents, these preliminary findings suggest for the first time in humans, that normal cerebellar activity is required so that SS can modulate excitability of the sensorimotor cortex.
Collapse
Affiliation(s)
- Suzete Nascimento Farias da Guarda
- Hospital das Clínicas/São Paulo University, São Paulo, Brazil ; Hospital São Rafael, Salvador, Brazil ; Rua Waldemar Falcão n 1547 ap 1201 Horto Florestal 40.295-010, Salvador, Bahia Brazil
| | - Adriana Bastos Conforto
- Hospital das Clínicas/São Paulo University, São Paulo, Brazil ; Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brazil
| |
Collapse
|
15
|
Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neurosci Biobehav Rev 2014; 47:22-35. [DOI: 10.1016/j.neubiorev.2014.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
|
16
|
Abstract
Limited evidence to date has demonstrated changes in excitability that develops over the contralateral motor cortex after a cerebellar infarct. As such, the present study investigated changes in excitability over the contra- (contraM1) and ipsilateral motor cortices (ipsiM1), in patients with acute cerebellar infarct, to determine whether the changes may have functional relevance. Paired-pulse transcranial magnetic stimulation, combined with detailed clinical assessment, was undertaken in ten patients presenting with acute unilateral cerebellar infarct. Studies were undertaken within 1 week of ictus and followed longitudinally at 3-, 6-, and 12-month periods. Comparisons were made with 15 age-matched controls. Immediately following a stroke, short-interval intracortical inhibition (SICI) was significantly reduced over the contraM1 in all patients (P = 0.01), while reduced over the ipsiM1 in those with severe functional impairment (P = 0.01). Moreover, ipsiM1 SICI correlated with impairment (r = 0.69, P = 0.03), such that less SICI was observed in those patients with most impairment. Cortical excitability changes persisted over the follow-up period in the context of clinical improvement. Following an acute cerebellar infarct, excitability abnormalities develop over both motor cortices, more prominently in patients with severe functional impairment. The cortical changes, particularly over the ipsilateral motor cortex, may represent a functionally relevant plastic process that may guide future therapeutic strategies to better facilitate recovery.
Collapse
|
17
|
Quartarone A, Hallett M. Emerging concepts in the physiological basis of dystonia. Mov Disord 2014; 28:958-67. [PMID: 23893452 DOI: 10.1002/mds.25532] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/30/2013] [Accepted: 05/02/2013] [Indexed: 12/31/2022] Open
Abstract
Work over the past 2 decades has led to substantial changes in our understanding of dystonia pathophysiology. Three general abnormalities appear to underlie the pathophysiological substrate. The first is a loss of inhibition. This makes sense considering that it may be responsible for the excess of movement and for the overflow phenomena seen in dystonia. A second abnormality is sensory dysfunction which is related to the mild sensory complaints in patients with focal dystonias and may be responsible for some of the motor dysfunction. Third, evidence from animal models of dystonia as well as from patients with primary dystonia has revealed significant alterations of synaptic plasticity characterized by a disruption of homeostatic plasticity, with a prevailing facilitation of synaptic potentiation, together with the loss of synaptic inhibitory processes. We speculate that during motor learning this abnormal plasticity may lead to an abnormal sensorimotor integration, leading to consolidation of abnormal motor engrams. If so, then removing this abnormal plasticity might have little immediate effect on dystonic movements because bad motor memories have already been ''learned'' and are difficult to erase. These considerations might explain the delayed clinical effects of deep brain stimulation (DBS) in patients with generalized dystonia. Current lines of research will be discussed from a network perspective. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Angelo Quartarone
- Department of Neurosciences, Psychiatry, and Anaesthesiological Science, University of Messina, Messina, Italy.
| | | |
Collapse
|
18
|
Lehéricy S, Tijssen MAJ, Vidailhet M, Kaji R, Meunier S. The anatomical basis of dystonia: current view using neuroimaging. Mov Disord 2014; 28:944-57. [PMID: 23893451 DOI: 10.1002/mds.25527] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 04/06/2013] [Accepted: 05/02/2013] [Indexed: 12/15/2022] Open
Abstract
This review will consider the knowledge that neuroimaging studies have provided to the understanding of the anatomy of dystonia. Major advances have occurred in the use of neuroimaging for dystonia in the past 2 decades. At present, the most developed imaging approaches include whole-brain or region-specific studies of structural or diffusion changes, functional imaging using fMRI or positron emission tomography (PET), and metabolic imaging using fluorodeoxyglucose PET. These techniques have provided evidence that regions other than the basal ganglia are involved in dystonia. In particular, there is increasing evidence that primary dystonia can be viewed as a circuit disorder, involving the basal ganglia-thalamo-cortical and cerebello-thalamo-cortical pathways. This suggests that a better understanding of the dysfunction in each region in the network and their interactions are important topics to address. Current views of interpretation of imaging data as cause or consequence of dystonia, and the postmortem correlates of imaging data are presented. The application of imaging as a tool to monitor therapy and its use as an outcome measure will be discussed. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Stéphane Lehéricy
- Institut du Cerveau et de la Moelle (ICM) epiniere, Centre de NeuroImagerie de Recherche (CENIR), Paris, France.
| | | | | | | | | |
Collapse
|
19
|
Carson RG, Kennedy NC. Modulation of human corticospinal excitability by paired associative stimulation. Front Hum Neurosci 2013; 7:823. [PMID: 24348369 PMCID: PMC3847812 DOI: 10.3389/fnhum.2013.00823] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/14/2013] [Indexed: 12/04/2022] Open
Abstract
Paired Associative Stimulation (PAS) has come to prominence as a potential therapeutic intervention for the treatment of brain injury/disease, and as an experimental method with which to investigate Hebbian principles of neural plasticity in humans. Prototypically, a single electrical stimulus is directed to a peripheral nerve in advance of transcranial magnetic stimulation (TMS) delivered to the contralateral primary motor cortex (M1). Repeated pairing of the stimuli (i.e., association) over an extended period may increase or decrease the excitability of corticospinal projections from M1, in manner that depends on the interstimulus interval (ISI). It has been suggested that these effects represent a form of associative long-term potentiation (LTP) and depression (LTD) that bears resemblance to spike-timing dependent plasticity (STDP) as it has been elaborated in animal models. With a large body of empirical evidence having emerged since the cardinal features of PAS were first described, and in light of the variations from the original protocols that have been implemented, it is opportune to consider whether the phenomenology of PAS remains consistent with the characteristic features that were initially disclosed. This assessment necessarily has bearing upon interpretation of the effects of PAS in relation to the specific cellular pathways that are putatively engaged, including those that adhere to the rules of STDP. The balance of evidence suggests that the mechanisms that contribute to the LTP- and LTD-type responses to PAS differ depending on the precise nature of the induction protocol that is used. In addition to emphasizing the requirement for additional explanatory models, in the present analysis we highlight the key features of the PAS phenomenology that require interpretation.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin Dublin, Ireland ; School of Psychology, Queen's University Belfast Belfast, UK
| | - Niamh C Kennedy
- School of Psychology, Queen's University Belfast Belfast, UK ; School of Rehabilitation Sciences University of East Anglia Norwich, UK
| |
Collapse
|
20
|
D'Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits 2013; 6:116. [PMID: 23335884 PMCID: PMC3541516 DOI: 10.3389/fncir.2012.00116] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 12/17/2012] [Indexed: 12/11/2022] Open
Abstract
Following the fundamental recognition of its involvement in sensory-motor coordination and learning, the cerebellum is now also believed to take part in the processing of cognition and emotion. This hypothesis is recurrent in numerous papers reporting anatomical and functional observations, and it requires an explanation. We argue that a similar circuit structure in all cerebellar areas may carry out various operations using a common computational scheme. On the basis of a broad review of anatomical data, it is conceivable that the different roles of the cerebellum lie in the specific connectivity of the cerebellar modules, with motor, cognitive, and emotional functions (at least partially) segregated into different cerebro-cerebellar loops. We here develop a conceptual and operational framework based on multiple interconnected levels (a meta-levels hypothesis): from cellular/molecular to network mechanisms leading to generation of computational primitives, thence to high-level cognitive/emotional processing, and finally to the sphere of mental function and dysfunction. The main concept explored is that of intimate interplay between timing and learning (reminiscent of the “timing and learning machine” capabilities long attributed to the cerebellum), which reverberates from cellular to circuit mechanisms. Subsequently, integration within large-scale brain loops could generate the disparate cognitive/emotional and mental functions in which the cerebellum has been implicated. We propose, therefore, that the cerebellum operates as a general-purpose co-processor, whose effects depend on the specific brain centers to which individual modules are connected. Abnormal functioning in these loops could eventually contribute to the pathogenesis of major brain pathologies including not just ataxia but also dyslexia, autism, schizophrenia, and depression.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Brain and Behavioral Sciences Pavia, Italy ; IRCCS C. Mondino, Brain Connectivity Center Pavia, Italy
| | | |
Collapse
|
21
|
Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, Habas C, Hagura N, Ivry RB, Mariën P, Molinari M, Naito E, Nowak DA, Oulad Ben Taib N, Pelisson D, Tesche CD, Tilikete C, Timmann D. Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on cerebellar involvement in movement. CEREBELLUM (LONDON, ENGLAND) 2012; 11:457-87. [PMID: 22161499 PMCID: PMC4347949 DOI: 10.1007/s12311-011-0331-9] [Citation(s) in RCA: 586] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Considerable progress has been made in developing models of cerebellar function in sensorimotor control, as well as in identifying key problems that are the focus of current investigation. In this consensus paper, we discuss the literature on the role of the cerebellar circuitry in motor control, bringing together a range of different viewpoints. The following topics are covered: oculomotor control, classical conditioning (evidence in animals and in humans), cerebellar control of motor speech, control of grip forces, control of voluntary limb movements, timing, sensorimotor synchronization, control of corticomotor excitability, control of movement-related sensory data acquisition, cerebro-cerebellar interaction in visuokinesthetic perception of hand movement, functional neuroimaging studies, and magnetoencephalographic mapping of cortico-cerebellar dynamics. While the field has yet to reach a consensus on the precise role played by the cerebellum in movement control, the literature has witnessed the emergence of broad proposals that address cerebellar function at multiple levels of analysis. This paper highlights the diversity of current opinion, providing a framework for debate and discussion on the role of this quintessential vertebrate structure.
Collapse
Affiliation(s)
- Mario Manto
- Unité d'Etude du Mouvement, FNRS, ULB Erasme, 808 Route de Lennik, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The last 25 years have seen remarkable advances in our understanding of the genetic etiologies of dystonia, new approaches into dissecting underlying pathophysiology, and independent progress in identifying effective treatments. In this review we highlight some of these advances, especially the genetic findings that have taken us from phenomenological to molecular-based diagnoses. Twenty DYT loci have been designated and 10 genes identified, all based on linkage analyses in families. Hand in hand with these genetic findings, neurophysiological and imaging techniques have been employed that have helped illuminate the similarities and differences among the various etiological dystonia subtypes. This knowledge is just beginning to yield new approaches to treatment including those based on DYT1 animal models. Despite the lag in identifying genetically based therapies, effective treatments, including impressive benefits from deep brain stimulation and botulinum toxin chemodenervation, have marked the last 25 years. The challenge ahead includes continued advancement into understanding dystonia's many underlying causes and associated pathology and using this knowledge to advance treatment including preventing genetic disease expression.
Collapse
Affiliation(s)
- Laurie J Ozelius
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
23
|
Lundbye-Jensen J, Petersen TH, Rothwell JC, Nielsen JB. Interference in ballistic motor learning: specificity and role of sensory error signals. PLoS One 2011; 6:e17451. [PMID: 21408054 PMCID: PMC3052297 DOI: 10.1371/journal.pone.0017451] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/03/2011] [Indexed: 11/22/2022] Open
Abstract
Humans are capable of learning numerous motor skills, but newly acquired skills may be abolished by subsequent learning. Here we ask what factors determine whether interference occurs in motor learning. We speculated that interference requires competing processes of synaptic plasticity in overlapping circuits and predicted specificity. To test this, subjects learned a ballistic motor task. Interference was observed following subsequent learning of an accuracy-tracking task, but only if the competing task involved the same muscles and movement direction. Interference was not observed from a non-learning task suggesting that interference requires competing learning. Subsequent learning of the competing task 4 h after initial learning did not cause interference suggesting disruption of early motor memory consolidation as one possible mechanism underlying interference. Repeated transcranial magnetic stimulation (rTMS) of corticospinal motor output at intensities below movement threshold did not cause interference, whereas suprathreshold rTMS evoking motor responses and (re)afferent activation did. Finally, the experiments revealed that suprathreshold repetitive electrical stimulation of the agonist (but not antagonist) peripheral nerve caused interference. The present study is, to our knowledge, the first to demonstrate that peripheral nerve stimulation may cause interference. The finding underscores the importance of sensory feedback as error signals in motor learning. We conclude that interference requires competing plasticity in overlapping circuits. Interference is remarkably specific for circuits involved in a specific movement and it may relate to sensory error signals.
Collapse
Affiliation(s)
- Jesper Lundbye-Jensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
24
|
Neychev VK, Gross RE, Lehéricy S, Hess EJ, Jinnah HA. The functional neuroanatomy of dystonia. Neurobiol Dis 2011; 42:185-201. [PMID: 21303695 DOI: 10.1016/j.nbd.2011.01.026] [Citation(s) in RCA: 333] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/08/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022] Open
Abstract
Dystonia is a neurological disorder characterized by involuntary twisting movements and postures. There are many different clinical manifestations, and many different causes. The neuroanatomical substrates for dystonia are only partly understood. Although the traditional view localizes dystonia to basal ganglia circuits, there is increasing recognition that this view is inadequate for accommodating a substantial portion of available clinical and experimental evidence. A model in which several brain regions play a role in a network better accommodates the evidence. This network model accommodates neuropathological and neuroimaging evidence that dystonia may be associated with abnormalities in multiple different brain regions. It also accommodates animal studies showing that dystonic movements arise with manipulations of different brain regions. It is consistent with neurophysiological evidence suggesting defects in neural inhibitory processes, sensorimotor integration, and maladaptive plasticity. Finally, it may explain neurosurgical experience showing that targeting the basal ganglia is effective only for certain subpopulations of dystonia. Most importantly, the network model provides many new and testable hypotheses with direct relevance for new treatment strategies that go beyond the basal ganglia. This article is part of a Special Issue entitled "Advances in dystonia".
Collapse
|
25
|
Farias da Guarda SN, Cohen LG, da Cunha Pinho M, Yamamoto FI, Marchiori PE, Scaff M, Conforto AB. Interhemispheric asymmetry of corticomotor excitability after chronic cerebellar infarcts. THE CEREBELLUM 2011; 9:398-404. [PMID: 20461489 DOI: 10.1007/s12311-010-0176-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Early after stroke, there is loss of intracortical facilitation (ICF) and increase in short-interval intracortical inhibition (SICI) in the primary motor cortex (M1) contralateral to a cerebellar infarct. Our goal was to investigate intracortical M1 function in the chronic stage following cerebellar infarcts (>4 months). We measured resting motor threshold (rMT), SICI, ICF, and ratios between motor-evoked potential amplitudes (MEP) and supramaximal M response amplitudes (MEP/M; %), after transcranial magnetic stimulation was applied to the M1 contralateral (M1(contralesional)) and ipsilateral (M1(ipsilesional)) to the cerebellar infarct in patients and to both M1s of healthy age-matched volunteers. SICI was decreased in M1(contralesional) compared to M1(ipsilesional) in the patient group in the absence of side-to-side differences in controls. There were no significant interhemispheric or between-group differences in rMT, ICF, or MEP/M (%). Our results document disinhibition of M1(contralesional) in the chronic phase after cerebellar stroke.
Collapse
|
26
|
Abstract
BACKGROUND Impaired cortical inhibiton and maladaptive cortical plasticity are functional hallmarks of sporadic focal dystonias. Whether or not these mechanisms translate to generalized dystonias and whether these features reflect state or trait characteristics are topics of research in hereditary dystonias. METHODS We present a series of studies using a multitracer approach with positron emission tomography (PET) and diffusion tensor MRI (DTI) in the DYT1 and the DYT6 genotype. RESULTS In these hereditary dystonias functional and microstructural abnormalities were found in cortico-striatal-pallido-thalamocortical (CSPTC) and cerebellar-thalamo-cortical circuits. Genotype-specific abnormalities were localized to the basal ganglia, SMA and cerebellum. Functional changes, as potential correlates of maladaptive sensorimotor plasticity were found throughout the sensorimotor system and were more pronounced in affected mutation carriers than in their non-manifesting counterparts. In both genotypes, striatal metabolic abnormalities were paralleled by genotype-specific reductions in D(2) receptor availability. However, these reductions failed to show a clear association with clinical or functional markers of the disease. By contrast, microstructural changes of cerebellar pathways clearly related to penetrance and may thus represent the main intrinsic abnormality underlying cortical downstream effects, such as increased sensorimotor responsivity. CONCLUSIONS These studies are consistent with the view of primary torsion dystonia as a neurodevelopmental circuit disorder involving CSPTC and related cerebellar pathways.
Collapse
Affiliation(s)
- M Carbon
- Center for Neurosciences, The Feinstein Institute for Medical Research, North Shore - Long Island Jewish Health System, Manhasset, NY 11030, USA.
| | | | | |
Collapse
|
27
|
Torriero S, Oliveri M, Koch G, Lo Gerfo E, Salerno S, Ferlazzo F, Caltagirone C, Petrosini L. Changes in cerebello-motor connectivity during procedural learning by actual execution and observation. J Cogn Neurosci 2010; 23:338-48. [PMID: 20350172 DOI: 10.1162/jocn.2010.21471] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The cerebellum is involved in motor learning of new procedures both during actual execution of a motor task and during observational training. These processes are thought to depend on the activity of a neural network that involves the lateral cerebellum and primary motor cortex (M1). In this study, we used a twin-coil TMS technique to investigate whether execution and observation of a visuomotor procedural learning task is related to modulation of cerebello-motor connectivity. We observed that, at rest, a magnetic conditioning pulse applied over the lateral cerebellum reduced the motor-evoked potentials obtained by stimulating the contralateral M1, indicating activation of a cerebello-motor connection. Furthermore, during procedural learning, cerebellar stimulation resulted in selective facilitation, not inhibition, of contralateral M1 excitability. The effects were evident when motor learning was obtained by actual execution of the task or by observation, but they disappeared if procedural learning had already been acquired by previous observational training. These results indicate that changes in cerebello-motor connectivity occur in relation to specific phases of procedural learning, demonstrating a complex pattern of excitatory and inhibitory drives modulated across time.
Collapse
|
28
|
CARBON MAREN, EIDELBERG DAVID. Abnormal structure-function relationships in hereditary dystonia. Neuroscience 2009; 164:220-9. [PMID: 19162138 PMCID: PMC2760608 DOI: 10.1016/j.neuroscience.2008.12.041] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/17/2008] [Accepted: 12/21/2008] [Indexed: 12/01/2022]
Abstract
Primary torsion dystonia (PTD) is a chronic movement disorder manifested clinically by focal or generalized sustained muscle contractions, postures, and/or involuntary movements. The most common inherited form of PTD is associated with the DYT1 mutation on chromosome 9q34. A less frequent form is linked to the DYT6 locus on chromosome 8q21-22. Both forms are autosomal dominant with incomplete (approximately 30%) clinical penetrance. Extensive functional and microstructural imaging with positron emission tomography (PET) and diffusion tensor MRI (DTI) has been performed on manifesting and non-manifesting carriers of these mutations. The results are consistent with the view of PTD as a neurodevelopmental circuit disorder involving cortico-striatal-pallido-thalamocortical (CSPTC) and related cerebellar-thalamo-cortical pathways. Studies of resting regional metabolism have revealed consistent abnormalities in PTD involving multiple interconnected elements of these circuits. In gene carriers, changes in specific subsets of these regions have been found to relate to genotype, phenotype, or both. For instance, genotypic abnormalities in striatal metabolic activity parallel previously reported reductions in local D(2) receptor availability. Likewise, we have identified a unique penetrance-related metabolic network characterized by increases in the pre-supplementary motor area (SMA) and parietal association areas, associated with relative reductions in the cerebellum, brainstem, and ventral thalamus. Interestingly, metabolic activity in the hypermetabolic areas has recently been found to be modified by the penetrance regulating D216H polymorphism. The DTI data raise the possibility that metabolic abnormalities in mutation carriers reflect adaptive responses to developmental abnormalities in the intrinsic connectivity of the motor pathways. Moreover, findings of increased motor activation responses in these subjects are compatible with the reductions in cortical inhibition that have been observed in this disorder. Future research will focus on clarifying the relationship of these changes to clinical penetrance in dystonia mutation carriers, and the reversibility of disease-related functional abnormalities by treatment.
Collapse
Affiliation(s)
- MAREN CARBON
- Center for Neurosciences, The Feinstein Institute for Medical Research, North Shore – Long Island Jewish Health System, 350 Community Drive, Manhasset, NY 11030, USA and Departments of Neurology and Medicine, North Shore University Hospital, 300 Community Drive, Manhasset, New York, and New York University School of Medicine, 550 First Avenue New York, NY 10016, USA
| | - DAVID EIDELBERG
- Center for Neurosciences, The Feinstein Institute for Medical Research, North Shore – Long Island Jewish Health System, 350 Community Drive, Manhasset, NY 11030, USA and Departments of Neurology and Medicine, North Shore University Hospital, 300 Community Drive, Manhasset, New York, and New York University School of Medicine, 550 First Avenue New York, NY 10016, USA
| |
Collapse
|
29
|
Dickstein R, Kafri M. Effects of antecedent TENS on EMG activity of the finger flexor muscles and on grip force. Somatosens Mot Res 2009; 25:139-46. [DOI: 10.1080/08990220802131416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ruth Dickstein
- Faculty of Social Welfare and Health Sciences, Department of Physical Therapy, University of Haifa, Mt Carmel, Haifa, Israel
| | - Michal Kafri
- Faculty of Social Welfare and Health Sciences, Department of Physical Therapy, University of Haifa, Mt Carmel, Haifa, Israel
| |
Collapse
|
30
|
Late onset muscle plasticity in the whisker pad of enucleated rats. Proc Natl Acad Sci U S A 2008; 105:15973-8. [PMID: 18838691 DOI: 10.1073/pnas.0808431105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blindness leads to a major reorganization of neural pathways associated with touch. Because incoming somatosensory information influences motor output, it is plausible that motor plasticity occurs in the blind. In this work, we evaluated this issue at the peripheral level in enucleated rats. Whisker muscles in enucleated rats 160 days of age or older showed increased cytochrome oxidase activity, capillary density, motor plate size, and amplitude of evoked field potentials as compared with their control counterparts. Such differences were not observed at ages 10 and 60 days, the capillary density was the exception being greater in the enucleated rat at the latter age. Interestingly, there was a trend to increased neurotrophin-3 concentrations in the whisker pads of enucleated rats throughout postnatal development. Our results show that neonatal enucleation leads to late onset plasticity of the whisker's motor system.
Collapse
|
31
|
Oulad Ben Taib N, Manto M. Effects of trains of high-frequency stimulation of the premotor/supplementary motor area on conditioned corticomotor responses in hemicerebellectomized rats. Exp Neurol 2008; 212:157-65. [PMID: 18482725 DOI: 10.1016/j.expneurol.2008.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 03/06/2008] [Accepted: 03/18/2008] [Indexed: 01/30/2023]
Abstract
We studied the effects of low- and high-frequency premotor electrical stimulations on conditioned corticomotor responses, intra-cortical facilitation (ICF) and spinal excitability in hemicerebellectomized rats (left side). Trains of stimulation were applied in prefrontal region rFr2 (the equivalent of the premotor/supplementary motor area in primates) at a rate of 1 Hz (low-frequency stimulation LFS) or 20 Hz (high-frequency stimulation HFS). Test stimuli on the motor cortex were preceded by a conditioning stimulus in contralateral sciatic nerve (two inter-stimulus intervals ISIs were studied: 5 ms or 45 ms). (A) At ISI-5, conditioning increased amplitudes of MEPs (motor evoked potentials) in the left motor cortex. This afferent facilitation was enhanced if preceded by trains of stimuli administered over the ipsilateral rFr2 area, and HFS had higher effects than LFS. The facilitation was lower for the right motor cortex, for both LFS and HFS. (B) At ISI-45, conditioned motor evoked responses were depressed as compared to unconditioned responses in the left motor cortex (afferent inhibition). Following LFS, the degree of inhibition was unchanged while it increased with HFS. At baseline, inhibition was enhanced in the right motor cortex. Interestingly, the afferent inhibition decreased significantly following HFS. (C) ICF was depressed in the right motor cortex, but increased similarly on both sides following LFS/HFS. These results (1) confirm the increased inhibition in the motor cortex contralaterally to the hemicerebellar ablation, (2) demonstrate for the first time that the cerebellum is necessary for tuning amplitudes of corticomotor responses following a peripheral nerve stimulation, (3) show that the application of LFS or HFS does not cancel the defect of excitability in the motor cortex for short ISIs, and (4) suggest that for longer ISIs, HFS could have interesting properties for the modulation of afferent inhibition in case of extensive cerebellar lesion. Our study underlines that cerebellar ablation impacts on the efficacy of combined peripheral-motor cortex stimulation in an ISI-dependent manner.
Collapse
|
32
|
Oulad Ben Taib N, Manto M. Reinstating the ability of the motor cortex to modulate cutaneomuscular reflexes in hemicerebellectomized rats. Brain Res 2008; 1204:59-68. [PMID: 18339362 DOI: 10.1016/j.brainres.2008.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 02/05/2008] [Accepted: 02/05/2008] [Indexed: 02/05/2023]
Abstract
The pathways passing through the cerebellum calibrate cutaneomuscular responses. Indeed, the enhancement of cutaneomuscular responses associated with subthreshold high-frequency trains of stimulation applied on motor cortex following a period of peripheral repetitive stimulation (PRS) is prevented by hemicerebellectomy. We analysed the effects of low-frequency repetitive stimulation of motor cortex (LFRSM1) on interhemispheric inhibition (IHI) and on the modulation of cutaneomuscular reflexes in rats with left hemicerebellar ablation. IHI was assessed by paired-pulse method with a conditioning stimulus (CS) to M1 followed by a test stimulus (TS) to the opposite M1. LFRSM1 reduced IHI. Combination of LFRSM1 with PRS increased significantly the magnitudes of cutaneomuscular responses evoked ipsilaterally to the hemicerebellar ablation. The increase of the intensity of cutaneomuscular responses was correlated with the reduction of IHI. Excitability of anterior horn motoneurons pool, assessed by F-wave, remained unchanged. Conjunction of LFRSM1 with PRS can be used to restore the ability of the motor cortex to modulate the intensity of cutaneomuscular responses in case of extensive unilateral cerebellar lesion. This study underlines for the first time the potential role of callosal pathways in the deficits of corticomotor tuning of cutaneomuscular responses contralaterally to acute extensive cerebellar lesion.
Collapse
|
33
|
Abstract
The question of which type of information and how it is being processed by the puzzling cerebellar circuitry remains open. Numerous works have highlighted and delineated the roles of cerebellar pathways in various parameters of motor control, such as timing of motor commands. Recent anatomical and functional data on a possible genuine cerebellar contribution in the processing of 'cognitive', behavioral and emotional information have not yet generated a consensus. Despite an apparent homogeneous and uniform cytoarchitecture, the actors of the cerebellar orchestra do play different roles depending on the anatomical inputs/outputs of the cerebellar regions. The numerous interactions between the cerebellum and the cerebral cortex remain a major field of research. Fundamental questions related to the cerebro-cerebellar networks, such as the modulation of corticomotoneuronal discharges in various contexts, have not been fully addressed, or only indirectly, with recent methods. Complexity of circuitries and non optimal theoretical frameworks continue to hamper our understanding of cerebellar operations.
Collapse
Affiliation(s)
- Mario-Ubaldo Manto
- Department of Neurology and Laboratory of Experimental Neurology, Hôpital Erasme-ULB, Brussels, Belgium.
| |
Collapse
|
34
|
Manto M, Nowak DA, Schutter DJLG. Coupling between cerebellar hemispheres and sensory processing. THE CEREBELLUM 2006; 5:187-8. [PMID: 16997748 DOI: 10.1080/14734220600925075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Oulad Ben Taib N, Manto M. Hemicerebellectomy impairs the modulation of cutaneomuscular reflexes by the motor cortex following repetitive somatosensory stimulation. Brain Res 2006; 1090:110-5. [PMID: 16638607 DOI: 10.1016/j.brainres.2006.03.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 03/14/2006] [Accepted: 03/16/2006] [Indexed: 11/29/2022]
Abstract
We examined the cutaneomuscular reflex of the plantaris muscle of rats in response to cutaneous stimulation in isolation and in conjunction with subthreshold high-frequency trains of stimuli applied on the motor cortex, prior to and following repetitive peripheral stimulation. The cutaneomuscular reflex was also investigated under the same paradigm following hemicerebellectomy. The enhancement of cutaneomuscular responses associated with subthreshold high-frequency trains of stimulation following repetitive peripheral stimulation was prevented by hemicerebellectomy. Our results suggest that the pathways passing through the cerebellum are involved in the calibration of cutaneomuscular responses.
Collapse
|
36
|
Wolpaw JR, Chen XY. The cerebellum in maintenance of a motor skill: a hierarchy of brain and spinal cord plasticity underlies H-reflex conditioning. Learn Mem 2006; 13:208-15. [PMID: 16585796 PMCID: PMC1409832 DOI: 10.1101/lm.92706] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 01/13/2006] [Indexed: 11/24/2022]
Abstract
Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex, is a simple model of skill acquisition and involves plasticity in the spinal cord. Previous work showed that the cerebellum is essential for down-conditioning the H-reflex. This study asks whether the cerebellum is also essential for maintaining down-conditioning. After rats decreased the soleus H-reflex over 50 d in response to the down-conditioning protocol, the cerebellar output nuclei dentate and interpositus (DIN) were ablated, and down-conditioning continued for 50-100 more days. In naive (i.e., unconditioned) rats, DIN ablation itself has no significant long-term effect on H-reflex size. During down-conditioning prior to DIN ablation, eight Sprague-Dawley rats decreased the H-reflex to 57% (+/-4 SEM) of control. It rose after ablation, stabilizing within 2 d at about 75% and remaining there until approximately 40 d after ablation. It then rose to approximately 130%, where it remained through the end of study 100 d after ablation. Thus, DIN ablation in down-conditioned rats caused an immediate increase and a delayed increase in the H-reflex. The final result was an H-reflex significantly larger than that prior to down-conditioning. Combined with previous work, these remarkable results suggest that the spinal cord plasticity directly responsible for down-conditioning, which survives only 5-10 d on its own, is maintained by supraspinal plasticity that survives approximately 40 d after loss of cerebellar output. Thus, H-reflex conditioning seems to depend on a hierarchy of brain and spinal cord plasticity to which the cerebellum makes an essential contribution.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- Laboratory of Nervous System Disorders Wadsworth Center, New York State Department of Health and State University of New York at Albany, Albany, New York 12201-0509, USA.
| | | |
Collapse
|
37
|
Paul JS, Fwu-Shan S, Luft AR. Early adaptations in somatosensory cortex after focal ischemic injury to motor cortex. Exp Brain Res 2005; 168:178-85. [PMID: 16041499 DOI: 10.1007/s00221-005-0077-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 05/29/2005] [Indexed: 10/25/2022]
Abstract
In response to a lesion, intact regions of cortex in both hemispheres undergo adaptive changes in network function. For example, changes in excitability and intracortical inhibition in primary motor cortex (M1) were reported after lesioning contralateral or ipsilateral brain regions. Close interactions exist between M1 and primary somatosensory cortex (S1) within one hemisphere. Therefore, we hypothesized that lasting modifications would occur in S1 excitability after lesioning ipsilateral M1. Imaging of intrinsic optical signals (IOS, at 570 nm) was used to investigate the evolution of the somatosensory cortical response evoked by contralateral median nerve stimulation during the first hour after a photothrombotic lesion to M1 (caudal motor cortex) of the rat (n=10). Control rats (n=6) received no lesion. Perfusion was monitored by Laser speckle imaging and the extent of the resulting lesion was determined histologically. Control animals did not show evidence for reduced perfusion, infarction, or changes in IOS. M1 infarction led to a significant increase in evoked response amplitude, duration, and area of activation, and a shortening of latencies. These parameters reached a plateau around 50 min after ischemia. These results indicate S1 hyperexcitability after M1 injury. Whether these adaptations contribute to functional deficits or play a role in recovery, remains to be determined.
Collapse
Affiliation(s)
- Joseph S Paul
- Division of Bioengineering, National University of Singapore, Singapore
| | | | | |
Collapse
|