1
|
Ayyash S, Davis AD, Alders GL, MacQueen G, Strother SC, Hassel S, Zamyadi M, Arnott SR, Harris JK, Lam RW, Milev R, Müller DJ, Kennedy SH, Rotzinger S, Frey BN, Minuzzi L, Hall GB. Assessing remission in major depressive disorder using a functional-structural data fusion pipeline: A CAN-BIND-1 study. IBRO Neurosci Rep 2024; 16:135-146. [PMID: 38293679 PMCID: PMC10826332 DOI: 10.1016/j.ibneur.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024] Open
Abstract
Neural network-level changes underlying symptom remission in major depressive disorder (MDD) are often studied from a single perspective. Multimodal approaches to assess neuropsychiatric disorders are evolving, as they offer richer information about brain networks. A FATCAT-awFC pipeline was developed to integrate a computationally intense data fusion method with a toolbox, to produce a faster and more intuitive pipeline for combining functional connectivity with structural connectivity (denoted as anatomically weighted functional connectivity (awFC)). Ninety-three participants from the Canadian Biomarker Integration Network for Depression study (CAN-BIND-1) were included. Patients with MDD were treated with 8 weeks of escitalopram and adjunctive aripiprazole for another 8 weeks. Between-group connectivity (SC, FC, awFC) comparisons contrasted remitters (REM) with non-remitters (NREM) at baseline and 8 weeks. Additionally, a longitudinal study analysis was performed to compare connectivity changes across time for REM, from baseline to week-8. Association between cognitive variables and connectivity were also assessed. REM were distinguished from NREM by lower awFC within the default mode, frontoparietal, and ventral attention networks. Compared to REM at baseline, REM at week-8 revealed increased awFC within the dorsal attention network and decreased awFC within the frontoparietal network. A medium effect size was observed for most results. AwFC in the frontoparietal network was associated with neurocognitive index and cognitive flexibility for the NREM group at week-8. In conclusion, the FATCAT-awFC pipeline has the benefit of providing insight on the 'full picture' of connectivity changes for REMs and NREMs while making for an easy intuitive approach.
Collapse
Affiliation(s)
- Sondos Ayyash
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Andrew D Davis
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Gésine L Alders
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Glenda MacQueen
- Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephen C Strother
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Stefanie Hassel
- Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mojdeh Zamyadi
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | | | - Jacqueline K Harris
- Department of Computer Science, University of Alberta, Edmonton, Alberta, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roumen Milev
- Departments of Psychiatry and Psychology, Queen's University, Providence Care Hospital, Kingston, Ontario, Canada
| | - Daniel J Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sidney H Kennedy
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Centre for Depression and Suicide Studies, and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Susan Rotzinger
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Centre for Depression and Suicide Studies, and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
- Mood Disorders Treatment and Research Centre and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Luciano Minuzzi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
- Mood Disorders Treatment and Research Centre and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Geoffrey B Hall
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Avila E, Flierman NA, Holland PJ, Roelfsema PR, Frens MA, Badura A, De Zeeuw CI. Purkinje Cell Activity in the Medial and Lateral Cerebellum During Suppression of Voluntary Eye Movements in Rhesus Macaques. Front Cell Neurosci 2022; 16:863181. [PMID: 35573834 PMCID: PMC9096024 DOI: 10.3389/fncel.2022.863181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Volitional suppression of responses to distracting external stimuli enables us to achieve our goals. This volitional inhibition of a specific behavior is supposed to be mainly mediated by the cerebral cortex. However, recent evidence supports the involvement of the cerebellum in this process. It is currently not known whether different parts of the cerebellar cortex play differential or synergistic roles in the planning and execution of this behavior. Here, we measured Purkinje cell (PC) responses in the medial and lateral cerebellum in two rhesus macaques during pro- and anti-saccade tasks. During an antisaccade trial, non-human primates (NHPs) were instructed to make a saccadic eye movement away from a target, rather than toward it, as in prosaccade trials. Our data show that the cerebellum plays an important role not only during the execution of the saccades but also during the volitional inhibition of eye movements toward the target. Simple spike (SS) modulation during the instruction and execution periods of pro- and anti-saccades was prominent in PCs of both the medial and lateral cerebellum. However, only the SS activity in the lateral cerebellar cortex contained information about stimulus identity and showed a strong reciprocal interaction with complex spikes (CSs). Moreover, the SS activity of different PC groups modulated bidirectionally in both of regions, but the PCs that showed facilitating and suppressive activity were predominantly associated with instruction and execution, respectively. These findings show that different cerebellar regions and PC groups contribute to goal-directed behavior and volitional inhibition, but with different propensities, highlighting the rich repertoire of the cerebellar control in executive functions.
Collapse
Affiliation(s)
- Eric Avila
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Nico A. Flierman
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Peter J. Holland
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Pieter R. Roelfsema
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, VU University, Amsterdam, Netherlands
- Department of Psychiatry, Academic Medical Centre, Amsterdam, Netherlands
| | | | - Aleksandra Badura
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Aleksandra Badura,
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Chris I. De Zeeuw,
| |
Collapse
|
3
|
Adamaszek M, Cattaneo Z, Ciricugno A, Chatterjee A. The Cerebellum and Beauty: The Impact of the Cerebellum in Art Experience and Creativity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:213-233. [DOI: 10.1007/978-3-030-99550-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Day LB, Helmhout W, Pano G, Olsson U, Hoeksema JD, Lindsay WR. Correlated evolution of acrobatic display and both neural and somatic phenotypic traits in manakins (Pipridae). Integr Comp Biol 2021; 61:1343-1362. [PMID: 34143205 DOI: 10.1093/icb/icab139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022] Open
Abstract
Brightly colored manakin (Aves: Pipridae) males are known for performing acrobatic displays punctuated by non-vocal sounds (sonations) in order to attract dull colored females. The complexity of the display sequence and assortment of display elements involved (e.g., sonations, acrobatic maneuvers, and cooperative performances) varies considerably across manakin species. Species-specific display elements coevolve with display-distinct specializations of the neuroanatomical, muscular, endocrine, cardiovascular, and skeletal systems in the handful of species studied. Conducting a broader comparative study, we previously found positive associations between display complexity and both brain mass and body mass across 8 manakin genera, indicating selection for neural and somatic expansion to accommodate display elaboration. Whether this gross morphological variation is due to overall brain and body mass expansion (concerted evolution) versus size increases in only functionally relevant brain regions and growth of particular body ("somatic") features (mosaic evolution) remains to be explored. Here we test the hypothesis that cross-species variation in male brain mass and body mass is driven by mosaic evolution. We predicted positive associations between display complexity and variation in the volume of the cerebellum and sensorimotor arcopallium, brain regions which have roles in sensorimotor processes, and learning and performance of precisely timed and sequenced thoughts and movements, respectively. In contrast, we predicted no associations between the volume of a limbic arcopallial nucleus or a visual thalamic nucleus and display complexity as these regions have no-specific functional relationship to display behavior. For somatic features, we predicted that the relationship between body mass and complexity would not include contributions of tarsus length based on a recent study suggesting selection on tarsus length is less labile than body mass. We tested our hypotheses in males from 12 manakin species and a closely related flycatcher. Our analyses support mosaic evolution of neural and somatic features functionally relevant to display and indicate sexual selection for acrobatic complexity may increase the capacity for procedural learning via cerebellar enlargement and maneuverability via a reduction in tarsus length in species with lower overall complexity scores.
Collapse
Affiliation(s)
- Lainy B Day
- Department of Biology, University of Mississippi, 30 University Avenue, University, MS 38677, USA.,Neuroscience Minor, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Wilson Helmhout
- Neuroscience Minor, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Glendin Pano
- Neuroscience Minor, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Urban Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413-90 Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| | - Jason D Hoeksema
- Department of Biology, University of Mississippi, 30 University Avenue, University, MS 38677, USA
| | - Willow R Lindsay
- Department of Biology, University of Mississippi, 30 University Avenue, University, MS 38677, USA.,Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, SE-413-90 Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
5
|
Out with the Old and in with the New: the Contribution of Prefrontal and Cerebellar Areas to Backward Inhibition. THE CEREBELLUM 2021; 19:426-436. [PMID: 32140845 DOI: 10.1007/s12311-020-01115-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The inhibitory mechanism named backward inhibition (BI) counteracts interference of previous tasks supporting task switching. For instance, if task set A is inhibited when switching to task B, then it should take longer to immediately return to task set A (as occurring in an ABA sequence), as compared to a task set that has not been just inhibited (as occurring in a CBA sequence), because extra time will be needed to overcome the inhibition of task set A.The evidenced prefrontal and cerebellar role in inhibitory control suggests their involvement even in BI. Here, for the first time, we modulated the excitability of multiple brain sites (right presupplementary motor area (pre-SMA), left and right cerebellar hemispheres) through continuous theta burst stimulation (cTBS) in a valuable sham-controlled order-balanced within-subject experimental design in healthy individuals performing two domain-selective (verbal and spatial) task-switching paradigms. Verbal BI was abolished by prefrontal or cerebellar stimulations through opposite alterations of the basal pattern: cTBS on pre-SMA increased CBA reaction times, disclosing the current prefrontal inhibition of any interfering old task. Conversely, cerebellar cTBS decreased ABA reaction times, disclosing the current cerebellar recognition of sequences in which it is necessary to overcome previously inhibited events.
Collapse
|
6
|
Jiao X, Rahimi Balaei M, Abu-El-Rub E, Casoni F, Pezeshgi Modarres H, Dhingra S, Kong J, Consalez GG, Marzban H. Reduced Granule Cell Proliferation and Molecular Dysregulation in the Cerebellum of Lysosomal Acid Phosphatase 2 (ACP2) Mutant Mice. Int J Mol Sci 2021; 22:2994. [PMID: 33804256 PMCID: PMC7999993 DOI: 10.3390/ijms22062994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022] Open
Abstract
Lysosomal acid phosphatase 2 (Acp2) mutant mice (naked-ataxia, nax) have a severe cerebellar cortex defect with a striking reduction in the number of granule cells. Using a combination of in vivo and in vitro immunohistochemistry, Western blotting, BrdU assays, and RT-qPCR, we show downregulation of MYCN and dysregulation of the SHH signaling pathway in the nax cerebellum. MYCN protein expression is significantly reduced at P10, but not at the peak of proliferation at around P6 when the number of granule cells is strikingly reduced in the nax cerebellum. Despite the significant role of the SHH-MycN pathway in granule cell proliferation, our study suggests that a broader molecular pathway and additional mechanisms regulating granule cell development during the clonal expansion period are impaired in the nax cerebellum. In particular, our results indicate that downregulation of the protein synthesis machinery may contribute to the reduced number of granule cells in the nax cerebellum.
Collapse
Affiliation(s)
- Xiaodan Jiao
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Maryam Rahimi Balaei
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Ejlal Abu-El-Rub
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Physiology and Pathophysiology, Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, San Raffaele University, 20132 Milan, Italy
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sanjiv Dhingra
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Giacomo G Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, San Raffaele University, 20132 Milan, Italy
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
7
|
Dellatolas G, Câmara-Costa H. The role of cerebellum in the child neuropsychological functioning. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:265-304. [PMID: 32958180 DOI: 10.1016/b978-0-444-64150-2.00023-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter proposes a review of neuropsychologic and behavior findings in pediatric pathologies of the cerebellum, including cerebellar malformations, pediatric ataxias, cerebellar tumors, and other acquired cerebellar injuries during childhood. The chapter also contains reviews of the cerebellar mutism/posterior fossa syndrome, reported cognitive associations with the development of the cerebellum in typically developing children and subjects born preterm, and the role of the cerebellum in neurodevelopmental disorders such as autism spectrum disorders and developmental dyslexia. Cognitive findings in pediatric cerebellar disorders are considered in the context of known cerebellocerebral connections, internal cellular organization of the cerebellum, the idea of a universal cerebellar transform and computational internal models, and the role of the cerebellum in specific cognitive and motor functions, such as working memory, language, timing, or control of eye movements. The chapter closes with a discussion of the strengths and weaknesses of the cognitive affective syndrome as it has been described in children and some conclusions and perspectives.
Collapse
Affiliation(s)
- Georges Dellatolas
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France.
| | - Hugo Câmara-Costa
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France; Centre d'Etudes en Santé des Populations, INSERM U1018, Paris, France
| |
Collapse
|
8
|
Mehdizadeh M, Ashtari N, Jiao X, Rahimi Balaei M, Marzban A, Qiyami-Hour F, Kong J, Ghavami S, Marzban H. Alteration of the Dopamine Receptors' Expression in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant (Naked-Ataxia ( NAX)) Mouse. Int J Mol Sci 2020; 21:E2914. [PMID: 32326360 PMCID: PMC7215910 DOI: 10.3390/ijms21082914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
A spontaneous mutation in the lysosomal acid phosphatase (Acp2) enzyme (nax: naked-ataxia) in experimental mice results in delayed hair appearance and severe cytoarchitectural impairments of the cerebellum, such as a Purkinje cell (PC) migration defect. In our previous investigation, our team showed that Acp2 expression plans a significant role in cerebellar development. On the other hand, the dopaminergic system is also a player in central nervous system (CNS) development, including cerebellar structure and function. In the current investigation, we have explored how Acp2 can be involved in the regulation of the dopaminergic pathway in the cerebellum via the regulation of dopamine receptor expression and patterning. We provided evidence about the distribution of different dopamine receptors in the developing cerebellum by comparing the expression of dopamine receptors on postnatal days (P) 5 and 17 between nax mice and wild-type (wt) littermates. To this aim, immunohistochemistry and Western blot analysis were conducted using five antibodies against dopamine receptors (DRD1, -2, -3, -4, and -5) accompanied by RNAseq data. Our results revealed that DRD1, -3, and -4 gene expressions significantly increased in nax cerebella but not in wt, while gene expressions of all 5 receptors were evident in PCs of both wt and nax cerebella. DRD3 was strongly expressed in the PCs' somata and cerebellar nuclei neurons at P17 in nax mice, which was comparable to the expression levels in the cerebella of wt littermates. In addition, DRD3 was expressed in scattered cells in a granular layer reminiscent of Golgi cells and was observed in the wt cerebella but not in nax mice. DRD4 was expressed in a subset of PCs and appeared to align with the unique parasagittal stripes pattern. This study contributes to our understanding of alterations in the expression pattern of DRDs in the cerebellum of nax mice in comparison to their wt littermates, and it highlights the role of Acp2 in regulating the dopaminergic system.
Collapse
Affiliation(s)
- Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
| | - Niloufar Ashtari
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| | - Xiaodan Jiao
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| | - Maryam Rahimi Balaei
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| | - Asghar Marzban
- Department of Pediatrics, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran;
| | - Farshid Qiyami-Hour
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
| | - Jiming Kong
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
| | - Saeid Ghavami
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
- Research Institute in Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Hassan Marzban
- Cellular and Molecular Research Center, Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (M.M.); (F.Q.-H.); (J.K.); (S.G.)
- Department of Human Anatomy and Cell Science, The Children’s Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (N.A.); (X.J.); (M.R.B.)
| |
Collapse
|
9
|
Piras F, Piras F, Banaj N, Ciullo V, Vecchio D, Edden RAE, Spalletta G. Cerebellar GABAergic correlates of cognition-mediated verbal fluency in physiology and schizophrenia. Acta Psychiatr Scand 2019; 139:582-594. [PMID: 30887499 DOI: 10.1111/acps.13027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Defective cerebellar GABAergic inhibitory control may participate to the cognitive impairments seen in SZ. We tested the prediction of a model for the relationship between cerebellar GABA concentration and the associative/executive processes required by verbal fluency in patients with schizophrenia (SZ) and matched healthy controls (HC). METHOD Magnetic resonance spectroscopy of GABA was performed using a 3 Tesla scanner and verbal fluency assessed by the Controlled Word (WFT) and Semantic (SFT) Fluency tests. Cerebellar GABA measurements were obtained using the MEGA-PRESS acquisition sequence. Linear correlations between cerebellar GABA levels and the WFT, SFT score were performed to test differences between correlation coefficients of SZ and HC. Quantile regressions between GABA levels and the WFT score were performed. RESULTS Higher cerebellar GABA concentration was associated in SZ with lower phonemic fluency and reduced number of switches among subcategories as opposed to what observed in HC (with higher cerebellar GABA associated with higher number of words and phonemic switches). GABA levels explained phonemic fluency in SZ performing above the group mean. CONCLUSION Studying cerebellar GABA provides a valid heuristic to explore the molecular mechanisms of SZ. This is crucial for developing pharmacological treatments to improve cognition and functional recovery in SZ.
Collapse
Affiliation(s)
- F Piras
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - F Piras
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - N Banaj
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - V Ciullo
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - D Vecchio
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - R A E Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD, USA.,F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - G Spalletta
- Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.,Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Marek S, Siegel JS, Gordon EM, Raut RV, Gratton C, Newbold DJ, Ortega M, Laumann TO, Adeyemo B, Miller DB, Zheng A, Lopez KC, Berg JJ, Coalson RS, Nguyen AL, Dierker D, Van AN, Hoyt CR, McDermott KB, Norris SA, Shimony JS, Snyder AZ, Nelson SM, Barch DM, Schlaggar BL, Raichle ME, Petersen SE, Greene DJ, Dosenbach NUF. Spatial and Temporal Organization of the Individual Human Cerebellum. Neuron 2018; 100:977-993.e7. [PMID: 30473014 DOI: 10.1016/j.neuron.2018.10.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/13/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
The cerebellum contains the majority of neurons in the human brain and is unique for its uniform cytoarchitecture, absence of aerobic glycolysis, and role in adaptive plasticity. Despite anatomical and physiological differences between the cerebellum and cerebral cortex, group-average functional connectivity studies have identified networks related to specific functions in both structures. Recently, precision functional mapping of individuals revealed that functional networks in the cerebral cortex exhibit measurable individual specificity. Using the highly sampled Midnight Scan Club (MSC) dataset, we found the cerebellum contains reliable, individual-specific network organization that is significantly more variable than the cerebral cortex. The frontoparietal network, thought to support adaptive control, was the only network overrepresented in the cerebellum compared to the cerebral cortex (2.3-fold). Temporally, all cerebellar resting state signals lagged behind the cerebral cortex (125-380 ms), supporting the hypothesis that the cerebellum engages in a domain-general function in the adaptive control of all cortical processes.
Collapse
Affiliation(s)
- Scott Marek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Joshua S Siegel
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Evan M Gordon
- VISN17 Center of Excellence for Research on Returning War Veterans, Waco, TX 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Ryan V Raut
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Caterina Gratton
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mario Ortega
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy O Laumann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Derek B Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Annie Zheng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine C Lopez
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jeffrey J Berg
- Department of Psychology, New York University, New York, NY 10003 USA
| | - Rebecca S Coalson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Annie L Nguyen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catherine R Hoyt
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen B McDermott
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott A Norris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M Nelson
- VISN17 Center of Excellence for Research on Returning War Veterans, Waco, TX 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Deanna M Barch
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bradley L Schlaggar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deanna J Greene
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Popa LS, Streng ML, Ebner TJ. Purkinje Cell Representations of Behavior: Diary of a Busy Neuron. Neuroscientist 2018; 25:241-257. [PMID: 29985093 DOI: 10.1177/1073858418785628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fundamental for understanding cerebellar function is determining the representations in Purkinje cell activity, the sole output of the cerebellar cortex. Up to the present, the most accurate descriptions of the information encoded by Purkinje cells were obtained in the context of motor behavior and reveal a high degree of heterogeneity of kinematic and performance error signals encoded. The most productive framework for organizing Purkinje cell firing representations is provided by the forward internal model hypothesis. Direct tests of this hypothesis show that individual Purkinje cells encode two different forward models simultaneously, one for effector kinematics and one for task performance. Newer results demonstrate that the timing of simple spike encoding of motor parameters spans an extend interval of up to ±2 seconds. Furthermore, complex spike discharge is not limited to signaling errors, can be predictive, and dynamically controls the information in the simple spike firing to meet the demands of upcoming behavior. These rich, diverse, and changing representations highlight the integrative aspects of cerebellar function and offer the opportunity to generalize the cerebellar computational framework over both motor and non-motor domains.
Collapse
Affiliation(s)
- Laurentiu S Popa
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Martha L Streng
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Ebner
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Viaro R, Bonazzi L, Maggiolini E, Franchi G. Cerebellar Modulation of Cortically Evoked Complex Movements in Rats. Cereb Cortex 2018; 27:3525-3541. [PMID: 27329134 DOI: 10.1093/cercor/bhw167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intracortical microstimulation (ICMS) delivered to the motor cortex (M1) via long- or short-train duration (long- or short-duration ICMS) can evoke coordinated complex movements or muscle twitches, respectively. The role of subcortical cerebellar input in M1 output, in terms of long- and short-duration ICMS-evoked movement and motor skill performance, was evaluated in rats with bilateral lesion of the deep cerebellar nuclei. After the lesion, distal forelimb movements were seldom observed, and almost 30% of proximal forelimb movements failed to match criteria defining the movement class observed under control conditions. The classifiable movements could be evoked in different cortical regions with respect to control and many kinematic variables were strongly affected. Furthermore, movement endpoints within the rat's workspace shrunk closer to the body, while performance in the reaching/grasping task worsened. Surprisingly, neither the threshold current values for evoking movements nor the overall size of forelimb movement representation changed with respect to controls in either long- or short-duration ICMS. We therefore conclude that cerebellar input via the motor thalamus is crucial for expressing the basic functional features of the motor cortex.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy.,Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Laura Bonazzi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Emma Maggiolini
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Gianfranco Franchi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Shany E, Inder TE, Goshen S, Lee I, Neil JJ, Smyser CD, Doyle LW, Anderson PJ, Shimony JS. Diffusion Tensor Tractography of the Cerebellar Peduncles in Prematurely Born 7-Year-Old Children. THE CEREBELLUM 2017; 16:314-325. [PMID: 27255706 DOI: 10.1007/s12311-016-0796-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The objective of this study was to correlate neurodevelopmental outcome of preterm-born children and their perinatal clinical and imaging characteristics with diffusion magnetic resonance imaging (MRI) measures of the three cerebellar peduncles at age 7. Included in this prospective longitudinal study were 140 preterm-born children (<30 weeks gestation) who underwent neurodevelopmental assessment (IQ, motor, language, working memory) and diffusion-weighted imaging (DWI) at age 7 years. White matter tracts in the superior, middle, and inferior cerebellar peduncles were delineated using regions of interest drawn on T2-weighted images and fractional anisotropy (FA) maps. Diffusion measures (mean diffusivity (MD) and FA) and tract volumes were calculated. Linear regression was used to assess relationships with outcome. The severity of white matter injury in the neonatal period was associated with lower FA in the right superior cerebellar peduncle (SCP) and lower tract volumes of both SCPs and middle cerebellar peduncles (MCPs). In the MCP, higher IQ was associated with lower MD in the whole group and higher FA in right-handed children. In the SCP, lower motor scores were associated with higher MD and higher language scores were associated with higher FA. These associations remained significant in multivariable models. This study adds to the body of literature detailing the importance of cerebellar involvement in cognitive function related to reciprocal connections with supratentorial structures.
Collapse
Affiliation(s)
- Eilon Shany
- Department of Neonatology, Soroka Medical Center, P.O. Box 151, 84101, Beer Sheva, Israel.
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sharon Goshen
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Iris Lee
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey J Neil
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Christopher D Smyser
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lex W Doyle
- Department of Obstetrics and Gynaecology, The Royal Women's Hospital, Melbourne, Australia
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Peter J Anderson
- Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
14
|
Long-Term Predictive and Feedback Encoding of Motor Signals in the Simple Spike Discharge of Purkinje Cells. eNeuro 2017; 4:eN-NWR-0036-17. [PMID: 28413823 PMCID: PMC5388669 DOI: 10.1523/eneuro.0036-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 11/21/2022] Open
Abstract
Most hypotheses of cerebellar function emphasize a role in real-time control of movements. However, the cerebellum’s use of current information to adjust future movements and its involvement in sequencing, working memory, and attention argues for predicting and maintaining information over extended time windows. The present study examines the time course of Purkinje cell discharge modulation in the monkey (Macaca mulatta) during manual, pseudo-random tracking. Analysis of the simple spike firing from 183 Purkinje cells during tracking reveals modulation up to 2 s before and after kinematics and position error. Modulation significance was assessed against trial shuffled firing, which decoupled simple spike activity from behavior and abolished long-range encoding while preserving data statistics. Position, velocity, and position errors have the most frequent and strongest long-range feedforward and feedback modulations, with less common, weaker long-term correlations for speed and radial error. Position, velocity, and position errors can be decoded from the population simple spike firing with considerable accuracy for even the longest predictive (-2000 to -1500 ms) and feedback (1500 to 2000 ms) epochs. Separate analysis of the simple spike firing in the initial hold period preceding tracking shows similar long-range feedforward encoding of the upcoming movement and in the final hold period feedback encoding of the just completed movement, respectively. Complex spike analysis reveals little long-term modulation with behavior. We conclude that Purkinje cell simple spike discharge includes short- and long-range representations of both upcoming and preceding behavior that could underlie cerebellar involvement in error correction, working memory, and sequencing.
Collapse
|
15
|
McLachlan NM, Wilson SJ. The Contribution of Brainstem and Cerebellar Pathways to Auditory Recognition. Front Psychol 2017; 8:265. [PMID: 28373850 PMCID: PMC5357638 DOI: 10.3389/fpsyg.2017.00265] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/10/2017] [Indexed: 12/02/2022] Open
Abstract
The cerebellum has been known to play an important role in motor functions for many years. More recently its role has been expanded to include a range of cognitive and sensory-motor processes, and substantial neuroimaging and clinical evidence now points to cerebellar involvement in most auditory processing tasks. In particular, an increase in the size of the cerebellum over recent human evolution has been attributed in part to the development of speech. Despite this, the auditory cognition literature has largely overlooked afferent auditory connections to the cerebellum that have been implicated in acoustically conditioned reflexes in animals, and could subserve speech and other auditory processing in humans. This review expands our understanding of auditory processing by incorporating cerebellar pathways into the anatomy and functions of the human auditory system. We reason that plasticity in the cerebellar pathways underpins implicit learning of spectrotemporal information necessary for sound and speech recognition. Once learnt, this information automatically recognizes incoming auditory signals and predicts likely subsequent information based on previous experience. Since sound recognition processes involving the brainstem and cerebellum initiate early in auditory processing, learnt information stored in cerebellar memory templates could then support a range of auditory processing functions such as streaming, habituation, the integration of auditory feature information such as pitch, and the recognition of vocal communications.
Collapse
Affiliation(s)
- Neil M. McLachlan
- Melbourne School of Psychological Sciences, University of MelbourneMelbourne, VIC, Australia
| | | |
Collapse
|
16
|
Garden DLF, Rinaldi A, Nolan MF. Active integration of glutamatergic input to the inferior olive generates bidirectional postsynaptic potentials. J Physiol 2016; 595:1239-1251. [PMID: 27767209 PMCID: PMC5309349 DOI: 10.1113/jp273424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/14/2016] [Indexed: 11/15/2022] Open
Abstract
Key points We establish experimental preparations for optogenetic investigation of glutamatergic input to the inferior olive. Neurones in the principal olivary nucleus receive monosynaptic extra‐somatic glutamatergic input from the neocortex. Glutamatergic inputs to neurones in the inferior olive generate bidirectional postsynaptic potentials (PSPs), with a fast excitatory component followed by a slower inhibitory component. Small conductance calcium‐activated potassium (SK) channels are required for the slow inhibitory component of glutamatergic PSPs and oppose temporal summation of inputs at intervals ≤ 20 ms. Active integration of synaptic input within the inferior olive may play a central role in control of olivo‐cerebellar climbing fibre signals.
Abstract The inferior olive plays a critical role in motor coordination and learning by integrating diverse afferent signals to generate climbing fibre inputs to the cerebellar cortex. While it is well established that climbing fibre signals are important for motor coordination, the mechanisms by which neurones in the inferior olive integrate synaptic inputs and the roles of particular ion channels are unclear. Here, we test the hypothesis that neurones in the inferior olive actively integrate glutamatergic synaptic inputs. We demonstrate that optogenetically activated long‐range synaptic inputs to the inferior olive, including projections from the motor cortex, generate rapid excitatory potentials followed by slower inhibitory potentials. Synaptic projections from the motor cortex preferentially target the principal olivary nucleus. We show that inhibitory and excitatory components of the bidirectional synaptic potentials are dependent upon AMPA (GluA) receptors, are GABAA independent, and originate from the same presynaptic axons. Consistent with models that predict active integration of synaptic inputs by inferior olive neurones, we find that the inhibitory component is reduced by blocking large conductance calcium‐activated potassium channels with iberiotoxin, and is abolished by blocking small conductance calcium‐activated potassium channels with apamin. Summation of excitatory components of synaptic responses to inputs at intervals ≤ 20 ms is increased by apamin, suggesting a role for the inhibitory component of glutamatergic responses in temporal integration. Our results indicate that neurones in the inferior olive implement novel rules for synaptic integration and suggest new principles for the contribution of inferior olive neurones to coordinated motor behaviours. We establish experimental preparations for optogenetic investigation of glutamatergic input to the inferior olive. Neurones in the principal olivary nucleus receive monosynaptic extra‐somatic glutamatergic input from the neocortex. Glutamatergic inputs to neurones in the inferior olive generate bidirectional postsynaptic potentials (PSPs), with a fast excitatory component followed by a slower inhibitory component. Small conductance calcium‐activated potassium (SK) channels are required for the slow inhibitory component of glutamatergic PSPs and oppose temporal summation of inputs at intervals ≤ 20 ms. Active integration of synaptic input within the inferior olive may play a central role in control of olivo‐cerebellar climbing fibre signals.
Collapse
Affiliation(s)
- Derek L F Garden
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Arianna Rinaldi
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Matthew F Nolan
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| |
Collapse
|
17
|
Dornelas LF, Duarte NMC, Morales NMO, Pinto RMC, Araújo RRH, Pereira SA, Magalhães LC. Functional Outcome of School Children With History of Global Developmental Delay. J Child Neurol 2016; 31:1041-51. [PMID: 26936059 DOI: 10.1177/0883073816636224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/10/2015] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the functional and developmental outcomes in school age children diagnosed with global developmental delay before 2 years old and to verify the association between their final diagnosis and environmental and biological factors. Forty-five Brazilian children (26 boys), mean age 95.84 (7.72) months, who attended regular school and were diagnosed with global developmental delay before they were 2 years old had their functions evaluated. Children with global developmental delay were diagnosed with several conditions at school age. Students with greater chances of receiving a diagnosis were those whose mothers were younger at the time their children were born (OR = 1.47, CI = 1.04-2.09, P = .03), who had impaired motor performance, specially balance (OR = 1.33, CI = 1.01-1.75, P = .04), and who needed help during cognitive and behavioral tasks at school (OR = 1.08, CI = 1.00-1.17, P = .048). Interdisciplinary evaluation contributed to defining the specific diagnosis and to identifying the necessity of specialized support.
Collapse
Affiliation(s)
| | - Neuza M C Duarte
- Association of Assistance for Children with Disabilities, Minas Gerais, Brazil
| | - Nívea M O Morales
- Department of Pediatrics, Medical School, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Rogério M C Pinto
- Mathematics School, Universidade Federal de Uberlândia, Minas Gerais, Brazil
| | - Renata R H Araújo
- Association of Assistance for Children with Disabilities, Minas Gerais, Brazil
| | - Sílvia A Pereira
- Association of Assistance for Children with Disabilities, Minas Gerais, Brazil
| | - Lívia C Magalhães
- Occupational Therapy Department, School of Physical Education, Physical Therapy and Occupational Therapy, Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
18
|
Katoh A, Shin SL, Kimpo RR, Rinaldi JM, Raymond JL. Purkinje cell responses during visually and vestibularly driven smooth eye movements in mice. Brain Behav 2015; 5:e00310. [PMID: 25642393 PMCID: PMC4309896 DOI: 10.1002/brb3.310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 10/28/2014] [Accepted: 11/14/2014] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION An essential complement to molecular-genetic approaches for analyzing the function of the oculomotor circuitry in mice is an understanding of sensory and motor signal processing in the circuit. Although there has been extensive analysis of the signals carried by neurons in the oculomotor circuits of species, such as monkeys, rabbits and goldfish, relatively little in vivo physiology has been done in the oculomotor circuitry of mice. We analyzed the contribution of vestibular and nonvestibular signals to the responses of individual Purkinje cells in the cerebellar flocculus of mice. METHODS We recorded Purkinje cells in the cerebellar flocculus of C57BL/6 mice during eye movement responses to vestibular and visual stimulation. RESULTS As in other species, most individual Purkinje cells in mice carried both vestibular and nonvestibular signals, and the most common response across cells was an increase in firing in response to ipsiversive eye movement or ipsiversive head movement. When both the head and eyes were moving, the Purkinje cell responses were approximated as a linear summation of head and eye velocity inputs. Unlike other species, floccular Purkinje cells in mice were considerably more sensitive to eye velocity than head velocity. CONCLUSIONS The signal content of Purkinje cells in the cerebellar flocculus of mice was qualitatively similar to that in other species. However, the eye velocity sensitivity was higher than in other species, which may reflect a tuning to the smaller range of eye velocities in mice.
Collapse
Affiliation(s)
- Akira Katoh
- Department of Neurobiology, Stanford University 299 W. Campus Drive, Stanford, California, 94305-5125
| | - Soon-Lim Shin
- Department of Neurobiology, Stanford University 299 W. Campus Drive, Stanford, California, 94305-5125
| | - Rhea R Kimpo
- Department of Neurobiology, Stanford University 299 W. Campus Drive, Stanford, California, 94305-5125
| | - Jacob M Rinaldi
- Department of Neurobiology, Stanford University 299 W. Campus Drive, Stanford, California, 94305-5125
| | - Jennifer L Raymond
- Department of Neurobiology, Stanford University 299 W. Campus Drive, Stanford, California, 94305-5125
| |
Collapse
|
19
|
Popa LS, Hewitt AL, Ebner TJ. The cerebellum for jocks and nerds alike. Front Syst Neurosci 2014; 8:113. [PMID: 24987338 PMCID: PMC4060457 DOI: 10.3389/fnsys.2014.00113] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/27/2014] [Indexed: 11/13/2022] Open
Abstract
Historically the cerebellum has been implicated in the control of movement. However, the cerebellum's role in non-motor functions, including cognitive and emotional processes, has also received increasing attention. Starting from the premise that the uniform architecture of the cerebellum underlies a common mode of information processing, this review examines recent electrophysiological findings on the motor signals encoded in the cerebellar cortex and then relates these signals to observations in the non-motor domain. Simple spike firing of individual Purkinje cells encodes performance errors, both predicting upcoming errors as well as providing feedback about those errors. Further, this dual temporal encoding of prediction and feedback involves a change in the sign of the simple spike modulation. Therefore, Purkinje cell simple spike firing both predicts and responds to feedback about a specific parameter, consistent with computing sensory prediction errors in which the predictions about the consequences of a motor command are compared with the feedback resulting from the motor command execution. These new findings are in contrast with the historical view that complex spikes encode errors. Evaluation of the kinematic coding in the simple spike discharge shows the same dual temporal encoding, suggesting this is a common mode of signal processing in the cerebellar cortex. Decoding analyses show the considerable accuracy of the predictions provided by Purkinje cells across a range of times. Further, individual Purkinje cells encode linearly and independently a multitude of signals, both kinematic and performance errors. Therefore, the cerebellar cortex's capacity to make associations across different sensory, motor and non-motor signals is large. The results from studying how Purkinje cells encode movement signals suggest that the cerebellar cortex circuitry can support associative learning, sequencing, working memory, and forward internal models in non-motor domains.
Collapse
Affiliation(s)
- Laurentiu S Popa
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Angela L Hewitt
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
20
|
Bailey K, Rahimi Balaei M, Mehdizadeh M, Marzban H. Spatial and temporal expression of lysosomal acid phosphatase 2 (ACP2) reveals dynamic patterning of the mouse cerebellar cortex. THE CEREBELLUM 2014; 12:870-81. [PMID: 23780826 DOI: 10.1007/s12311-013-0502-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Acp2 gene encodes lysosomal acid phosphatase 2 (ACP2), an isoenzyme that hydrolyzes orthophosphoric monoesters to alcohol and phosphate. Mutations in this gene compromise lysosomal function and cause acid phosphatase deficiency. Loss of Acp2 in the brain causes defects in the cerebellum. Here, we performed an in-depth protein expression analysis in the mouse cerebellum to understand how Acp2 controls cellular function in the developing and adult brain. We have found that during development, ACP2 expression marks the caudal midbrain and cerebellum, two regions that are linked by multiple signaling mechanisms during embryogenesis. By around P8, ACP2 was localized predominantly to the somata of Purkinje cells, the principal neurons of the cerebellar cortex. During the second postnatal week, we found that ACP2 expression expanded into the dendrites and axon terminals of Purkinje cells. However, at 2 weeks of age, only a subset of Purkinje cells strongly express ACP2. Further expression analyses revealed that in the mature cerebellum, ACP2 expression divided Purkinje cells into a pattern of molecular zones that are associated with the functional topography of sensory-motor circuitry. These data suggest that ACP2 expression is dynamically regulated during development, and in the adult, it may function within a complex architecture that is linked to cerebellar modular organization.
Collapse
Affiliation(s)
- Karen Bailey
- Department of Human Anatomy and Cell Science, Manitoba Institute of Child Health (MICH), Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
21
|
Durán E, Ocaña FM, Martín-Monzón I, Rodríguez F, Salas C. Cerebellum and spatial cognition in goldfish. Behav Brain Res 2014; 259:1-8. [DOI: 10.1016/j.bbr.2013.10.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/16/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
|
22
|
Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 2013; 80:807-15. [PMID: 24183029 DOI: 10.1016/j.neuron.2013.10.044] [Citation(s) in RCA: 762] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Twenty-five years ago the first human functional neuroimaging studies of cognition discovered a surprising response in the cerebellum that could not be attributed to motor demands. This controversial observation challenged the well-entrenched view that the cerebellum solely contributes to the planning and execution of movement. Recurring neuroimaging findings combined with key insights from anatomy and case studies of neurological patients motivated a reconsideration of the traditional model of cerebellar organization and function. The majority of the human cerebellum maps to cerebral association networks in an orderly manner that includes a mirroring of the prominent cerebral asymmetries for language and attention. These findings inspire exploration of the cerebellum's contributions to a diverse array of functional domains and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Randy L Buckner
- Harvard University Department of Psychology, Center for Brain Science, Cambridge, MA 02138, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
23
|
Ashmore RC, Sommer MA. Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum. J Neurophysiol 2013; 109:2129-44. [PMID: 23365182 PMCID: PMC3628037 DOI: 10.1152/jn.00906.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/28/2013] [Indexed: 11/22/2022] Open
Abstract
The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce "delay activity" between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move.
Collapse
Affiliation(s)
- Robin C Ashmore
- Department of Neuroscience and Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
24
|
Mura M, Castagna A, Fontani V, Rinaldi S. Preliminary pilot fMRI study of neuropostural optimization with a noninvasive asymmetric radioelectric brain stimulation protocol in functional dysmetria. Neuropsychiatr Dis Treat 2012; 8:149-54. [PMID: 22536071 PMCID: PMC3333783 DOI: 10.2147/ndt.s29971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE This study assessed changes in functional dysmetria (FD) and in brain activation observable by functional magnetic resonance imaging (fMRI) during a leg flexion-extension motor task following brain stimulation with a single radioelectric asymmetric conveyer (REAC) pulse, according to the precisely defined neuropostural optimization (NPO) protocol. POPULATION AND METHODS Ten healthy volunteers were assessed using fMRI conducted during a simple motor task before and immediately after delivery of a single REAC-NPO pulse. The motor task consisted of a flexion-extension movement of the legs with the knees bent. FD signs and brain activation patterns were compared before and after REAC-NPO. RESULTS A single 250-millisecond REAC-NPO treatment alleviated FD, as evidenced by patellar asymmetry during a sit-up motion, and modulated activity patterns in the brain, particularly in the cerebellum, during the performance of the motor task. CONCLUSION Activity in brain areas involved in motor control and coordination, including the cerebellum, is altered by administration of a REAC-NPO treatment and this effect is accompanied by an alleviation of FD.
Collapse
Affiliation(s)
- Marco Mura
- Institute of Radiology, University of Cagliari, Florence, Italy
| | - Alessandro Castagna
- Rinaldi Fontani Institute – Department of Neuro Psycho Physical Optimization, Florence, Italy
| | - Vania Fontani
- Rinaldi Fontani Institute – Department of Neuro Psycho Physical Optimization, Florence, Italy
| | - Salvatore Rinaldi
- Rinaldi Fontani Institute – Department of Neuro Psycho Physical Optimization, Florence, Italy
| |
Collapse
|
25
|
Corben LA, Georgiou-Karistianis N, Bradshaw JL, Evans-Galea MV, Churchyard AJ, Delatycki MB. Characterising the neuropathology and neurobehavioural phenotype in Friedreich ataxia: a systematic review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:169-84. [PMID: 23560311 DOI: 10.1007/978-1-4614-5434-2_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Friedreich ataxia (FRDA), the most common of the hereditary ataxias, is an autosomal recessive, multisystem disorder characterised by progressive ataxia, sensory symptoms, weakness, scoliosis and cardiomyopathy. FRDA is caused by a GAA expansion in intron one of the FXN gene, leading to reduced levels of the encoded protein frataxin, which is thought to regulate cellular iron homeostasis. The cerebellar and spinocerebellar dysfunction seen in FRDA has known effects on motor function; however until recently slowed information processing has been the main feature consistently reported by the limited studies addressing cognitive function in FRDA. This chapter will systematically review the current literature regarding the neuropathological and neurobehavioural phenotype associated with FRDA. It will evaluate more recent evidence adopting systematic experimental methodologies that postulate that the neurobehavioural phenotype associated with FRDA is likely to involve impairment in cerebello-cortico connectivity.
Collapse
Affiliation(s)
- Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Long-term sequelae after acquired pediatric hemorrhagic cerebellar lesions. Childs Nerv Syst 2011; 27:923-31. [PMID: 21190024 DOI: 10.1007/s00381-010-1357-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE The aim of the present study was to assess cognitive, affective, and motor long-term sequelae after acquired focal pediatric cerebellar lesions. METHODS Eight patients with a history of isolated acquired hemorrhagic cerebellar lesions before the age of 13 participated in this study. All participants underwent a neurologic examination, including the Zurich Neuromotor Assessment (ZNA) and the International Cooperative Ataxia Rating Scale (ICARS). Cognitive functions have been evaluated with a general cognitive assessment and an extensive neuropsychological battery. Furthermore, patients and parents filled in questionnaires about quality of life and possible behavioral or emotional problems. RESULTS The results revealed that all patients exhibited motor problems (ZNA). Most participants had further restricted oculomotor movements (ICARS). Age at injury and the full scale IQ were significantly positively correlated (Pearson correlation 0.779; p = 0.023). Conversely, no overall neuropsychological profile could be identified except for marginally reduced reaction times and susceptibility to interference. In addition, borderline results in semantic and phonemic word fluency tasks were apparent. A dysexecutive syndrome was diagnosed in one patient. However, verbal performance and reading abilities were non-pathologic in all participants. The patients reported having a good quality of life without major physical restrictions. CONCLUSIONS Emotional disturbances and the presence of a mild cerebellar cognitive affective syndrome (as frequently described in adult patients) could only be confirmed in adolescents with vermis lesions. Nevertheless, in laboratory conditions, neuropsychological impairments were present in all patients. Heterogeneity of age at injury and exact lesion site may have led to interpersonal differences in neuropsychological outcome.
Collapse
|
27
|
Foti F, Laricchiuta D, Cutuli D, De Bartolo P, Gelfo F, Angelucci F, Petrosini L. Exposure to an enriched environment accelerates recovery from cerebellar lesion. THE CEREBELLUM 2011; 10:104-19. [PMID: 21113697 DOI: 10.1007/s12311-010-0236-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The exposure to enriched environments allows the maintenance of normal cognitive functioning even in the presence of brain pathology. Up until now, clinical and experimental studies have investigated environmental effects mainly on the symptoms linked to the presence of neuro-degenerative diseases, and no study has yet analyzed whether prolonged exposure to complex environments allows modifying the clinical expression and compensation of deficits of cerebellar origin. In animals previously exposed to complex stimulations, the effects of cerebellar lesions have been analyzed to verify whether a prolonged and intense exposure to complex stimulations affected the compensation of motor and cognitive functions following a cerebellar lesion. Hemicerebellectomized or intact animals housed in enriched or standard conditions were administered spatial tests. Postural asymmetries and motor behavior were also assessed. Exposure to the enriched environment almost completely compensated the effects of the hemicerebellectomy. In fact, the motor and cognitive performances of the enriched hemicerebellectomized animals were similar to those of the intact animals. The plastic changes induced by enhanced mental and physical activity seem to provide the development of compensatory responses against the disrupting motor and cognitive consequences of the cerebellar damage.
Collapse
|
28
|
Segregation of frontoparietal and cerebellar components within saccade and vergence networks using hierarchical independent component analysis of fMRI. Vis Neurosci 2011; 28:247-61. [PMID: 21554775 DOI: 10.1017/s0952523811000125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
PURPOSE Cortical and subcortical functional activity stimulated via saccade and vergence eye movements were investigated to examine the similarities and differences between networks and regions of interest (ROIs). METHODS Blood oxygenation level-dependent (BOLD) signals from stimulus-induced functional Magnetic Resonance Imaging (MRI) experiments were analyzed studying 16 healthy subjects. Six types of oculomotor experiments were conducted using a block design to study both saccade and vergence circuits. The experiments included a simple eye movement task and a more cognitively demanding prediction task. A hierarchical independent component analysis (ICA) process began by analyzing individual subject data sets with spatial ICA to extract spatial independent components (sIC), which resulted in three ROIs. Using the time series from each of the three ROIs per subject, per oculomotor experiment, a temporal ICA was used to compute individual temporal independent components (tICs). For each of the three ROIs, the individual tICs from multiple subjects were entered into a second temporal ICA to compute group-level tICs for comparison. RESULTS Two independent spatial maps were observed for each subject (one sIC showing activity in the frontoparietal regions and another sIC in the cerebellum) during the six oculomotor tasks. Analysis of group-level tICs revealed an increased latency in the cerebellar region when compared to the frontoparietal region. CONCLUSION Shared neuronal behavior has been reported in the frontal and parietal lobes, which may in part explain the segregation of frontoparietal functional activity into one sIC. The cerebellum uses multiple time scales for motor learning. This may result in an increased latency observed in the BOLD signal of the cerebellar group-level tIC when compared to the frontal and parietal group-level tICs. The increased latency offers a possible explanation to why ICA dissects the cerebellar activity into an sIC. The hierarchical ICA process used to calculate group-level tICs can yield insight into functional connectivity within complex neural networks.
Collapse
|
29
|
Yeganeh-Doost P, Gruber O, Falkai P, Schmitt A. The role of the cerebellum in schizophrenia: from cognition to molecular pathways. Clinics (Sao Paulo) 2011; 66 Suppl 1:71-7. [PMID: 21779725 PMCID: PMC3118440 DOI: 10.1590/s1807-59322011001300009] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 02/01/2023] Open
Abstract
Beside its role in motor coordination, the cerebellum is involved in cognitive function such as attention, working memory, verbal learning, and sensory discrimination. In schizophrenia, a disturbed prefronto-thalamo-cerebellar circuit has been proposed to play a role in the pathophysiology. In addition, a deficit in the glutamatergic N-methyl-D-aspartate (NMDAf) receptor has been hypothesized. The risk gene neuregulin 1 may play a major role in this process. We demonstrated a higher expression of the NMDA receptor subunit 2D in the right cerebellar regions of schizophrenia patients, which may be a secondary upregulation due to a dysfunctional receptor. In contrast, the neuregulin 1 risk variant containing at least one C-allele was associated with decreased expression of NMDA receptor subunit 2C, leading to a dysfunction of the NMDA receptor, which in turn may lead to a dysfunction of the gamma amino butyric acid (GABA) system. Accordingly, from post-mortem studies, there is accumulating evidence that GABAergic signaling is decreased in the cerebellum of schizophrenia patients. As patients in these studies are treated with antipsychotics long term, we evaluated the effect of long-term haloperidol and clozapine treatment in an animal model. We showed that clozapine may be superior to haloperidol in restoring a deficit in NMDA receptor subunit 2C expression in the cerebellum. We discuss the molecular findings in the light of the role of the cerebellum in attention and cognitive deficits in schizophrenia.
Collapse
|
30
|
Kamiyama H, Matsumoto M, Otani S, Kimura SI, Shimamura KI, Ishikawa S, Yanagawa Y, Togashi H. Mechanisms underlying ketamine-induced synaptic depression in rat hippocampus-medial prefrontal cortex pathway. Neuroscience 2010; 177:159-69. [PMID: 21163337 DOI: 10.1016/j.neuroscience.2010.12.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 02/02/2023]
Abstract
The non-competitive N-methyl-D-aspartate NMDA receptor antagonist ketamine, a dissociative anesthetic capable of inducing analgesia, is known to have psychotomimetic actions, but the detailed mechanisms remain unclear because of its complex properties. The present study elucidated neural mechanisms of the effect of ketamine, at doses that exert psychotomimetic effects without anesthetic and analgesic effects, by evaluating cortical synaptic responses in vivo. Systemic administration (i.p.) of low (1 and 5 mg/kg), subanesthetic (25 mg/kg) and anesthetic (100 mg/kg) doses of ketamine dose-dependently decreased hippocampal stimulation-evoked potential in the medial prefrontal cortex (mPFC) in freely moving rats. The behavioral analysis assessed by prepulse inhibition (PPI) of acoustic startle response showed that ketamine (5 and 25 mg/kg, i.p.) produced PPI deficit. Thus, the psychotomimetic effects observed in ketamine-treated groups (5 and 25 mg/kg, i.p.) are associated with the induction of synaptic depression in the hippocampus-mPFC neural pathway. Based on these results, we further examined the underlying mechanisms of the ketamine-induced synaptic depression under anesthesia. Ketamine (5 and 25 mg/kg, i.p.) caused increases in dialysate dopamine in the mPFC in anesthetized rats. Moreover, the ketamine-induced decreases in the evoked potential, at the dose 5 mg/kg which has no anesthetic and analgesic effects, were indeed absent in dopamine-lesioned rats pretreated with 6-hydroxydopamine (6-OHDA; 150 μg/rat, i.c.v.). Ketamine (5 mg/kg, i.p.)-induced synaptic depression was blocked by pretreatment with dopamine D1 receptor antagonist SCH 23390 (10 μg/rat, i.c.v.) but not dopamine D2 receptor antagonist haloperidol (1.5 mg/kg, i.p.), suggesting that dopaminergic modulation mediated via D1 receptors are involved in the synaptic effects of ketamine. Furthermore, ketamine (5 mg/kg, i.p.)-induced synaptic depression was prevented also by GABAA receptor antagonist bicuculline (0.2 or 2 μg/rat, i.c.v.). These findings suggest that ketamine at the dose that exerts psychotomimetic symptoms depresses hippocampus-mPFC synaptic transmission through mechanisms involving dopaminergic modulation mediated via D1 receptors, which may lead to a net augmentation of synaptic inhibition mediated via GABAA receptors.
Collapse
Affiliation(s)
- H Kamiyama
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, 061-0293, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ide JS, Li CSR. A cerebellar thalamic cortical circuit for error-related cognitive control. Neuroimage 2010; 54:455-64. [PMID: 20656038 DOI: 10.1016/j.neuroimage.2010.07.042] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/12/2010] [Accepted: 07/15/2010] [Indexed: 11/28/2022] Open
Abstract
Error detection and behavioral adjustment are core components of cognitive control. Numerous studies have focused on the anterior cingulate cortex (ACC) as a critical locus of this executive function. Our previous work showed greater activation in the dorsal ACC and subcortical structures during error detection, and activation in the ventrolateral prefrontal cortex (VLPFC) during post-error slowing (PES) in a stop signal task (SST). However, the extent of error-related cortical or subcortical activation across subjects was not correlated with VLPFC activity during PES. So then, what causes VLPFC activation during PES? To address this question, we employed Granger causality mapping (GCM) and identified regions that Granger caused VLPFC activation in 54 adults performing the SST during fMRI. These brain regions, including the supplementary motor area (SMA), cerebellum, a pontine region, and medial thalamus, represent potential targets responding to errors in a way that could influence VLPFC activation. In confirmation of this hypothesis, the error-related activity of these regions correlated with VLPFC activation during PES, with the cerebellum showing the strongest association. The finding that cerebellar activation Granger causes prefrontal activity during behavioral adjustment supports a cerebellar function in cognitive control. Furthermore, multivariate GCA described the "flow of information" across these brain regions. Through connectivity with the thalamus and SMA, the cerebellum mediates error and post-error processing in accord with known anatomical projections. Taken together, these new findings highlight the role of the cerebello-thalamo-cortical pathway in an executive function that has heretofore largely been ascribed to the anterior cingulate-prefrontal cortical circuit.
Collapse
Affiliation(s)
- Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | | |
Collapse
|
32
|
Mandolesi L, Foti F, Cutuli D, Laricchiuta D, Gelfo F, De Bartolo P, Petrosini L. Features of sequential learning in hemicerebellectomized rats. J Neurosci Res 2010; 88:478-86. [PMID: 19746422 DOI: 10.1002/jnr.22220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Because the sequencing property is one of the functions in which cerebellar circuits are involved, it is important to analyze the features of sequential learning in the presence of cerebellar damage. Hemicerebellectomized and control rats were tested in a four-choice visuomotor learning task that required both the detection of a specific sequence of correct choices and the acquisition of procedural rules about how to perform the task. The findings indicate that the presence of the hemicerebellectomy did not affect the first phases of detection and acquisition of the sequential visuomotor task, delayed but did not prevent the learning of the sequential task, slowed down speed-up and proceduralization phases, and loosened the reward-response associative structure. The performances of hemicerebellectomized animals in the serial learning task as well as in the open field task demonstrated that the delayed sequential learning task could not be ascribed to impairment of motor functions or discriminative abilities or to low levels of motivation. The delay in sequential learning observed in the presence of a cerebellar lesion appeared to be related mainly to a delay of the automatization of the response. In conclusion, it may be advanced that, through cortical and subcortical connections, the cerebellum provides the acquisition of rapid and accurate sensory-guided sequence of responses.
Collapse
|
33
|
Baier B, Dieterich M, Stoeter P, Birklein F, Müller NG. Anatomical correlate of impaired covert visual attentional processes in patients with cerebellar lesions. J Neurosci 2010; 30:3770-6. [PMID: 20220011 PMCID: PMC6632230 DOI: 10.1523/jneurosci.0487-09.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 06/15/2009] [Accepted: 07/03/2009] [Indexed: 11/21/2022] Open
Abstract
In the past years, claims of cognitive and attentional function of the cerebellum have first been raised but were later refuted. One reason for this controversy might be that attentional deficits only occur when specific cerebellar structures are affected. To further elucidate this matter and to determine which cerebellar regions might be involved in deficits of covert visual attention, we used new brain imaging tools of lesion mapping that allow a direct comparison with control patients. A total of 26 patients with unilateral right-sided cerebellar infarcts were tested on a covert visual attention task. Eight (31%) patients showed markedly slowed responses, especially in trials in which an invalid cue necessitated reorienting of the focus of attention for target detection. Compared with the 18 patients who performed within the range of healthy control subjects, only the impaired patients had lesions of cerebellar vermal structures such as the pyramid. We suggest that these midcerebellar regions are indirectly involved in covert visual attention via oculomotor control mechanisms. Thus, specific cerebellar structures do influence attentional orienting, whereas others do not.
Collapse
Affiliation(s)
- Bernhard Baier
- Department of Neurology, University of Mainz, 55131 Mainz, Germany.
| | | | | | | | | |
Collapse
|
34
|
Premkumar P, Fannon D, Kuipers E, Peters ER, Anilkumar AP, Simmons A, Kumari V. Structural magnetic resonance imaging predictors of responsiveness to cognitive behaviour therapy in psychosis. Schizophr Res 2009; 115:146-55. [PMID: 19734016 PMCID: PMC2845808 DOI: 10.1016/j.schres.2009.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 08/07/2009] [Accepted: 08/08/2009] [Indexed: 11/21/2022]
Abstract
BACKGROUND Responsiveness to cognitive behaviour therapy (CBT) in psychosis may have a neurological basis. This study aimed to determine whether improvement in symptoms following CBT for psychosis (CBTp) in people with schizophrenia is positively associated with pre-therapy grey matter volume in brain regions involved in cognitive processing. METHODS Sixty outpatients stable on medication with at least one distressing symptom of schizophrenia and willing to receive CBTp in addition to their standard care (SC), and 25 healthy participants underwent magnetic resonance imaging. Subsequently, 30 patients received CBTp (CBTp+SC; 25 completers) for 6-8 months and 30 continued with their standard care (SC; 19 completers). Symptoms in all patients were assessed (blindly) at entry and follow-up. RESULTS The CBTp+SC and SC groups did not differ clinically at baseline, and only the CBTp+SC group showed improved symptoms at follow-up. Severity of baseline symptoms was not associated with CBTp responsiveness. Reduction with CBTp in positive symptoms was associated with greater right cerebellum (lobule VII) grey matter volume, in negative symptoms with left precentral gyrus and right inferior parietal lobule grey matter volumes, and in general psychopathology with greater right superior temporal gyrus, cuneus and cerebellum (Crus I) grey matter volumes. Grey matter volume in these brain areas did not correlate with the severity of baseline symptoms. CONCLUSION Grey matter volume of the frontal, temporal, parietal and cerebellar areas that are known to be involved in the co-ordination of mental activity, cognitive flexibility, and verbal learning and memory predict responsiveness to CBTp in patients with psychosis.
Collapse
Affiliation(s)
- Preethi Premkumar
- Department of Psychology, Institute of Psychiatry, King's College London, London, UK
| | - Dominic Fannon
- Department of Psychology, Institute of Psychiatry, King's College London, London, UK
| | - Elizabeth Kuipers
- Department of Psychology, Institute of Psychiatry, King's College London, London, UK,NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, London, UK
| | - Emmanuelle R. Peters
- Department of Psychology, Institute of Psychiatry, King's College London, London, UK,NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, London, UK
| | | | - Andrew Simmons
- NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, London, UK,Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | - Veena Kumari
- Department of Psychology, Institute of Psychiatry, King's College London, London, UK,NIHR Biomedical Research Centre for Mental Health, South London and Maudsley NHS Trust, London, London, UK,Corresponding author. Department of Psychology, PO78, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK. Tel.: + 44 207 848 0233; fax: + 44 207 848 0860.
| |
Collapse
|
35
|
Kaidanovich-Beilin O, Lipina TV, Takao K, van Eede M, Hattori S, Laliberté C, Khan M, Okamoto K, Chambers JW, Fletcher PJ, MacAulay K, Doble BW, Henkelman M, Miyakawa T, Roder J, Woodgett JR. Abnormalities in brain structure and behavior in GSK-3alpha mutant mice. Mol Brain 2009; 2:35. [PMID: 19925672 PMCID: PMC2785804 DOI: 10.1186/1756-6606-2-35] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/19/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-3alpha and GSK-3beta. Mice lacking a functional GSK-3alpha gene were engineered in our laboratory; they are viable and display insulin sensitivity. In this study, we have characterized brain functions of GSK-3alpha KO mice by using a well-established battery of behavioral tests together with neurochemical and neuroanatomical analysis. RESULTS Similar to the previously described behaviours of GSK-3beta(+/-) mice, GSK-3alpha mutants display decreased exploratory activity, decreased immobility time and reduced aggressive behavior. However, genetic inactivation of the GSK-3alpha gene was associated with: decreased locomotion and impaired motor coordination, increased grooming activity, loss of social motivation and novelty; enhanced sensorimotor gating and impaired associated memory and coordination. GSK-3alpha KO mice exhibited a deficit in fear conditioning, however memory formation as assessed by a passive avoidance test was normal, suggesting that the animals are sensitized for active avoidance of a highly aversive stimulus in the fear-conditioning paradigm. Changes in cerebellar structure and function were observed in mutant mice along with a significant decrease of the number and size of Purkinje cells. CONCLUSION Taken together, these data support a role for the GSK-3alpha gene in CNS functioning and possible involvement in the development of psychiatric disorders.
Collapse
|
36
|
De Bartolo P, Mandolesi L, Federico F, Foti F, Cutuli D, Gelfo F, Petrosini L. Cerebellar involvement in cognitive flexibility. Neurobiol Learn Mem 2009; 92:310-7. [DOI: 10.1016/j.nlm.2009.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 03/10/2009] [Accepted: 03/25/2009] [Indexed: 11/29/2022]
|
37
|
Watson TC, Jones MW, Apps R. Electrophysiological mapping of novel prefrontal - cerebellar pathways. Front Integr Neurosci 2009; 3:18. [PMID: 19738932 PMCID: PMC2737490 DOI: 10.3389/neuro.07.018.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/30/2009] [Indexed: 12/05/2022] Open
Abstract
Whilst the cerebellum is predominantly considered a sensorimotor control structure, accumulating evidence suggests that it may also subserve non-motor functions during cognition. However, this possibility is not universally accepted, not least because the nature and pattern of links between higher cortical structures and the cerebellum are poorly characterized. We have therefore used in vivo electrophysiological methods in anaesthetized rats to directly investigate connectivity between the medial prefrontal cortex (prelimbic subdivision, PrL) and the cerebellum. Stimulation of deep layers of PrL evoked distinct field potentials in the cerebellar cortex with a mean latency to peak of approximately 35 ms. These responses showed a well-defined topography, and were maximal in lobule VII of the contralateral vermis (a known oculomotor centre); they were not attenuated by local anaesthesia of the overlying M2 motor cortex, though M2 stimulation did evoke field potentials in lobule VII with a shorter latency (approximately 30 ms). Single unit recordings showed that prelimbic cortical stimulation elicits complex spikes in lobule VII Purkinje cells, indicating transmission via a previously undescribed cerebro-olivocerebellar pathway. Our results therefore establish a physiological basis for communication between PrL and the cerebellum. The role(s) of this pathway remain to be resolved, but presumably relate to control of eye movements and/or distributed networks associated with integrated prefrontal cortical functions.
Collapse
Affiliation(s)
- Thomas C Watson
- Department of Physiology & Pharmacology, School of Medical Sciences, University Walk, University of Bristol Bristol, UK
| | | | | |
Collapse
|
38
|
The cerebellum, cerebellar disorders, and cerebellar research--two centuries of discoveries. THE CEREBELLUM 2009; 7:505-16. [PMID: 18855093 DOI: 10.1007/s12311-008-0063-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Research on the cerebellum is evolving rapidly. The exquisiteness of the cerebellar circuitry with a unique geometric arrangement has fascinated researchers from numerous disciplines. The painstaking works of pioneers of these last two centuries, such as Rolando, Flourens, Luciani, Babinski, Holmes, Cajal, Larsell, or Eccles, still exert a strong influence in the way we approach cerebellar functions. Advances in genetic studies, detailed molecular and cellular analyses, profusion of brain imaging techniques, emergence of behavioral assessments, and reshaping of models of cerebellar function are generating an immense amount of knowledge. Simultaneously, a better definition of cerebellar disorders encountered in the clinic is emerging. The essentials of a trans-disciplinary blending are expanding. The analysis of the literature published these last two decades indicates that the gaps between domains of research are vanishing. The launch of the society for research on the cerebellum (SRC) illustrates how cerebellar research is burgeoning. This special issue gathers the contributions of the inaugural conference of the SRC dedicated to the mechanisms of cerebellar function. Contributions were brought together around five themes: (1) cerebellar development, death, and regeneration; (2) cerebellar circuitry: processing and function; (3) mechanisms of cerebellar plasticity and learning; (4) cerebellar function: timing, prediction, and/or coordination?; (5) anatomical and disease perspectives on cerebellar function.
Collapse
|
39
|
Manto M. Mechanisms of human cerebellar dysmetria: experimental evidence and current conceptual bases. J Neuroeng Rehabil 2009; 6:10. [PMID: 19364396 PMCID: PMC2679756 DOI: 10.1186/1743-0003-6-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 04/13/2009] [Indexed: 11/10/2022] Open
Abstract
The human cerebellum contains more neurons than any other region in the brain and is a major actor in motor control. Cerebellar circuitry is unique by its stereotyped architecture and its modular organization. Understanding the motor codes underlying the organization of limb movement and the rules of signal processing applied by the cerebellar circuits remains a major challenge for the forthcoming decades. One of the cardinal deficits observed in cerebellar patients is dysmetria, designating the inability to perform accurate movements. Patients overshoot (hypermetria) or undershoot (hypometria) the aimed target during voluntary goal-directed tasks. The mechanisms of cerebellar dysmetria are reviewed, with an emphasis on the roles of cerebellar pathways in controlling fundamental aspects of movement control such as anticipation, timing of motor commands, sensorimotor synchronization, maintenance of sensorimotor associations and tuning of the magnitudes of muscle activities. An overview of recent advances in our understanding of the contribution of cerebellar circuitry in the elaboration and shaping of motor commands is provided, with a discussion on the relevant anatomy, the results of the neurophysiological studies, and the computational models which have been proposed to approach cerebellar function.
Collapse
Affiliation(s)
- Mario Manto
- Laboratoire de Neurologie Expérimentale, FNRS-ULB, Bruxelles, Belgium.
| |
Collapse
|
40
|
Baillieux H, Vandervliet EJM, Manto M, Parizel PM, De Deyn PP, Mariën P. Developmental dyslexia and widespread activation across the cerebellar hemispheres. BRAIN AND LANGUAGE 2009; 108:122-132. [PMID: 18986695 DOI: 10.1016/j.bandl.2008.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/15/2008] [Accepted: 10/02/2008] [Indexed: 05/27/2023]
Abstract
Developmental dyslexia is the most common learning disability in school-aged children with an estimated incidence of five to ten percent. The cause and pathophysiological substrate of this developmental disorder is unclear. Recently, a possible involvement of the cerebellum in the pathogenesis of dyslexia has been postulated. In this study, 15 dyslexic children and 7 age-matched control subjects were investigated by means of functional neuroimaging (fMRI) using a noun-verb association paradigm. Comparison of activation patterns between dyslexic and control subjects revealed distinct and significant differences in cerebral and cerebellar activation. Control subjects showed bilaterally well-defined and focal activation patterns in the frontal and parietal lobes and the posterior regions of the cerebellar hemispheres. The dyslexic children, however, presented widespread and diffuse activations on the cerebral and cerebellar level. Cerebral activations were found in frontal, parietal, temporal and occipital regions. Activations in the cerebellum were found predominantly in the cerebellar cortex, including Crus I, Crus II, hemispheric lobule VI, VII and vermal lobules I, II, III, IV and VII. This preliminary study is the first to reveal a significant difference in cerebellar functioning between dyslexic children and controls during a semantic association task. As a result, we propose a new hypothesis regarding the pathophysiological mechanisms of developmental dyslexia. Given the sites of activation in the cerebellum in the dyslexic group, a defect of the intra-cerebellar distribution of activity is suspected, suggesting a disorder of the processing or transfer of information within the cerebellar cortex.
Collapse
Affiliation(s)
- Hanne Baillieux
- Department of Linguistics, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
41
|
Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res 2008; 199:61-75. [PMID: 19061920 DOI: 10.1016/j.bbr.2008.11.012] [Citation(s) in RCA: 499] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/07/2008] [Accepted: 11/10/2008] [Indexed: 11/21/2022]
Abstract
This review discusses the cerebral plasticity, and the role of the cortico-striatal system in particular, observed as one is learning or planning to execute a newly learned motor behavior up to when the skill is consolidated or has become highly automatized. A special emphasis is given to imaging work describing the neural substrate mediating motor sequence learning and motor adaptation paradigms. These results are then put into a plausible neurobiological model of motor skill learning, which proposes an integrated view of the brain plasticity mediating this form of memory at different stages of the acquisition process.
Collapse
|
42
|
Ben-Shachar D, Karry R. Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 2008; 3:e3676. [PMID: 18989376 PMCID: PMC2579333 DOI: 10.1371/journal.pone.0003676] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 10/20/2008] [Indexed: 11/19/2022] Open
Abstract
Background Mitochondrial dysfunction was reported in schizophrenia, bipolar disorderand major depression. The present study investigated whether mitochondrial complex I abnormalities show disease-specific characteristics. Methodology/Principal Findings mRNA and protein levels of complex I subunits NDUFV1, NDUFV2 and NADUFS1, were assessed in striatal and lateral cerebellar hemisphere postmortem specimens and analyzed together with our previous data from prefrontal and parieto-occipital cortices specimens of patients with schizophrenia, bipolar disorder, major depression and healthy subjects. A disease-specific anatomical pattern in complex I subunits alterations was found. Schizophrenia-specific reductions were observed in the prefrontal cortex and in the striatum. The depressed group showed consistent reductions in all three subunits in the cerebellum. The bipolar group, however, showed increased expression in the parieto-occipital cortex, similar to those observed in schizophrenia, and reductions in the cerebellum, yet less consistent than the depressed group. Conclusions/Significance These results suggest that the neuroanatomical pattern of complex I pathology parallels the diversity and similarities in clinical symptoms of these mental disorders.
Collapse
Affiliation(s)
- Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry Rambam Medical Center and B. Rappaport Faculty of Medicine Technion, Haifa, Israel.
| | | |
Collapse
|
43
|
Patel S, Hillard CJ. Adaptations in endocannabinoid signaling in response to repeated homotypic stress: a novel mechanism for stress habituation. Eur J Neurosci 2008; 27:2821-9. [PMID: 18588527 DOI: 10.1111/j.1460-9568.2008.06266.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Daily life stressors are a major environmental factor contributing to precipitation and exacerbation of mental illness. Animal models using repeated homotypic stress induce anxious and depressive phenotypes and are used to study the pathophysiology of affective disorders. Here we discuss data demonstrating that repeated homotypic stress produces temporally and anatomically distinct changes in endocannabinoid signaling components within stress-responsive brain regions. We also present evidence describing the neural and behavioral correlates of these adaptations in endocannabinoid signaling. These data support a role for endocannabinoid signaling in the central nervous system response to chronic, homotypic stress, and specifically in the process of stress-response habituation. The clinical implications of these findings for the pathophysiology and treatment of affective disorders are discussed.
Collapse
Affiliation(s)
- Sachin Patel
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| | | |
Collapse
|
44
|
Ketamine, but not phencyclidine, selectively modulates cerebellar GABA(A) receptors containing alpha6 and delta subunits. J Neurosci 2008; 28:5383-93. [PMID: 18480294 DOI: 10.1523/jneurosci.5443-07.2008] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phencyclidine (PCP) and ketamine are dissociative anesthetics capable of inducing analgesia, psychomimetic behavior, and a catatonic state of unconsciousness. Despite broad similarities, there are notable differences between the clinical actions of ketamine and PCP. Ketamine has a lower incidence of adverse effects and generally produces greater CNS depression than PCP. Both noncompetitively inhibit NMDA receptors, yet there is little evidence that these drugs affect GABA(A) receptors, the primary target of most anesthetics. alpha6beta2/3delta receptors are subtypes of the GABA(A) receptor family and are abundantly expressed in granular neurons within the adult cerebellum. Here, using an oocyte expression system, we show that at anesthetically relevant concentrations, ketamine, but not PCP, modulates alpha6beta2delta and alpha6beta3delta receptors. Additionally, at higher concentrations, ketamine directly activates these GABA(A) receptors. Comparatively, dizocilpine (MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate]), a potent noncompetitive antagonist of NMDA receptors that is structurally unrelated to PCP, did not produce any effect on alpha6beta2delta receptors. Of the recombinant GABA(A) receptor subtypes examined (alpha1beta2, alpha1beta2gamma2, alpha1beta2delta, alpha4beta2gamma2, alpha4beta2delta, alpha6beta2gamma2, alpha6beta2delta, and alpha6beta3delta), the actions of ketamine were unique to alpha6beta2delta and alpha6beta3delta receptors. In dissociated granule neurons and cerebellar slice recordings, ketamine potentiated the GABAergic conductance arising from alpha6-containing GABA(A) receptors, whereas PCP showed no effect. Furthermore, ketamine potentiation was absent in cerebellar granule neurons from transgenic functionally null alpha6(-/-) and delta(-/-)mice. These findings suggest that the higher CNS depressant level achieved by ketamine may be the result of its selective actions on alpha6beta2/3delta receptors.
Collapse
|
45
|
Olsson CJ, Jonsson B, Nyberg L. Learning by doing and learning by thinking: an FMRI study of combining motor and mental training. Front Hum Neurosci 2008; 2:5. [PMID: 18958206 PMCID: PMC2525972 DOI: 10.3389/neuro.09.005.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 06/04/2008] [Indexed: 11/13/2022] Open
Abstract
The current study investigated behavioral and neural effects of motor, mental, and combined motor and mental training on a finger tapping task. The motor or mental training groups trained on a finger-sequence for a total of 72 min over 6 weeks. The motor and mental training group received 72 min motor training and in addition 72 min mental training. Results showed that all groups increased their tapping performance significantly on the trained sequence. After training functional magnetic resonance imaging (fMRI) data was collected and indicated training specific increases in ventral pre-motor cortex following motor training, and in fusiform gyrus following mental training. Combined motor and mental training activated both the motor and the visual regions. In addition, motor and mental training showed a significant increase in tapping performance on an untrained sequence (transfer). fMRI scanning indicated that the transfer effect involved the cerebellum. Conclusions were that combined motor and mental training recruited both motor and visual systems, and that combined motor and mental training improves motor flexibility via connections from both motor and cognitive systems to the cerebellum.
Collapse
Affiliation(s)
- C-J Olsson
- Department of Integrative Medical Biology (Physiology), Umeå University Umeå, Sweden.
| | | | | |
Collapse
|
46
|
Cheron G, Servais L, Dan B. Cerebellar network plasticity: From genes to fast oscillation. Neuroscience 2008; 153:1-19. [DOI: 10.1016/j.neuroscience.2008.01.074] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/24/2008] [Accepted: 01/25/2008] [Indexed: 11/30/2022]
|
47
|
Timmann D, Daum I. Cerebellar contributions to cognitive functions: a progress report after two decades of research. CEREBELLUM (LONDON, ENGLAND) 2007; 6:159-62. [PMID: 17786810 DOI: 10.1080/14734220701496448] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Accumulating evidence from both human lesion and functional neuroimaging studies appears to support the hypothesis that the cerebellum contributes to non-motor functions. Along similar lines, cognitive, affective and behavioural changes in psychiatric disorders, such as autism, schizophrenia and dyslexia, have been linked to structural cerebellar abnormalities. The aim of this special issue was to evaluate the current knowledge base after more than 20 years of controversial discussion. The contributions of the special issue cover the most important cognitive domains, i.e., attention, memory and learning, executive control, language and visuospatial function. The available empirical evidence suggests that cognitive changes in patients with cerebellar dysfunction are mild and clearly less severe than the impairments observed after lesions to neocortical areas to which the cerebellum is closely connected via different cerebro-cerebellar loops. Frequently cited early findings, e.g., with respect to a specific cerebellar involvement in attention, have not been replicated or might be confounded by motor or working memory demands of the respective attention task. On the other hand, there is now convincing evidence for a cerebellar involvement in the mediation of a range of cognitive domains, most notably verbal working memory. Verbal working memory problems may partly underlie the compromised performance of cerebellar lesion patients on at least some complex cognitive tasks. Although investigations have moved from anecdotical case reports to hypothesis-driven controlled clinical group studies based on sound methods which are complemented by state-of-the-art functional neuroimaging studies, the empirical evidence available so far does not yet allow a convincing theory of the mechanisms of a cerebellar involvement in cognitive function. Future studies are clearly needed to further elucidate the nature of the processes linked to cerebellar mediation of cognitive processes and their possible link to motor theories of cerebellar function, e.g., its role in prediction and/or timing.
Collapse
Affiliation(s)
- Dagmar Timmann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany.
| | | |
Collapse
|