1
|
Li AX, Martin TA, Lane J, Jiang WG. Cellular Impacts of Striatins and the STRIPAK Complex and Their Roles in the Development and Metastasis in Clinical Cancers (Review). Cancers (Basel) 2023; 16:76. [PMID: 38201504 PMCID: PMC10777921 DOI: 10.3390/cancers16010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Striatins (STRNs) are generally considered to be cytoplasmic proteins, with lower expression observed in the nucleus and at cell-cell contact regions. Together with protein phosphatase 2A (PP2A), STRNs form the core region of striatin-interacting phosphatase and kinase (STRIPAK) complexes through the coiled-coil region of STRN proteins, which is crucial for substrate recruitment. Over the past two decades, there has been an increasing amount of research into the biological and cellular functions of STRIPAK members. STRNs and the constituent members of the STRIPAK complex have been found to regulate several cellular functions, such as cell cycle control, cell growth, and motility. Dysregulation of these cellular events is associated with cancer development. Importantly, their roles in cancer cells and clinical cancers are becoming recognised, with several STRIPAK components found to have elevated expression in cancerous tissues compared to healthy tissues. These molecules exhibit significant diagnostic and prognostic value across different cancer types and in metastatic progression. The present review comprehensively summarises and discusses the current knowledge of STRNs and core STRIPAK members, in cancer malignancy, from both cellular and clinical perspectives.
Collapse
Affiliation(s)
| | - Tracey A. Martin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (A.X.L.); (J.L.); (W.G.J.)
| | | | | |
Collapse
|
2
|
Santos IB, Wainman A, Garrido-Maraver J, Pires V, Riparbelli MG, Kovács L, Callaini G, Glover DM, Tavares ÁA. Mob4 is essential for spermatogenesis in Drosophila melanogaster. Genetics 2023; 224:iyad104. [PMID: 37259670 PMCID: PMC10411562 DOI: 10.1093/genetics/iyad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
Gamete formation is essential for sexual reproduction in metazoans. Meiosis in males gives rise to spermatids that must differentiate and individualize into mature sperm. In Drosophila melanogaster, individualization of interconnected spermatids requires the formation of individualization complexes that synchronously move along the sperm bundles. Here, we show that Mob4, a member of the Mps-one binder family, is essential for male fertility but has no detectable role in female fertility. We show that Mob4 is required for proper axonemal structure and its loss leads to male sterility associated with defective spermatid individualization and absence of mature sperm in the seminal vesicles. Transmission electron micrographs of developing spermatids following mob4RNAi revealed expansion of the outer axonemal microtubules such that the 9 doublets no longer remained linked to each other and defective mitochondrial organization. Mob4 is a STRIPAK component, and male fertility is similarly impaired upon depletion of the STRIPAK components, Strip and Cka. Expression of the human Mob4 gene rescues all phenotypes of Drosophila mob4 downregulation, indicating that the gene is evolutionarily and functionally conserved. Together, this suggests that Mob4 contributes to the regulation of the microtubule- and actin-cytoskeleton during spermatogenesis through the conserved STRIPAK complex. Our study advances the understanding of male infertility by uncovering the requirement for Mob4 in sperm individualization.
Collapse
Affiliation(s)
- Inês B Santos
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, 8005-139 Faro, Portugal
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Juan Garrido-Maraver
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, 8005-139 Faro, Portugal
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Vanessa Pires
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, 8005-139 Faro, Portugal
| | | | - Levente Kovács
- Division of Biology and Biological Engineering, California Institute of Technology, 91125 Pasadena, California
| | - Giuliano Callaini
- University of Siena, Department of Life Sciences, Via Aldo Moro, 2, 53100 Siena, Italy
| | - David M Glover
- Division of Biology and Biological Engineering, California Institute of Technology, 91125 Pasadena, California
| | - Álvaro A Tavares
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
3
|
Nadar-Ponniah PT, Taiber S, Caspi M, Koffler-Brill T, Dror AA, Siman-Tov R, Rubinstein M, Padmanabhan K, Luxenburg C, Lang RA, Avraham KB, Rosin-Arbesfeld R. Striatin Is Required for Hearing and Affects Inner Hair Cells and Ribbon Synapses. Front Cell Dev Biol 2020; 8:615. [PMID: 32766247 PMCID: PMC7381154 DOI: 10.3389/fcell.2020.00615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Striatin, a subunit of the serine/threonine phosphatase PP2A, is a core member of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complexes. The protein is expressed in the cell junctions between epithelial cells, which play a role in maintaining cell-cell adhesion. Since the cell junctions are crucial for the function of the mammalian inner ear, we examined the localization and function of striatin in the mouse cochlea. Our results show that in neonatal mice, striatin is specifically expressed in the cell-cell junctions of the inner hair cells, the receptor cells in the mammalian cochlea. Auditory brainstem response measurements of striatin-deficient mice indicated a progressive, high-frequency hearing loss, suggesting that striatin is essential for normal hearing. Moreover, scanning electron micrographs of the organ of Corti revealed a moderate degeneration of the outer hair cells in the middle and basal regions, concordant with the high-frequency hearing loss. Additionally, striatin-deficient mice show aberrant ribbon synapse maturation. Loss of the outer hair cells, combined with the aberrant ribbon synapse distribution, may lead to the observed auditory impairment. Together, these results suggest a novel function for striatin in the mammalian auditory system.
Collapse
Affiliation(s)
- Prathamesh T. Nadar-Ponniah
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tal Koffler-Brill
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Amiel A. Dror
- Department of Otolaryngology, Head and Neck Surgery, Galilee Medical Center, Nahariya, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ronen Siman-Tov
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rubinstein
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Goldschleger Eye Research Institute, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Krishnanand Padmanabhan
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard A. Lang
- Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Karen B. Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Islam KT, Bond JP, Fakhoury AM. FvSTR1, a striatin orthologue in Fusarium virguliforme, is required for asexual development and virulence. Appl Microbiol Biotechnol 2017; 101:6431-6445. [PMID: 28643182 DOI: 10.1007/s00253-017-8387-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 02/07/2023]
Abstract
The soil-borne fungus Fusarium virguliforme causes sudden death syndrome (SDS), one of the most devastating diseases of soybean in North and South America. Despite the importance of SDS, a clear understanding of the fungal pathogenicity factors that affect the development of this disease is still lacking. We have identified FvSTR1, a F. virguliforme gene, which encodes a protein similar to a family of striatin proteins previously reported to regulate signalling pathways, cell differentiation, conidiation, sexual development, and virulence in filamentous fungi. Striatins are multi-domain proteins that serve as scaffolding units in the striatin-interacting phosphatase and kinase (STRIPAK) complex in fungi and animals. To address the function of a striatin homologue in F. virguliforme, FvSTR1 was disrupted and functionally characterized using a gene knock out strategy. The resulting Fvstr1 mutants were largely impaired in conidiation and pigmentation, and displayed defective conidia and conidiophore morphology compared to the wild-type and ectopic transformants. Greenhouse virulence assays revealed that the disruption of FvSTR1 resulted in complete loss of virulence in F. virguliforme. Microtome studies using fluorescence microscopy showed that the Fvstr1 mutants were defective in their ability to colonize the vascular system. The Fvstr1 mutants also showed a reduced transcript level of genes involved in asexual reproduction and in the production of secondary metabolites. These results suggest that FvSTR1 has a critical role in asexual development and virulence in F. virguliforme.
Collapse
Affiliation(s)
- Kazi T Islam
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, 62901, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jason P Bond
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Ahmad M Fakhoury
- Department of Plant, Soil and Agriculture Systems, Southern Illinois University, Carbondale, IL, 62901, USA.
| |
Collapse
|
5
|
Wang CL, Shim WB, Shaw BD. The Colletotrichum graminicola striatin orthologue Str1 is necessary for anastomosis and is a virulence factor. MOLECULAR PLANT PATHOLOGY 2016; 17:931-42. [PMID: 26576029 PMCID: PMC6638439 DOI: 10.1111/mpp.12339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 05/24/2023]
Abstract
Striatin family proteins are key regulators in signalling pathways in fungi and animals. These scaffold proteins contain four conserved domains: a caveolin-binding domain, a coiled-coil motif and a calmodulin-binding domain at the N-terminus, and a WD-repeat domain at the C-terminus. Fungal striatin orthologues are associated with sexual development, hyphal growth and plant pathogenesis. In Fusarium verticillioides, the striatin orthologue Fsr1 promotes virulence in the maize stalk. The relationship between fungal striatins and pathogenicity remains largely unexplored. In this study, we demonstrate that the Colletotrichum graminicola striatin orthologue Str1 is required for full stalk rot and leaf blight virulence in maize. Pathogenicity assays show that the striatin mutant strain (Δstr1) produces functional appressoria, but infection and colonization are attenuated. Additional phenotypes of the Δstr1 mutant include reduced radial growth and compromised hyphal fusion. In comparison with the wild-type, Δstr1 also shows a defect in sexual development and produces fewer and shorter conidia. Together with the fact that F. verticillioides fsr1 can complement Δstr1, our results indicate that C. graminicola Str1 shares five phenotypes with striatin orthologues in other fungal species: hyphal growth, hyphal fusion, conidiation, sexual development and virulence. We propose that fungal striatins, like mammalian striatins, act as scaffolding molecules that cross-link multiple signal transduction pathways.
Collapse
Affiliation(s)
- Chih-Li Wang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2132, TX, USA
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2132, TX, USA
| | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843-2132, TX, USA
| |
Collapse
|
6
|
Shi Z, Jiao S, Zhou Z. STRIPAK complexes in cell signaling and cancer. Oncogene 2016; 35:4549-57. [PMID: 26876214 DOI: 10.1038/onc.2016.9] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/24/2015] [Accepted: 12/24/2015] [Indexed: 12/28/2022]
Abstract
Striatin-interacting phosphatase and kinase (STRIPAK) complexes are striatin-centered multicomponent supramolecular structures containing both kinases and phosphatases. STRIPAK complexes are evolutionarily conserved and have critical roles in protein (de)phosphorylation. Recent studies indicate that STRIPAK complexes are emerging mediators and regulators of multiple vital signaling pathways including Hippo, MAPK (mitogen-activated protein kinase), nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are extensively involved in a variety of fundamental biological processes ranging from cell growth, differentiation, proliferation and apoptosis to metabolism, immune regulation and tumorigenesis. Growing evidence correlates dysregulation of STRIPAK complexes with human diseases including cancer. In this review, we summarize the current understanding of the assembly and functions of STRIPAK complexes, with a special focus on cell signaling and cancer.
Collapse
Affiliation(s)
- Z Shi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - S Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Z Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
7
|
Frey S, Lahmann Y, Hartmann T, Seiler S, Pöggeler S. Deletion of Smgpi1 encoding a GPI-anchored protein suppresses sterility of the STRIPAK mutant ΔSmmob3 in the filamentous ascomycete Sordaria macrospora. Mol Microbiol 2015; 97:676-97. [PMID: 25989468 DOI: 10.1111/mmi.13054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 01/06/2023]
Abstract
The striatin interacting phosphatase and kinase (STRIPAK) complex, which is composed of striatin, protein phosphatase PP2A and kinases, is required for fruiting-body development and cell fusion in the filamentous ascomycete Sordaria macrospora. Here, we report on the interplay of the glycosylphosphatidylinositol (GPI)-anchored protein SmGPI1 with the kinase activator SmMOB3, a core component of human and fungal STRIPAK complexes. SmGPI1 is conserved among filamentous ascomycetes and was first identified in a yeast two-hybrid screen using SmMOB3 as bait. The physical interaction of SmMOB3 and SmGPI1 was verified by co-immunoprecipitation. In vivo localization and differential centrifugation revealed that SmGPI1 is predominantly secreted and attached to the cell wall but is also associated with mitochondria and appears to be a dual-targeted protein. Deletion of Smgpi1 led to an increased number of fruiting bodies that were normally shaped but reduced in size. In addition, Smmob3 and Smgpi1 genetically interact. In the sterile ΔSmmob3 background deletion of Smgpi1 restores fertility, vegetative growth as well as hyphal-fusion defects. The suppression effect was specific for the ΔSmmob3 mutant as deletion of Smgpi1 in other STRIPAK mutants does not restore fertility.
Collapse
Affiliation(s)
- Stefan Frey
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University, Göttingen, Germany
| | - Yasmine Lahmann
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University, Göttingen, Germany
| | - Thomas Hartmann
- Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-University, Göttingen, Germany
| | - Stephan Seiler
- Institute of Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Georg-August-University, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August-University, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| |
Collapse
|
8
|
Soni S, Tyagi C, Grover A, Goswami SK. Molecular modeling and molecular dynamics simulations based structural analysis of the SG2NA protein variants. BMC Res Notes 2014; 7:446. [PMID: 25015106 PMCID: PMC4105797 DOI: 10.1186/1756-0500-7-446] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/01/2014] [Indexed: 11/30/2022] Open
Abstract
Background SG2NA is a member of the striatin sub-family of WD-40 repeat proteins. Striatin family members have been associated with diverse physiological functions. SG2NA has also been shown to have roles in cell cycle progression, signal transduction etc. They have been known to interact with a number of proteins including Caveolin and Calmodulin and also propagate the formation of a multimeric protein unit called striatin-interacting phosphatase and kinase. As a pre-requisite for such interaction ability, these proteins are known to be unstable and primarily disordered in their arrangement. Earlier we had identified that it has multiple isoforms (namely 35, 78, 87 kDa based on its molecular weight) which are generated by alternative splicing. However, detailed structural information of SG2NA is still eluding the researchers. Results This study was aimed towards three-dimensional molecular modeling and characterization of SG2NA protein and its isoforms. One structure out of five was selected for each variant having the least value for C score. Out of these, m35 kDa with a C score value of −3.21was the most poorly determined structure in comparison to m78 kDa and m87 kDa variants with C scores of −1.16 and −1.97 respectively. Further evaluation resulted in about 61.6% residues of m35 kDa, 76.6% residues of m78 kDa and 72.1% residues of m87 kDa falling in the favorable regions of Ramchandran Plot. Molecular dynamics simulations were also carried out to obtain biologically relevant structural models and compared with previous atomic coordinates. N-terminal region of all variants was found to be highly disordered. Conclusion This study provides first-hand detailed information to understand the structural conformation of SG2NA protein variants (m35 kDa, m78 kDa and m87 kDa). The WD-40 repeat domain was found to constitute antiparallel strands of β-sheets arranged circularly. This study elucidates the crucial structural features of SG2NA proteins which are involved in various protein-protein interactions and also reveals the extent of disorder present in the SG2NA structure crucial for excessive interaction and multimeric protein complexes. The study also potentiates the role of computational approaches for preliminary examination of unknown proteins in the absence of experimental information.
Collapse
Affiliation(s)
| | | | - Abhinav Grover
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | |
Collapse
|
9
|
Chen C, Shi Z, Zhang W, Chen M, He F, Zhang Z, Wang Y, Feng M, Wang W, Zhao Y, Brown JH, Jiao S, Zhou Z. Striatins contain a noncanonical coiled coil that binds protein phosphatase 2A A subunit to form a 2:2 heterotetrameric core of striatin-interacting phosphatase and kinase (STRIPAK) complex. J Biol Chem 2014; 289:9651-61. [PMID: 24550388 PMCID: PMC3975014 DOI: 10.1074/jbc.m113.529297] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/17/2014] [Indexed: 01/18/2023] Open
Abstract
The protein phosphatase 2A (PP2A) and kinases such as germinal center kinase III (GCKIII) can interact with striatins to form a supramolecular complex called striatin-interacting phosphatase and kinase (STRIPAK) complex. Despite the fact that the STRIPAK complex regulates multiple cellular events, it remains only partially understood how this complex itself is assembled and regulated for differential biological functions. Our recent work revealed the activation mechanism of GCKIIIs by MO25, as well as how GCKIIIs heterodimerize with CCM3, a molecular bridge between GCKIII and striatins. Here we dissect the structural features of the coiled coil domain of striatin 3, a novel type of PP2A regulatory subunit that functions as a scaffold for the assembly of the STRIPAK complex. We have determined the crystal structure of a selenomethionine-labeled striatin 3 coiled coil domain, which shows it to assume a parallel dimeric but asymmetric conformation containing a large bend. This result combined with a number of biophysical analyses provide evidence that the coiled coil domain of striatin 3 and the PP2A A subunit form a stable core complex with a 2:2 stoichiometry. Structure-based mutational studies reveal that homodimerization of striatin 3 is essential for its interaction with PP2A and therefore assembly of the STRIPAK complex. Wild-type striatin 3 but not the mutants defective in PP2A binding strongly suppresses apoptosis of Jurkat cells induced by the GCKIII kinase MST3, most likely through a mechanism in which striatin recruits PP2A to negatively regulate the activation of MST3. Collectively, our work provides structural insights into the organization of the STRIPAK complex and will facilitate further functional studies.
Collapse
Affiliation(s)
- Cuicui Chen
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhubing Shi
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China, and
| | - Wenqing Zhang
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Chen
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Feng He
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenzhen Zhang
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yicui Wang
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Miao Feng
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenjia Wang
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Zhao
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jerry H. Brown
- the Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Shi Jiao
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhaocai Zhou
- From the National Center for Protein Science Shanghai, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- the School of Life Sciences and Technology, Tongji University, Shanghai 200092, China, and
| |
Collapse
|
10
|
The cerebellum, cerebellar disorders, and cerebellar research--two centuries of discoveries. THE CEREBELLUM 2009; 7:505-16. [PMID: 18855093 DOI: 10.1007/s12311-008-0063-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Research on the cerebellum is evolving rapidly. The exquisiteness of the cerebellar circuitry with a unique geometric arrangement has fascinated researchers from numerous disciplines. The painstaking works of pioneers of these last two centuries, such as Rolando, Flourens, Luciani, Babinski, Holmes, Cajal, Larsell, or Eccles, still exert a strong influence in the way we approach cerebellar functions. Advances in genetic studies, detailed molecular and cellular analyses, profusion of brain imaging techniques, emergence of behavioral assessments, and reshaping of models of cerebellar function are generating an immense amount of knowledge. Simultaneously, a better definition of cerebellar disorders encountered in the clinic is emerging. The essentials of a trans-disciplinary blending are expanding. The analysis of the literature published these last two decades indicates that the gaps between domains of research are vanishing. The launch of the society for research on the cerebellum (SRC) illustrates how cerebellar research is burgeoning. This special issue gathers the contributions of the inaugural conference of the SRC dedicated to the mechanisms of cerebellar function. Contributions were brought together around five themes: (1) cerebellar development, death, and regeneration; (2) cerebellar circuitry: processing and function; (3) mechanisms of cerebellar plasticity and learning; (4) cerebellar function: timing, prediction, and/or coordination?; (5) anatomical and disease perspectives on cerebellar function.
Collapse
|
11
|
Goudreault M, D'Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A, Chaudhry S, Chen GI, Sicheri F, Nesvizhskii AI, Aebersold R, Raught B, Gingras AC. A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteomics 2009; 8:157-71. [PMID: 18782753 PMCID: PMC2621004 DOI: 10.1074/mcp.m800266-mcp200] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/21/2008] [Indexed: 11/06/2022] Open
Abstract
The serine/threonine protein phosphatases are targeted to specific subcellular locations and substrates in part via interactions with a wide variety of regulatory proteins. Understanding these interactions is thus critical to understanding phosphatase function. Using an iterative affinity purification/mass spectrometry approach, we generated a high density interaction map surrounding the protein phosphatase 2A catalytic subunit. This approach recapitulated the assembly of the PP2A catalytic subunit into many different trimeric complexes but also revealed several new protein-protein interactions. Here we define a novel large multiprotein assembly, referred to as the striatin-interacting phosphatase and kinase (STRIPAK) complex. STRIPAK contains the PP2A catalytic (PP2Ac) and scaffolding (PP2A A) subunits, the striatins (PP2A regulatory B''' subunits), the striatin-associated protein Mob3, the novel proteins STRIP1 and STRIP2 (formerly FAM40A and FAM40B), the cerebral cavernous malformation 3 (CCM3) protein, and members of the germinal center kinase III family of Ste20 kinases. Although the function of the CCM3 protein is unknown, the CCM3 gene is mutated in familial cerebral cavernous malformations, a condition associated with seizures and strokes. Our proteomics survey indicates that a large portion of the CCM3 protein resides within the STRIPAK complex, opening the way for further studies of CCM3 biology. The STRIPAK assembly establishes mutually exclusive interactions with either the CTTNBP2 proteins (which interact with the cytoskeletal protein cortactin) or a second subcomplex consisting of the sarcolemmal membrane-associated protein (SLMAP) and the related coiled-coil proteins suppressor of IKKepsilon (SIKE) and FGFR1OP2. We have thus identified several novel PP2A-containing protein complexes, including a large assembly linking kinases and phosphatases to a gene mutated in human disease.
Collapse
Affiliation(s)
- Marilyn Goudreault
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Benoist M, Baude A, Tasmadjian A, Dargent B, Kessler JP, Castets F. Distribution of zinedin in the rat brain. J Neurochem 2008; 106:969-77. [DOI: 10.1111/j.1471-4159.2008.05448.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|