1
|
Giacomini A, Taranto S, Gazzaroli G, Faletti J, Capoferri D, Marcheselli R, Sciumè M, Presta M, Sacco A, Roccaro AM. The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma. J Exp Clin Cancer Res 2024; 43:294. [PMID: 39482742 DOI: 10.1186/s13046-024-03217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024] Open
Abstract
Among blood cancers, multiple myeloma (MM) represents the second most common neoplasm and is characterized by the accumulation and proliferation of monoclonal plasma cells within the bone marrow. Despite the last few decades being characterized by the development of different therapeutic strategies against MM, at present such disease is still considered incurable. Although MM is highly heterogeneous in terms of genetic and molecular subtypes, about 67% of MM cases are associated with abnormal activity of the transcription factor c-Myc, which has so far revealed a protein extremely difficult to target. We have recently demonstrated that activation of fibroblast growth factor (FGF) signaling protects MM cells from oxidative stress-induced apoptosis by stabilizing the oncoprotein c-Myc. Accordingly, secretion of FGF ligands and autocrine activation of FGF receptors (FGFR) is observed in MM cells and FGFR3 genomic alterations represent some 15-20% MM cases and are associated with poor outcome. Thus, FGF/FGFR blockade may represent a promising strategy to indirectly target c-Myc in MM. On this basis, the present review aims at providing an overview of recently explored connections between the FGF/FGFR system and c-Myc oncoprotein, sustaining the therapeutic potential of targeting the FGF/FGFR/c-Myc axis in MM by using inhibitors targeting FGF ligands or FGF receptors. Importantly, the provided findings may represent the rationale for using FDA approved FGFR TK inhibitors (i.e. Pemigatinib, Futibatinib, Erdafitinib) for the treatment of MM patients presenting with an aberrant activation of this axis.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Sara Taranto
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Giorgia Gazzaroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jessica Faletti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Davide Capoferri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Marcheselli
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Margherita Sciumè
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Aldo M Roccaro
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy.
| |
Collapse
|
2
|
Hassan RM, Ali IH, El Kerdawy AM, Abo-Elfadl MT, Ghannam IAY. Novel benzenesulfonamides as dual VEGFR2/FGFR1 inhibitors targeting breast cancer: Design, synthesis, anticancer activity and in silico studies. Bioorg Chem 2024; 152:107728. [PMID: 39178704 DOI: 10.1016/j.bioorg.2024.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
In the current study, a new series of benzenesulfonamides 6a-r was designed and synthesized as dual VEGFR-2 and FGFR1 kinase inhibitors with anti-cancer activity. The 4-trifluoromethyl benzenesulfonamide 6l exhibited the highest dual VEGFR-2/FGFR1 inhibitory activity with IC50 values of 0.025 and 0.026 µM, respectively. It showed a higher activity than sorafenib and staurosporine by 1.8- and 1.3-fold, respectively. Furthermore, compound 6l was further tested on EGFR and PDGFR-β kinases showing IC50 values of 0.106 and 0.077 µM, respectively. The target compounds were tested for their anticancer activity against NCI-60 panel of cancer cell lines at 10 µM concentration, where compound 6l displayed the highest mean growth inhibition percent % (GI%) of 60.38%. Compounds 6a, 6b, 6e, 6f, 6h-l, and 6n-r revealed promising GI% on breast cancer cell lines (MCF-7, T-47D, and MDA-MB-231), and were subjected to IC50 determination on these cell lines. The tested compounds showed a higher activity on T-47D and MCF-7 cell lines over MDA-MB-231 cell line compared to the used reference standard; sorafenib. Compounds 6e, 6h-j, 6l and 6o revealed IC50 values ≤ 20 µM against T-47D cell line, furthermore, they were found to be non-cytotoxic on Vero normal cell line. Furthermore, the effect of the most active compounds 6i, and 6l in T-47D cells on cell cycle analysis progression, cell apoptosis, and apoptosis markers was investigated. Both compounds arrested cell cycle progression at G1 phase, furthermore, they enhanced early and late apoptosis, as well as necrosis. The capability of compounds 6i, and 6l to induce apoptosis was further confirmed by their ability to raise BAX/BCl-2 ratio and caspase-3 level in the treated cells. Cell migration assay revealed that both compounds 6i and 6l have anti-migratory effects compared to control T-47D cells after 24, and 48 h. Molecular docking studies for compounds 6a-r on VEGFR-2 and FGFR1 binding sites showed that they exhibit an analogous binding mode in both target kinases which agrees with that of type II kinase inhibitors.
Collapse
Affiliation(s)
- Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Islam H Ali
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ahmed M El Kerdawy
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo 12622, Egypt; Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
3
|
Wang J, Liu S, Cao Y, Chen Y. Overcoming treatment resistance in cholangiocarcinoma: current strategies, challenges, and prospects. Front Cell Dev Biol 2024; 12:1408852. [PMID: 39156971 PMCID: PMC11327014 DOI: 10.3389/fcell.2024.1408852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
Significant advancements in our understanding and clinical treatment of cholangiocarcinoma (CCA) have been achieved over the past 5 years. Groundbreaking studies have illuminated the immune landscape and pathological characteristics of the tumor microenvironment in CCA. The development of immune- and metabolism-based classification systems has enabled a nuanced exploration of the tumor microenvironment and the origins of CCA, facilitating a detailed understanding of tumor progression modulation. Despite these insights, targeted therapies have not yet yielded satisfactory clinical results, highlighting the urgent need for innovative therapeutic strategies. This review delineates the complexity and heterogeneity of CCA, examines the current landscape of therapeutic strategies and clinical trials, and delves into the resistance mechanisms underlying targeted therapies. Finally, from a single-cell and spatial transcriptomic perspective, we address the challenge of therapy resistance, discussing emerging mechanisms and potential strategies to overcome this barrier and enhance treatment efficacy.
Collapse
Affiliation(s)
- Jiayi Wang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Siyan Liu
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Yi Cao
- Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Yong Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Cheng F, Wang J, Wang R, Pan R, Cui Z, Wang L, Wang L, Yang X. FGF2 promotes the proliferation of injured granulosa cells in premature ovarian failure via Hippo-YAP signaling pathway. Mol Cell Endocrinol 2024; 589:112248. [PMID: 38663484 DOI: 10.1016/j.mce.2024.112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Young women undergoing anticancer treatment are at risk of premature ovarian failure (POF). Endometrial-derived stem cells (EnSCs) have demonstrated significant therapeutic potential for treating ovarian insufficiency, although the underlying mechanisms remain to be fully understood. This study aims to further investigate the therapeutic effects of EnSCs, particularly through the paracrine action of fibroblast growth factor 2 (FGF2), on POF. The findings show that exogenous FGF2 enhances the survival of ovarian granulosa cells damaged by cisplatin. FGF2 stimulates the proliferation of these damaged cells by suppressing the Hippo signaling pathway and activating YAP expression. In vivo experiments also revealed that FGF2 treatment significantly improves ovarian reserve and endocrine function in mice with POF. These results suggest that FGF2 can boost the proliferative capacity of damaged ovarian granulosa cells through the Hippo-YAP signaling pathway, providing a theoretical foundation for using EnSCs and FGF2 in clinical treatments for POF.
Collapse
Affiliation(s)
- Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jingyuan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Rumeng Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
5
|
Mehlhaff E, Miller D, Ebben JD, Dobrzhanskyi O, Uboha NV. Targeted Agents in Esophagogastric Cancer Beyond Human Epidermal Growth Factor Receptor-2. Hematol Oncol Clin North Am 2024; 38:659-675. [PMID: 38485551 DOI: 10.1016/j.hoc.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Gastroesophageal cancers are highly diverse tumors in terms of their anatomic and molecular characteristics, making drug development challenging. Recent advancements in understanding the molecular profiles of these cancers have led to the identification of several new biomarkers. Ongoing clinical trials are investigating new targeted agents with promising results. CLDN18.2 has emerged as a biomarker with established activity of associated targeted therapies. Other targeted agents, such as bemarituzumab and DKN-01, are under active investigation. As new agents are incorporated into the treatment continuum, the questions of biomarker overlap, tumor heterogeneity, and toxicity management will need to be addressed.
Collapse
Affiliation(s)
- Eric Mehlhaff
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Devon Miller
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Johnathan D Ebben
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA
| | - Oleksii Dobrzhanskyi
- Upper Gastrointestinal Tumors Department, National Cancer Institute, Kyiv, Ukraine
| | - Nataliya V Uboha
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792, USA; University of Wisconsin, Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
6
|
Pezzicoli G, Ciciriello F, Musci V, Minei S, Biasi A, Ragno A, Cafforio P, Rizzo M. Genomic Profiling and Molecular Characterisation of Metastatic Urothelial Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:585. [PMID: 38674231 PMCID: PMC11052409 DOI: 10.3390/medicina60040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The clinical management of metastatic urothelial carcinoma (mUC) is undergoing a major paradigm shift; the integration of immune checkpoint inhibitors (ICIs) and antibody-drug conjugates (ADCs) into the mUC therapeutic strategy has succeeded in improving platinum-based chemotherapy outcomes. Given the expanding therapeutic armamentarium, it is crucial to identify efficacy-predictive biomarkers that can guide an individual patient's therapeutic strategy. We reviewed the literature data on mUC genomic alterations of clinical interest, discussing their prognostic and predictive role. In particular, we explored the role of the fibroblast growth factor receptor (FGFR) family, epidermal growth factor receptor 2 (HER2), mechanistic target of rapamycin (mTOR) axis, DNA repair genes, and microsatellite instability. Currently, based on the available clinical data, FGFR inhibitors and HER2-directed ADCs are effective therapeutic options for later lines of biomarker-driven mUC. However, emerging genomic data highlight the opportunity for earlier use and/or combination with other drugs of both FGFR inhibitors and HER2-directed ADCs and also reveal additional potential drug targets that could change mUC management.
Collapse
Affiliation(s)
- Gaetano Pezzicoli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Federica Ciciriello
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Vittoria Musci
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Silvia Minei
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Antonello Biasi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Anna Ragno
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| | - Paola Cafforio
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (G.P.); (F.C.); (V.M.); (S.M.); (A.B.); (P.C.)
| | - Mimma Rizzo
- Medical Oncology Unit, Azienda Ospedaliera Universitaria Consorziale, Policlinico di Bari, 70124 Bari, Italy;
| |
Collapse
|
7
|
Hamza S, Abid A, Khanum A, Chohan TA, Saleem H, Maqbool Khan K, Khurshid U, Butt J, Anwar S, Alafnan A, Ansari SA, Qayyum A, Raza A, Chohan TA. 3D-QSAR, docking and molecular dynamics simulations of novel Pyrazolo-pyridazinone derivatives as covalent inhibitors of FGFR1: a scientific approach for possible anticancer agents. J Biomol Struct Dyn 2024; 42:2242-2256. [PMID: 37211823 DOI: 10.1080/07391102.2023.2212306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/10/2023] [Indexed: 05/23/2023]
Abstract
Developing highly potent covalent inhibitors of Fibroblast growth factor receptors 1 (FGFR1) has always been a challenging task. In the current study, various computational techniques, such as 3D-QSAR, covalent docking, fingerprinting analysis, MD simulation followed by MMGB/PBSA, and per-residue energy decomposition analysis were used to explore the binding mechanism of pyrazolo[3,4-d]pyridazinone derivatives to FGFR1. The high q2 and r2 values for the CoMFA and CoMSIA models, suggest that the constructed 3D-QSAR models could reliably predict the bioactivities of FGFR1 inhibitors. The structural requirements revealed by the model's contour maps were strategically used to computationally create an in-house library of more than 100 new FGFR1 inhibitors using the R-group exploration technique implemented in the SparkTM software. The compounds from the in-house library were also mapped in the 3D-QSAR model that predicts comparable pIC50 values with the experimental values. A comparison between 3D-QSAR generated contours and molecular docking conformation of ligands was performed to reveal the fundamentals to design potent FGFR1 covalent inhibitors. The estimated binding free energies (MMGB/PBSA) for the selected compounds were in agreement with the experimental value ranking of their binding affinities towards FGFR1. Furthermore, per-residue energy decomposition analysis has identified Arg627 and Glu531 to contribute significantly in improved binding affinity of compound W16. During ADME analysis, the majority of in-house library compounds exhibited pharmacokinetic properties superior to those of experimentally produced compounds. These new compounds may help researchers better understand FGFR1 inhibition and lead to the creation of novel, potent FGFR1 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shafaq Hamza
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Abira Abid
- Sharif Medical and Dental College, Lahore, Punjab
| | - Affia Khanum
- Women Medical Officer, DHQ Hospital Muzaffargarh, Punjab, Pakistan
| | - Talha Ali Chohan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Kashif Maqbool Khan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Juwairiya Butt
- School of Life Sciences, University of Westminster, London, UK
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aisha Qayyum
- Department of Pediatric Medicine, Fatima Memorial Hospital, Lahore, Pakistan
| | - Ali Raza
- College of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| |
Collapse
|
8
|
Zarei P, Ghasemi F. The Application of Artificial Intelligence and Drug Repositioning for the Identification of Fibroblast Growth Factor Receptor Inhibitors: A Review. Adv Biomed Res 2024; 13:9. [PMID: 38525398 PMCID: PMC10958741 DOI: 10.4103/abr.abr_170_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 03/26/2024] Open
Abstract
Artificial intelligence talks about modeling intelligent behavior through a computer with the least human involvement. Drug repositioning techniques based on artificial intelligence accelerate the research process and decrease the cost of experimental studies. Dysregulation of fibroblast growth factor (FGF) receptors as the tyrosine kinase family of receptors plays a vital role in a wide range of malignancies. Because of their functional significance, they were considered promising drug targets for the therapy of various cancers. This review has summarized small molecules capable of inhibiting FGF receptors that progressed using artificial intelligence and repositioning drugs examined in clinical trials associated with cancer therapy. This review is based on a literature search in PubMed, Web of Science, Scopus EMBASE, and Google Scholar databases to gather the necessary information in each chapter by employing keywords like artificial intelligence, computational drug design, drug repositioning, and FGF receptor inhibitors. To achieve this goal, a spacious literature review of human studies in these fields-published over the last 20 decades-was performed. According to published reports, nonselective FGF receptor inhibitors can be used for cancer management, and multitarget kinase inhibitors are the first drug class approved due to more advanced clinical studies. For example, AZD4547 and BGJ398 are gradually entering the consumption cycle and are good options as combined treatments. Artificial intelligence and drug repositioning methods can help preselect suitable drug targets more successfully for future inhibition of carcinogenicity.
Collapse
Affiliation(s)
- Parvin Zarei
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Ghasemi
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Lee YY, Ryu JY, Cho YJ, Choi JY, Choi JJ, Choi CH, Sa JK, Hwang JR, Lee JW. The anti-tumor effects of AZD4547 on ovarian cancer cells: differential responses based on c-Met and FGF19/FGFR4 expression. Cancer Cell Int 2024; 24:43. [PMID: 38273381 PMCID: PMC10811874 DOI: 10.1186/s12935-024-03235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The FGF/FGFR signaling pathway plays a critical role in human cancers. We analyzed the anti-tumor effect of AZD4547, an inhibitor targeting the FGF/FGFR pathway, in epithelial ovarian cancer (EOC) and strategies on overcoming AZD4547 resistance. METHODS The effect of AZD4547 on cell viability/migration was evaluated and in vivo experiments in intraperitoneal xenografts using EOC cells and a patient-derived xenograft (PDX) model were performed. The effect of the combination of AZD4547 with SU11274, a c-Met-specific inhibitor, FGF19-specific siRNA, or an FGFR4 inhibitor was evaluated by MTT assay. RESULTS AZD4547 significantly decreased cell survival and migration in drug-sensitive EOC cells but not drug-resistant cells. AZD4547 significantly decreased tumor weight in xenograft models of drug-sensitive A2780 and SKOV3ip1 cells and in a PDX with drug sensitivity but not in models with drug-resistant A2780-CP20 and SKOV3-TR cells. Furthermore, c-Met expression was high in SKOV3-TR and HeyA8-MDR cells, and co-administration of SU11274 and AZD4547 synergistically induced cell death. In addition, expressions of FGF19 and FGFR4 were high in A2780-CP20 cells. Combining AZD4547 with FGF19 siRNA or with a selective FGFR4 inhibitor led to significantly reduced cell proliferation in A2780-CP20 cells. CONCLUSIONS This study showed that AZD4547 has significant anti-cancer effects in drug-sensitive cells and PDX models but not in drug-resistant EOC cells. In drug-resistant cells, the expression level of c-Met or FGF19/FGFR4 may be a predictive biomarker for AZD4547 treatment response, and a combination strategy of drugs targeting c-Met or FGF19/FGFR4 together with AZD4547 may be an effective therapeutic strategy for EOC.
Collapse
Affiliation(s)
- Yoo-Young Lee
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Ji-Yoon Ryu
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Young-Jae Cho
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Jung-Joo Choi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Chel Hun Choi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Jason K Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jae Ryoung Hwang
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
| | - Jeong-Won Lee
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Chen X, Huang Y, Chen B, Liu H, Cai Y, Yang Y. Insight into the design of FGFR4 selective inhibitors in cancer therapy: Prospects and challenges. Eur J Med Chem 2024; 263:115947. [PMID: 37976704 DOI: 10.1016/j.ejmech.2023.115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Recently, FGFR4 has become a hot target for the treatment of cancer owing to its important role in cellular physiological processes. FGFR4 has been validated to be closely related to the occurrence of cancers, such as hepatocellular carcinoma, rhabdomyosarcoma, breast cancer and colorectal cancer. Hence, the development of FGFR4 small-molecule inhibitors is essential to further understanding the functions of FGFR4 in cancer and the treatment of FGFR4-dependent diseases. Given the particular structures of FGFR1-4, the development of FGFR4 selective inhibitors presents significant challenges. The non-conserved Cys552 in the hinge region of the FGFR4 complex becomes the key to the selectivity of FGFR4 and FGFR1/2/3 inhibitors. In this review, we systematically introduce the close relationship between FGFR4 and cancer, and conduct an in-depth analysis of the developing methodology, binding mechanism, kinase selectivity, pharmacokinetic characteristics of FGFR4 selectivity inhibitors, and their application in clinical research.
Collapse
Affiliation(s)
- Xiaolu Chen
- Department of Pharmacy, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434020, China
| | - Yajiao Huang
- Department of Pharmacy, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434020, China
| | - Ban Chen
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Huihui Liu
- Department of Pharmacy, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434020, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Yuanrong Yang
- Department of Pharmacy, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, 434020, China.
| |
Collapse
|
11
|
Zhang N, Li Y. Receptor tyrosine kinases: biological functions and anticancer targeted therapy. MedComm (Beijing) 2023; 4:e446. [PMID: 38077251 PMCID: PMC10701465 DOI: 10.1002/mco2.446] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) are a class of protein kinases that play crucial roles in various cellular processes, including cell migration, morphological differentiation, cell growth, and angiogenesis. In humans, 58 RTKs have been identified and categorized into 20 distinct families based on the composition of their extracellular regions. RTKs are primarily activated by specific ligands that bind to their extracellular region. They not only regulate tumor transformation, proliferation, metastasis, drug resistance, and angiogenesis, but also initiate and maintain the self-renewal and cloning ability of cancer stem cells. Accurate diagnosis and grading of tumors with dysregulated RTKs are essential in clinical practice. There is a growing body of evidence supporting the benefits of RTKs-targeted therapies for cancer patients, and researchers are actively exploring new targets and developing targeted agents. However, further optimization of RTK inhibitors is necessary to effectively target the diverse RTK alterations observed in human cancers. This review provides insights into the classification, structure, activation mechanisms, and expression of RTKs in tumors. It also highlights the research advances in RTKs targeted anticancer therapy and emphasizes their significance in optimizing cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Nan Zhang
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of MedicineChongqing UniversityChongqingChina
- Department of Medical OncologyChongqing University Cancer HospitalChongqingChina
| |
Collapse
|
12
|
Liu Y, Li DY, Bolatai A, Wu N. Progress in Research on Biomarkers of Gestational Diabetes Mellitus and Preeclampsia. Diabetes Metab Syndr Obes 2023; 16:3807-3815. [PMID: 38028997 PMCID: PMC10676725 DOI: 10.2147/dmso.s433179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Gestational diabetes mellitus (GDM) and preeclampsia (PE) are common complications in pregnancy, with incidence rates of 1-5% and 9.4%, respectively, in China. Both these phenomena can cause adverse pregnancy outcomes and are extremely harmful to the mother and fetus. In this study, we observed that several predictive factors have important value in GDM and PE. Among the GDM group, abnormal levels of adiponectin (APN), C-reactive protein (CRP), and Leptin were observed. The coexistence of PE and GDM in the pregnant population is not uncommon. Ultimately, we discovered abnormal levels of factors such as Visfatin, Advanced oxidative protein product (AOPP), Fibroblast growth factor 21 (FGF21), and resistin in both GDM and PE groups. Particularly, the FGF21 factor holds significant importance in our research. Therefore, we need to complete the analysis and discussion of relevant predictive factors to enable early prediction and disease monitoring of GDM, PE, and other pregnancy-related disorders, ultimately contributing to the long-term health of pregnant women.
Collapse
Affiliation(s)
- Yang Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’ s Republic of China
| | - Dan Yang Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’ s Republic of China
| | - Alayi Bolatai
- Department of Student Affairs, Affiliated Hospital of China Medical University, Shenyang, Liaoning, People’ s Republic of China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’ s Republic of China
- Medical Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’ s Republic of China
| |
Collapse
|
13
|
Yin M, Lu C, Zhou H, Liu Q, Yang J. Fibroblast Growth Factor 11 (FGF11) Promotes Progression and Cisplatin Resistance Through the HIF-1α/FGF11 Signaling Axis in Ovarian Clear Cell Carcinoma. Cancer Manag Res 2023; 15:753-763. [PMID: 37525667 PMCID: PMC10387280 DOI: 10.2147/cmar.s414703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Background A poor prognosis is often associated with ovarian clear cell carcinoma (OCCC) due to its relative resistance to platinum-based chemotherapy. Although several studies have been launched to explore the pathogenesis of OCCC, the mechanism of chemoresistance has yet to be uncovered. Methods Nanostring nCounter PanCancer Pathways Panel was performed to explore the expression profiles of OCCC tissues from patients showing different platinum sensitivity. Bioinformatic analysis was performed to select genes associated with chemoresistance and cell function assays, including colony formation, wound healing, transwell and flow cytometric analysis, were used to explore the role of the target gene in the progression of OCCC and resistance to cisplatin (DDP). Results Gene expression profiles and bioinformatic analysis verified that the expression of fibroblast growth factor 11 (FGF11) was significantly increased in platinum-resistant OCCC tissues and increased FGF11 expression was related to poorer survival. Downregulation of FGF11 inhibited the proliferation, migration, and invasion, reversing the DDP resistance of OCCC cells. Mechanically, FGF11 was regulated by hypoxia-inducible factor-1α (HIF-1α) to modulate the DDP sensitivity. Conclusion FGF11 was highly expressed in platinum-resistant OCCC tissues, promoting progression and resistance to DDP through the HIF-1α/FGF11 signaling axis.
Collapse
Affiliation(s)
- Min Yin
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chunli Lu
- Neurospine Center, China International Neuroscience Institute (CHINA-INI), Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, People’s Republic of China
| | - Huimei Zhou
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Qian Liu
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiaxin Yang
- National Clinical Research Center for Obstetric and Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Amadeo E, Rossari F, Vitiello F, Burgio V, Persano M, Cascinu S, Casadei-Gardini A, Rimini M. Past, present, and future of FGFR inhibitors in cholangiocarcinoma: from biological mechanisms to clinical applications. Expert Rev Clin Pharmacol 2023; 16:631-642. [PMID: 37387533 DOI: 10.1080/17512433.2023.2232302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Biliary tract carcinoma (BTC) is a heterogenous group of aggressive hepatic malignancies, second to hepatocellular carcinoma per prevalence. Despite clinical research advancement, the overall 5-year survival rate is just above 2%. With the identification of somatic core mutations in half of cholangiocarcinomas. In the intrahepatic subtype (iCCA), it is possible to target mutational pathways of pharmacological interest. AREAS COVERED Major attention has been drawn to fibroblast growth factor receptor (FGFR), especially the type 2 (FGFR2), found mutated in 10-15% of iCCAs. FGFR2 fusions became the target of novel tyrosine-kinase inhibitors investigated in clinical studies, showing promising results so as to gain regulatory approval by American and European committees in recent years. Such drugs demonstrated a better impact on the quality of life compared to standard chemotherapy; however, side effects including hyperphosphatemia, gastrointestinal, eye, and nail disorders are common although mostly manageable. EXPERT OPINION As FGFR inhibitors may soon become the new alternative to standard chemotherapy in FGFR-mutated cholangiocarcinoma, accurate molecular testing and monitoring of acquired resistance mechanisms will be essential. The possible application of FGFR inhibitors in first-line treatment, as well as in combination with current standard treatments, remains the next step to be taken.
Collapse
Affiliation(s)
- Elisabeth Amadeo
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Francesco Vitiello
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Valentina Burgio
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Stefano Cascinu
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
15
|
Yin M, Lu C, Zhou H, Liu Q, Yang J. Differential molecular pathway expression according to chemotherapeutic response in ovarian clear cell carcinoma. BMC Womens Health 2023; 23:298. [PMID: 37270486 DOI: 10.1186/s12905-023-02420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023] Open
Abstract
OBJECTIVE Ovarian clear cell carcinoma (OCCC) is a distinct entity from epithelial ovarian cancer. The prognosis of advanced and recurrent disease is very poor due to resistance to chemotherapeutic agents. Our aim was to explore the molecular alterations among OCCC patients with different chemotherapeutic responses and to obtain insights into potential biomarkers. METHODS Twenty-four OCCC patients were included in this study. The patients were divided into two groups based on the relapse time after the first-line platinum-based chemotherapy: the platinum-sensitive group (PS) and the platinum-resistant group (PR). Gene expression profiling was performed using NanoString nCounter PanCancer Pathways Panel. RESULTS Gene expression analysis comparing PR vs. PS identified 32 differentially expressed genes: 17 upregulated genes and 15 downregulated genes. Most of these genes are involved in the PI3K, MAPK and Cell Cycle-Apoptosis pathways. In particular, eight genes are involved in two or all three pathways. CONCLUSION The dysregulated genes in the PI3K, MAPK, and Cell Cycle-Apoptosis pathways identified and postulated mechanisms could help to probe biomarkers of OCCC platinum sensitivity, providing a research basis for further exploration of targeted therapy.
Collapse
Affiliation(s)
- Min Yin
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunli Lu
- Neurospine Center, Xuanwu Hospital, National Center for Neurological Disorders, China International Neuroscience Institute (CHINA-INI), Capital Medical University, Beijing, China
| | - Huimei Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qian Liu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
Pawluczuk E, Łukaszewicz-Zając M, Mroczko B. The Comprehensive Analysis of Specific Proteins as Novel Biomarkers Involved in the Diagnosis and Progression of Gastric Cancer. Int J Mol Sci 2023; 24:ijms24108833. [PMID: 37240178 DOI: 10.3390/ijms24108833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Gastric cancer (GC) cases are predicted to rise by 2040 to approximately 1.8 million cases, while GC-caused deaths to 1.3 million yearly worldwide. To change this prognosis, there is a need to improve the diagnosis of GC patients because this deadly malignancy is usually detected at an advanced stage. Therefore, new biomarkers of early GC are sorely needed. In the present paper, we summarized and referred to a number of original pieces of research concerning the clinical significance of specific proteins as potential biomarkers for GC in comparison to well-established tumor markers for this malignancy. It has been proved that selected chemokines and their specific receptors, vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR), specific proteins such as interleukin 6 (IL-6) and C-reactive protein (CRP), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), as well as DNA- and RNA-based biomarkers, and c-MET (tyrosine-protein kinase Met) play a role in the pathogenesis of GC. Based on the recent scientific literature, our review indicates that presented specific proteins are potential biomarkers in the diagnosis and progression of GC as well as might be used as prognostic factors of GC patients' survival.
Collapse
Affiliation(s)
- Elżbieta Pawluczuk
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Bialystok, Poland
| |
Collapse
|
17
|
Angerilli V, Fornaro L, Pepe F, Rossi SM, Perrone G, Malapelle U, Fassan M. FGFR2 testing in cholangiocarcinoma: translating molecular studies into clinical practice. Pathologica 2023; 115:71-82. [PMID: 37017301 PMCID: PMC10462997 DOI: 10.32074/1591-951x-859] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of neoplasms burdened by a dismal prognosis. Several studies have investigated the genomic profile of CCA and identified numerous druggable genetic alterations, including FGFR2 fusions/rearrangements. Approximately 5-7% of CCAs and 10-20% of intrahepatic iCCAs harbor FGFR2 fusions. With the recent advent of FGFR-targeting therapies into clinical practice, a standardization of molecular testing for FGFR2 alterations in CCA will be necessary. In this review, we describe the technical aspects and challenges related to FGFR2 testing in routine practice, focusing on the comparison between Next-Generation Sequencing (NGS) and FISH assays, the best timing to perform the test, and on the role of liquid biopsy.
Collapse
Affiliation(s)
- Valentina Angerilli
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua (PD), Italy
| | - Lorenzo Fornaro
- Medical Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa (PI), Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy
| | - Silvia Maria Rossi
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico di Roma, Roma, Italy
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Giuseppe Perrone
- Department of Medicine and Surgery, Research Unit of Anatomical Pathology, Università Campus Bio-Medico di Roma, Roma, Italy
- Anatomical Pathology Operative Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples (NA), Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua (PD), Italy
- Veneto Institute of Oncology, IOV - IRCCS, Padua (PD), Italy
| |
Collapse
|
18
|
Raza A, Chohan TA, Sarfraz M, Chohan TA, Imran Sajid M, Tiwari RK, Ansari SA, Alkahtani HM, Yasmeen Ansari S, Khurshid U, Saleem H. Molecular modeling of pyrrolo-pyrimidine based analogs as potential FGFR1 inhibitors: a scientific approach for therapeutic drugs. J Biomol Struct Dyn 2023; 41:14358-14371. [PMID: 36898855 DOI: 10.1080/07391102.2023.2187638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/10/2023] [Indexed: 03/12/2023]
Abstract
Fibroblast growth factor receptors 1 (FGFR1) is an emerging target for the development of anticancer drugs. Uncontrolled expression of FGFR1 is strongly associated with a number of different types of cancers. Apart from a few FGFR inhibitors, the FGFR family members have not been thoroughly studied to produce clinically effective anticancer drugs. The application of proper computational techniques may aid in understanding the mechanism of protein-ligand complex formation, which may provide a better notion for developing potent FGFR1 inhibitors. In this study, a variety of computational techniques, including 3D-QSAR, flexible docking and MD simulation followed by MMGB/PBSA, H-bonds and distance analysis, have been performed to systematically explore the binding mechanism of pyrrolo-pyrimidine derivatives against FGFR1. The 3D-QSAR model was generated to deduce the structural determinants of FGFR1 inhibition. The high q2 and r2 values for the CoMFA and CoMSIA models indicated that the created 3D-QSAR models could reliably predict the bioactivities of FGFR1 inhibitors. The computed binding free energies (MMGB/PBSA) for the selected compounds were consistent with the ranking of their experimental binding affinities against FGFR1. Furthermore, per-residue energy decomposition analysis revealed that the residues Lys514 in catalytic region, Asn568, Glu571 in solvent accessible portion and Asp641 in DFG motif exhibited a strong tendency to mediate ligand-protein interactions through the hydrogen bonding and Van Der Waals interactions. These findings may benefit researchers in gaining better knowledge of FGFR1 inhibition and may serve as a guideline for the development of novel and highly effective FGFR1 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Raza
- College of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Talha Ali Chohan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, USA
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shabana Yasmeen Ansari
- Pharmaceutical Unit, Department of Electronics, Chemistry and Industrial Engineering, University of Messina, Messina, Italy
| | - Umair Khurshid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Hammad Saleem
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| |
Collapse
|
19
|
Mei C, Gong W, Wang X, Lv Y, Zhang Y, Wu S, Zhu C. Anti-angiogenic therapy in ovarian cancer: Current understandings and prospects of precision medicine. Front Pharmacol 2023; 14:1147717. [PMID: 36959862 PMCID: PMC10027942 DOI: 10.3389/fphar.2023.1147717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Ovarian cancer (OC) remains the most fatal disease of gynecologic malignant tumors. Angiogenesis refers to the development of new vessels from pre-existing ones, which is responsible for supplying nutrients and removing metabolic waste. Although not yet completely understood, tumor vascularization is orchestrated by multiple secreted factors and signaling pathways. The most central proangiogenic signal, vascular endothelial growth factor (VEGF)/VEGFR signaling, is also the primary target of initial clinical anti-angiogenic effort. However, the efficiency of therapy has so far been modest due to the low response rate and rapidly emerging acquiring resistance. This review focused on the current understanding of the in-depth mechanisms of tumor angiogenesis, together with the newest reports of clinical trial outcomes and resistance mechanism of anti-angiogenic agents in OC. We also emphatically summarized and analyzed previously reported biomarkers and predictive models to describe the prospect of precision therapy of anti-angiogenic drugs in OC.
Collapse
Affiliation(s)
- Chao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijing Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Xu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongning Lv
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Chunqi Zhu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Pan L, Meng F, Wang W, Wang XH, Shen H, Bao P, Kang J, Kong D. Nintedanib in an elderly non-small-cell lung cancer patient with severe steroid-refractory checkpoint inhibitor-related pneumonitis: A case report and literature review. Front Immunol 2023; 13:1072612. [PMID: 36703957 PMCID: PMC9872202 DOI: 10.3389/fimmu.2022.1072612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Immune checkpoint inhibitors tremendously improve cancer prognosis; however, severe-grade immune-related adverse events may cause premature death. Current recommendations for checkpoint inhibitor-related pneumonitis (CIP) treatment are mainly about immunosuppressive therapy, and anti-fibrotic agents are also needed, especially for patients with poor response to corticosteroids and a longer pneumonitis course. This is because fibrotic changes play an important role in the pathological evolution of CIP. Here, we report a case demonstrating that nintedanib is a promising candidate drug for CIP management or prevention, as it has potent anti-fibrotic efficacy and a safety profile. Moreover, nintedanib could partially inhibit tumor growth in patients with non-small-cell lung cancer, and its efficacy can be improved in combination with other anti-tumor therapies.
Collapse
Affiliation(s)
- Lei Pan
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Fanqi Meng
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,The First Clinical College, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xu-hao Wang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,The First Clinical College, China Medical University, Shenyang, China
| | - Hui Shen
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Pengchen Bao
- The First Clinical College, China Medical University, Shenyang, China
| | - Jian Kang
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Delei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China,*Correspondence: Delei Kong,
| |
Collapse
|
21
|
Loilome W, Namwat N, Jusakul A, Techasen A, Klanrit P, Phetcharaburanin J, Wangwiwatsin A. The Hallmarks of Liver Fluke Related Cholangiocarcinoma: Insight into Drug Target Possibility. Recent Results Cancer Res 2023; 219:53-90. [PMID: 37660331 DOI: 10.1007/978-3-031-35166-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor of the biliary tree that is classified into three groups based on its anatomic location: intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA). Perihilar CCA is the most common type and accounts for 50-60% of CCA cases. It is followed by distal CCA and then intrahepatic CCA that account for 20-30% and 10-20% of cases, respectively. This chapter discusses the hallmarks of liver fluke related CCA and explores insights into drug target possibilities.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Nisana Namwat
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apinya Jusakul
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anchalee Techasen
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poramate Klanrit
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arporn Wangwiwatsin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
22
|
FGFR Inhibitors in Cholangiocarcinoma-A Novel Yet Primary Approach: Where Do We Stand Now and Where to Head Next in Targeting This Axis? Cells 2022; 11:cells11233929. [PMID: 36497187 PMCID: PMC9737583 DOI: 10.3390/cells11233929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinomas (CCAs) are rare but aggressive tumours with poor diagnosis and limited treatment options. Molecular targeted therapies became a promising proposal for patients after progression under first-line chemical treatment. In light of an escalating prevalence of CCA, it is crucial to fully comprehend its pathophysiology, aetiology, and possible targets in therapy. Such knowledge would play a pivotal role in searching for new therapeutic approaches concerning diseases' symptoms and their underlying causes. Growing evidence showed that fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) pathway dysregulation is involved in a variety of processes during embryonic development and homeostasis as well as tumorigenesis. CCA is known for its close correlation with the FGF/FGFR pathway and targeting this axis has been proposed in treatment guidelines. Bearing in mind the significance of molecular targeted therapies in different neoplasms, it seems most reasonable to move towards intensive research and testing on these in the case of CCA. However, there is still a need for more data covering this topic. Although positive results of many pre-clinical and clinical studies are discussed in this review, many difficulties lie ahead. Furthermore, this review presents up-to-date literature regarding the outcomes of the latest clinical data and discussion over future directions of FGFR-directed therapies in patients with CCA.
Collapse
|
23
|
Abstract
The FGF receptors (FGFRs) belong to a family of receptor tyrosine kinases. Abundant evidence shows that FGFRs are closely related to tumor cell invasion and angiogenesis. Hence, targeted modulation of FGFRs has become an effective strategy for cancer treatment. Recently, the development of small-molecule inhibitors targeting FGFRs has been extensively studied, and three inhibitors have been approved for marketing. Based on the clinical problems with the current inhibitors, there is a need to develop novel inhibitors and technologies to address the pitfalls. This review summarizes recent advances in small-molecule inhibitors targeting FGFRs, focusing on structure-activity relationships. Moreover, recent progress of novel technologies are summarized to provide a reference for promoting the application of drugs targeting FGFRs in tumor therapy.
Collapse
|
24
|
Tamburello M, Altieri B, Sbiera I, Sigala S, Berruti A, Fassnacht M, Sbiera S. FGF/FGFR signaling in adrenocortical development and tumorigenesis: novel potential therapeutic targets in adrenocortical carcinoma. Endocrine 2022; 77:411-418. [PMID: 35583844 PMCID: PMC9385797 DOI: 10.1007/s12020-022-03074-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/08/2022] [Indexed: 12/14/2022]
Abstract
FGF/FGFR signaling regulates embryogenesis, angiogenesis, tissue homeostasis and wound repair by modulating proliferation, differentiation, survival, migration and metabolism of target cells. Understandably, compelling evidence for deregulated FGF signaling in the development and progression of different types of tumors continue to emerge and FGFR inhibitors arise as potential targeted therapeutic agents, particularly in tumors harboring aberrant FGFR signaling. There is first evidence of a dual role of the FGF/FGFR system in both organogenesis and tumorigenesis, of which this review aims to provide an overview. FGF-1 and FGF-2 are expressed in the adrenal cortex and are the most powerful mitogens for adrenocortical cells. Physiologically, they are involved in development and maintenance of the adrenal gland and bind to a family of four tyrosine kinase receptors, among which FGFR1 and FGFR4 are the most strongly expressed in the adrenal cortex. The repeatedly proven overexpression of these two FGFRs also in adrenocortical cancer is thus likely a sign of their participation in proliferation and vascularization, though the exact downstream mechanisms are not yet elucidated. Thus, FGFRs potentially offer novel therapeutic targets also for adrenocortical carcinoma, a type of cancer resistant to conventional antimitotic agents.
Collapse
Affiliation(s)
- Mariangela Tamburello
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Barbara Altieri
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Iuliu Sbiera
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Martin Fassnacht
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
- Comprehenssive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Silviu Sbiera
- Division of Endocrinology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
25
|
Scott AJ, Sharman R, Shroff RT. Precision Medicine in Biliary Tract Cancer. J Clin Oncol 2022; 40:2716-2734. [PMID: 35839428 DOI: 10.1200/jco.21.02576] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Precision medicine has become a dominant theme in the treatment of biliary tract cancers (BTCs). Although prognosis remains poor, technologies for improved molecular characterization along with the US Food and Drug Administration approval of several targeted therapies have changed the therapeutic landscape of advanced BTC. The hallmark of BTC oncogenesis is chronic inflammation of the liver and biliary tract regardless of the anatomical subtype. Subtypes of BTC correspond to distinct molecular characteristics, making BTC a molecularly heterogenous collection of tumors. Collectively, up to 40% of BTCs harbor a potentially targetable molecular abnormality, and the National Comprehensive Cancer Network guidelines recommend molecular profiling for all patients with advanced BTC. Use of circulating tumor DNA, immunohistochemistry, and next-generation sequencing continues to expand the utility for biomarker-driven management and molecular monitoring of BTC. Improving outcomes using biomarker-agnostic treatment for nontargetable tumors also remains a priority, and combinational treatment strategies such as immune checkpoint inhibition plus chemotherapy hold promise for this subgroup of patients.
Collapse
Affiliation(s)
- Aaron J Scott
- Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ
| | - Reya Sharman
- Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ
| | - Rachna T Shroff
- Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ
| |
Collapse
|
26
|
Mahfuz AMUB, Khan MA, Biswas S, Afrose S, Mahmud S, Mohammed Bahadur N, Ahmed F. In search of novel inhibitors of anti-cancer drug target fibroblast growth factor receptors: Insights from virtual screening, molecular docking, and molecular dynamics. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
27
|
Targeting fibrosis, mechanisms and cilinical trials. Signal Transduct Target Ther 2022; 7:206. [PMID: 35773269 PMCID: PMC9247101 DOI: 10.1038/s41392-022-01070-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Fibrosis is characterized by the excessive extracellular matrix deposition due to dysregulated wound and connective tissue repair response. Multiple organs can develop fibrosis, including the liver, kidney, heart, and lung. Fibrosis such as liver cirrhosis, idiopathic pulmonary fibrosis, and cystic fibrosis caused substantial disease burden. Persistent abnormal activation of myofibroblasts mediated by various signals, such as transforming growth factor, platelet-derived growth factor, and fibroblast growh factor, has been recongized as a major event in the occurrence and progression of fibrosis. Although the mechanisms driving organ-specific fibrosis have not been fully elucidated, drugs targeting these identified aberrant signals have achieved potent anti-fibrotic efficacy in clinical trials. In this review, we briefly introduce the aetiology and epidemiology of several fibrosis diseases, including liver fibrosis, kidney fibrosis, cardiac fibrosis, and pulmonary fibrosis. Then, we summarise the abnormal cells (epithelial cells, endothelial cells, immune cells, and fibroblasts) and their interactions in fibrosis. In addition, we also focus on the aberrant signaling pathways and therapeutic targets that regulate myofibroblast activation, extracellular matrix cross-linking, metabolism, and inflammation in fibrosis. Finally, we discuss the anti-fibrotic drugs based on their targets and clinical trials. This review provides reference for further research on fibrosis mechanism, drug development, and clinical trials.
Collapse
|
28
|
Liu D, Liu H, Gan J, Zeng S, Zhong F, Zhang B, Zhang Z, Zhang S, Jiang L, Wang G, Chen Y, Kong FMS, Fang W, Wang L. LY2874455 and Abemaciclib Reverse FGF3/4/19/CCND1 Amplification Mediated Gefitinib Resistance in NSCLC. Front Pharmacol 2022; 13:918317. [PMID: 35814257 PMCID: PMC9260114 DOI: 10.3389/fphar.2022.918317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) patients who initially received tyrosine kinase inhibitor (TKI) therapy often acquired resistance via multiple complex mechanisms. The amplification of FGF3/4/19/CCND1 on chromosome 11q13 was found in many cancers with TKI resistance. However, the role of these amplifications in TKI-resistant NSCLC remains uncovered. Here, we generated the FGF3/4/19/CCND1 amplification model in the NSCLC cell lines PC-9 and HCC827. Upregulation of FGF3/4/19/CCND1 strongly promoted cell proliferation and gefitinib resistance in NSCLC cells. To find out the potential therapeutic strategies, we screened the combination of inhibitors against the FGF/FGFR signaling pathway and the CCND1/CDK4 complex and revealed that gefitinib combined with LY2874455 and abemaciclib exhibited the most effective inhibition of resistance in vitro and in vivo. Mechanistically, FGFs/CCND1 activated the MAPK pathway, which was abolished by the combination drugs. Our study provides a rationale for clinical testing of dual targeting FGFR and CCND1 with LY2874455 and abemaciclib in NSCLC patients who harbored FGF3/4/19/CCND1 amplification.
Collapse
Affiliation(s)
- Dongcheng Liu
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
- Shenzhen Aier Eye Hospital Affiliated to Jinan University, Shenzhen, China
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Hongguang Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Jiadi Gan
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shinuan Zeng
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Fuhua Zhong
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Bin Zhang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Zhe Zhang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Siyu Zhang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Lu Jiang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Guangsuo Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Southern University of Sciences and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Yixin Chen
- Department of Oncology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Feng-Ming Spring Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Wenfeng Fang, ; Lingwei Wang,
| | - Lingwei Wang
- Department of Respiratory and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
- *Correspondence: Wenfeng Fang, ; Lingwei Wang,
| |
Collapse
|
29
|
Fibroblast Growth Factor 3 Is Associated with Tongue Squamous Cell Carcinoma: A Controlled Study. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3331119. [PMID: 35720042 PMCID: PMC9200572 DOI: 10.1155/2022/3331119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 12/16/2022]
Abstract
Objective To explore the effects of fibroblast growth factor 3 (FGF3) on the proliferation, cell cycle, and apoptosis of the tongue squamous cell carcinoma SCC-9 cell line (SCC-9). Methods We measured the proliferation of SCC-9 cells in a control group, an FGF3 intervention group, and a fibroblast growth factor (FGFR) inhibitor intervention group in cholecystokinin octapeptide (CCK-8) experiments. We studied effects of FGF3 on the cell cycle and apoptosis of tongue cancer cells using flow cytometry. We further explored the IRS1/PI3K/AKT signaling pathway by measuring BCL-2 and Bcl-2 Associated X-protein (BAX) mRNA and protein levels with RT-PCR and western blot, respectively. Results Results from the CCK-8 experiment showed that survival rates of cells in the control group, FGF3 intervention group, and FGFR inhibitor intervention group were 100.000% ± 4.026%, 136.330% ± 9.779%, and 83.199% ± 4.954%, respectively; survival rates of SCC-9 cells in all three groups were statistically significant (P < 0.05). Compared with that in the control group, the ratio of cells in G0/G1 phase in the FGFR inhibitor intervention group was higher (P < 0.05) and that in G2/M phase was lower, while the FGF3 intervention group showed opposite results (P < 0.05). The apoptosis rate of tongue cancer cells differed significantly between the FGFR inhibitor intervention and the control groups (P < 0.05). The mRNA and protein expression levels of IRS1, PI3K, and BCL-2 were all increased in the FGF3 intervention group (P < 0.05), while BAX mRNA and protein expression levels were decreased (P < 0.05). The mRNA expression levels of protein kinase B (AKT) showed no differences between groups. The p-AKT protein was overexpressed, while the total amount of AKT protein remained stable (P < 0.05). Conclusion FGF3 contributes to the proliferation of SCC-9 cells by increasing the proportion of cells in G2/M phase. Therefore, appropriately timed inhibition of FGF3 can potentially promote tumor apoptosis through the IRS1/PI3K/AKT signaling pathway. Our results demonstrate the role of FGF3 in the tumor microenvironment in tongue squamous cell carcinoma SCC-9 cells and suggest new therapeutic targets.
Collapse
|
30
|
Du X, McManus DP, Fogarty CE, Jones MK, You H. Schistosoma mansoni Fibroblast Growth Factor Receptor A Orchestrates Multiple Functions in Schistosome Biology and in the Host-Parasite Interplay. Front Immunol 2022; 13:868077. [PMID: 35812433 PMCID: PMC9257043 DOI: 10.3389/fimmu.2022.868077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Stem cells play significant roles in driving the complex life cycle of Schistosoma mansoni. Fibroblast growth factor (FGF) receptor A (SmFGFRA) is essential for maintaining the integrity of schistosome stem cells. Using immunolocalization, we demonstrated that SmFGFRA was distributed abundantly in germinal/stem cells of different S. mansoni life stages including eggs, miracidia, cercariae, schistosomula and adult worms. Indeed, SmFGFRA was also localized amply in embryonic cells and in the perinuclear region of immature eggs; von Lichtenberg's layer and the neural mass of mature eggs; the ciliated surface and neural mass of miracidia; the tegument cytosol of cercariae, schistosomula and adult worms; and was present in abundance in the testis and vitellaria of adult worms of S. mansoni. The distribution pattern of SmFGFRA illustrates the importance of this molecule in maintaining stem cells, development of the nervous and reproductive system of schistosomes, and in the host-parasite interplay. We showed SmFGFRA can bind human FGFs, activating the mitogen activated protein kinase (MAPK) pathway of adult worms in vitro. Inhibition of FGF signaling by the specific tyrosine kinase inhibitor BIBF 1120 significantly reduced egg hatching ability and affected the behavior of miracidia hatched from the treated eggs, emphasizing the importance of FGF signaling in driving the life cycle of S. mansoni. Our findings provide increased understanding of the complex schistosome life cycle and host-parasite interactions, indicating components of the FGF signaling pathway may represent promising targets for developing new interventions against schistosomiasis.
Collapse
Affiliation(s)
- Xiaofeng Du
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Donald P. McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Conor E. Fogarty
- Genecology Research Centre, University of the Sunshine Coast, Brisbane, QLD, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
31
|
Antiangiogenic Strategies in Epithelial Ovarian Cancer: Mechanism, Resistance, and Combination Therapy. JOURNAL OF ONCOLOGY 2022; 2022:4880355. [PMID: 35466318 PMCID: PMC9019437 DOI: 10.1155/2022/4880355] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Angiogenesis is one of the hallmarks of cancer and plays a crucial role in carcinogenesis and progression of epithelial ovarian cancer. Antiangiogenic agent is the first approved targeted agent in ovarian cancer. Anti-angiogenic agents mainly include agents target VEGF/VEGFR pathway, such as bevacizumab and agents target receptor tyrosine kinase, and non-VEGF/VEGFR targets of angiogenesis. Antiangiogenic agents demonstrate certain effects in ovarian cancer treatment either as monotherapy or combined with chemotherapy. Unfortunately, antiangiogenic agents, such as bevacizumab, integrated into the ovarian cancer treatment paradigm do not increase cures. Thus, the benefits of anti-angiogenic agents must be carefully weighed against the cost and associated toxicities. Antiangiogenic agents drug resistance and short of predictive biomarkers are main obstacles in ovarian cancer treatment. A combination of poly (ADP-ribose) polymerase inhibitors or immune checkpoint inhibitors might be great strategies to overcome resistance as well as enhance anti-tumor activity of anti-angiogenic drugs. Predictive biomarkers of antiangiogenic agents are in urgent need.
Collapse
|
32
|
Exploring the FGF/FGFR System in Ocular Tumors: New Insights and Perspectives. Int J Mol Sci 2022; 23:ijms23073835. [PMID: 35409195 PMCID: PMC8998873 DOI: 10.3390/ijms23073835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Ocular tumors are a family of rare neoplasms that develop in the eye. Depending on the type of cancer, they mainly originate from cells localized within the retina, the uvea, or the vitreous. Even though current treatments (e.g., radiotherapy, transpupillary thermotherapy, cryotherapy, chemotherapy, local resection, or enucleation) achieve the control of the local tumor in the majority of treated cases, a significant percentage of patients develop metastatic disease. In recent years, new targeting therapies and immuno-therapeutic approaches have been evaluated. Nevertheless, the search for novel targets and players is eagerly required to prevent and control tumor growth and metastasis dissemination. The fibroblast growth factor (FGF)/FGF receptor (FGFR) system consists of a family of proteins involved in a variety of physiological and pathological processes, including cancer. Indeed, tumor and stroma activation of the FGF/FGFR system plays a relevant role in tumor growth, invasion, and resistance, as well as in angiogenesis and dissemination. To date, scattered pieces of literature report that FGFs and FGFRs are expressed by a significant subset of primary eye cancers, where they play relevant and pleiotropic roles. In this review, we provide an up-to-date description of the relevant roles played by the FGF/FGFR system in ocular tumors and speculate on its possible prognostic and therapeutic exploitation.
Collapse
|
33
|
Tang LWT, Wei W, Verma RK, Koh SK, Zhou L, Fan H, Chan ECY. Direct and Sequential Bioactivation of Pemigatinib to Reactive Iminium Ion Intermediates Culminate in Mechanism-Based Inactivation of Cytochrome P450 3A. Drug Metab Dispos 2022; 50:529-540. [DOI: 10.1124/dmd.121.000804] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022] Open
|
34
|
Chiodelli P, Coltrini D, Turati M, Cerasuolo M, Maccarinelli F, Rezzola S, Grillo E, Giacomini A, Taranto S, Mussi S, Ligresti A, Presta M, Ronca R. FGFR blockade by pemigatinib treats naïve and castration resistant prostate cancer. Cancer Lett 2022; 526:217-224. [PMID: 34861311 DOI: 10.1016/j.canlet.2021.11.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/28/2021] [Indexed: 11/02/2022]
Abstract
Prostate cancer (PCa) is a leading cause of cancer mortality in the male population commonly treated with androgen deprivation therapy (ADT) and relapsing as aggressive and androgen-independent castration-resistant prostate cancer (CRPC). In PCa the FGF/FGFR family of growth factors and receptors represents a relevant mediator of cancer growth, tumor-stroma interaction, and a driver of resistance and relapse to ADT. In the present work, we validate the therapeutic efficacy the FDA-approved FGFR inhibitor pemigatinib, in an integrated platform consisting of human and murine PCa cells, and the transgenic multistage TRAMP model of PCa that recapitulates both androgen-dependent and CRPC settings. Our results show for the first time that pemigatinib causes intracellular stress and cell death in PCa cells and prevents tumor growth in vivo and in the multistage model. In addition, the combination of pemigatinib with enzalutamide resulted in long-lasting tumor inhibition and prevention of CRPC relapse in TRAMP mice. These data are confirmed by the implementation of a stochastic mathematical model and in silico simulation. Pemigatinib represents a promising FDA-approved FGFR inhibitor for the treatment of PCa and CRPC alone and in combination with enzalutamide.
Collapse
Affiliation(s)
- Paola Chiodelli
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Daniela Coltrini
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Marta Turati
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Marianna Cerasuolo
- University of Portsmouth, School of Mathematics and Physics, Hampshire, PO1 3HF, UK
| | - Federica Maccarinelli
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Sara Rezzola
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Elisabetta Grillo
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Arianna Giacomini
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Sara Taranto
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Silvia Mussi
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Marco Presta
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy
| | - Roberto Ronca
- University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy.
| |
Collapse
|
35
|
Che P, Jiang S, Zhang W, Zhu H, Hu D, Wang D. A comprehensive gene expression profile analysis of prostate cancer cells resistant to paclitaxel and the potent target to reverse resistance. Hum Exp Toxicol 2022; 41:9603271221129854. [PMID: 36165000 DOI: 10.1177/09603271221129854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Paclitaxel resistance is the major clinical obstacle in the chemotherapy of prostate cancer (PCa), but the resistant mechanism is less investigated.Purpose: To establish two paclitaxel-resistant PCa cells, provide a comprehensive gene expression profile analysis of resistant cells and the potential target to reverse resistance.Methods: Two Paclitaxel-resistant PCa cells (PC3/PR, LNcap/PR) were established by gradually increasing drug concentration. MTT and transwell assays were performed to detect drug sensitivity, cell proliferation and migration abilities. RNA-Sequencing (RNA-seq) and bioinformatic analyses were performed to identify abnormally expressed genes (AEGs) in resistant cells, and annotate the biological functions of AEGs. The role of the candidate AEG, TLR-4, on the resistant phenotypes was further investigated.Results: The resistance index of resistant cells was 2-3, and they showed a slower proliferation and increased migration ability. 4741 AEGs were screened out (Log2fold change absolute: log2FC(abs) > 1) in the resistant cells, and they were enriched in 2'-5'-oligoadenylate synthetase activity and chemical carcinogenesis. A number of AEGs, CCND2, IGFBP3, FOS, SHH, ZEB2, and members of FGF, FGFR and WNT families were also identified to be involved in cancer- and resistant phenotype-related processes. Finally, TLR-4 was validated significantly increased in resistant cells, and knockdown of TLR-4 increased drug-sensitivity, inhibited the proliferation and migration abilities.Conclusions: The study provided a comprehensive gene expression profile of paclitaxel-resistant PCa cells, and TLR-4 could be a potential target to reverse paclitaxel resistance.
Collapse
Affiliation(s)
- Ping Che
- Department of Urology, 117972The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Pediatric Surgery, Maternity and Child Health Hospital of Chongqing Hechuan, Chongqing, China
| | - Shihao Jiang
- Department of Urology, 117972The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyang Zhang
- Department of Urology, 117972The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huixuan Zhu
- Department of Urology, 117972The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daorong Hu
- Department of Urology, 573428People's Hospital of Chongqing Hechuan, Chongqing, China
| | - Delin Wang
- Department of Urology, 117972The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Du XZ, Wen B, Liu L, Wei YT, Zhao K. Role of immune escape in different digestive tumours. World J Clin Cases 2021; 9:10438-10450. [PMID: 35004976 PMCID: PMC8686128 DOI: 10.12998/wjcc.v9.i34.10438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/15/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
A counterbalance between immune cells and tumour cells is key to fighting tumours, and immune escape is an important mechanism for the survival of tumour cells in the body. Tumor cells and their cytokines impair the activity of T cells, NK cells, macrophages and other immune cells through various ways, and change the expression of their own surface antigens so as to avoid the clearance of the immune system. Changes in major histocompatibility complex molecules, high expression of programmed death-ligand 1, and the presence of immunosuppressive cells in the tumor microenvironment (TME) are main means by which tumors impair the function of immune cells. During the development of tumours of the digestive system, different mechanisms acting on tumour cells, the TME, and immune cells lead to immune escape and promote tumour progression. In this paper, the mechanisms of immune escape in tumour cells of the digestive system are reviewed to provide a theoretical basis for the immunotherapy of gastrointestinal tumours.
Collapse
Affiliation(s)
- Xin-Zhu Du
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Bin Wen
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Lin Liu
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Ying-Ting Wei
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Kui Zhao
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
37
|
Yi L, Lan G, Ju Y, Yin X, Zhang P, Xu Y, Weng T. Blockade of Fgfr1 with PD166866 Protects Cartilage from the Catabolic Effects Induced by Interleukin-1β: A Genome-Wide Expression Profiles Analysis. Cartilage 2021; 13:1122S-1133S. [PMID: 33111549 PMCID: PMC8804727 DOI: 10.1177/1947603520968208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Previously we showed that genetic deletion of Fgfr1 in chondrocytes protected mice from progression of osteoarthritis (OA). The aim of this study is to evaluate the effect of PD166866, a potent selective inhibitor of Fgfr1, on cartilage degeneration induced by interleukin-1β (IL-1β) and to clarify underlying global gene expression pattern. DESIGN Cartilage explants and primary rat chondrocytes were stimulated with IL-1β to establish an inflammatory OA in vitro model. The effects of PD166866 were determined by measuring the release of glycosaminoglycans (GAG) in cartilage explants and primary rat chondrocytes, and the underlying molecular mechanism was analyzed by microarray and RT-PCR analysis in primary chondrocytes. RESULTS In cartilage explants, PD166866 significantly counteracts IL-β stimulated GAG release. In addition, PD166866 impede IL-1β-stimulated nuclear translocation of p65 in rat chondrocytes. Based on microarray analysis, a total of 67 and 132 genes with more than 1.5-fold changes were identified in IL-1β-treated versus control and PD166866 cotreatment versus IL-1β treatment alone, respectively. Only 19 thereof were coregulated by IL-1β and PD166866 simultaneously. GO and KEGG pathway analysis showed that some pathways, including "cytokine-cytokine receptor interaction," "chemokine signaling pathway," and "complement and coagulation cascades," as well as some key genes like chemokines, complement, and matrix metalloproteinases may relevant for therapeutic application of Fgfr1 blockade in IL-1β-stimulated chondrocytes. CONCLUSION Our results clearly demonstrated that blockade of Fgfr1 with PD166866 could effectively suppress the catabolic effects induced by IL-1β, and elucidated whole genomic targets of Fgfr1 inhibition responsible for the therapeutic effects of Fgfr1 blockade against inflammatory OA.
Collapse
Affiliation(s)
- Lingxian Yi
- Department of Orthopaedics, the Fourth
Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of
China
- Critical Care Medicine Department, PLA
Strategic Support Force Characteristic Medical Center, Beijing, People’s Republic of
China
| | - Guihua Lan
- Department of Orthopaedics, the Fourth
Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of
China
- Dazhou Integrated TCM & Western
Medicine Hospital, Dazhou City, Sichuan Province, People’s Republic of China
| | - Yue Ju
- Department of Orthopaedics, the Fourth
Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of
China
- Applied Biology Laboratory, Shenyang
University of Chemical Technology, Shenyang, People’s Republic of China
| | - Xiushan Yin
- Applied Biology Laboratory, Shenyang
University of Chemical Technology, Shenyang, People’s Republic of China
| | - Peipei Zhang
- School of Mechanical Engineering and
Automation, Beihang University, Beijing, People’s Republic of China
| | - Ye Xu
- School of Mechanical Engineering and
Automation, Beihang University, Beijing, People’s Republic of China
| | - Tujun Weng
- Department of Orthopaedics, the Fourth
Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of
China
| |
Collapse
|
38
|
Synthetic Heterocyclic Derivatives as Kinase Inhibitors Tested for the Treatment of Neuroblastoma. Molecules 2021; 26:molecules26237069. [PMID: 34885651 PMCID: PMC8658969 DOI: 10.3390/molecules26237069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the last few years, small molecules endowed with different heterocyclic scaffolds have been developed as kinase inhibitors. Some of them are being tested at preclinical or clinical levels for the potential treatment of neuroblastoma (NB). This disease is the most common extracranial solid tumor in childhood and is responsible for 10% to 15% of pediatric cancer deaths. Despite the availability of some treatments, including the use of very toxic cytotoxic chemotherapeutic agents, high-risk (HR)-NB patients still have a poor prognosis and a survival rate below 50%. For these reasons, new pharmacological options are urgently needed. This review focuses on synthetic heterocyclic compounds published in the last five years, which showed at least some activity on this severe disease and act as kinase inhibitors. The specific mechanism of action, selectivity, and biological activity of these drug candidates are described, when established. Moreover, the most remarkable clinical trials are reported. Importantly, kinase inhibitors approved for other diseases have shown to be active and endowed with lower toxicity compared to conventional cytotoxic agents. The data collected in this article can be particularly useful for the researchers working in this area.
Collapse
|
39
|
Yu J, Mahipal A, Kim R. Targeted Therapy for Advanced or Metastatic Cholangiocarcinoma: Focus on the Clinical Potential of Infigratinib. Onco Targets Ther 2021; 14:5145-5160. [PMID: 34720591 PMCID: PMC8550543 DOI: 10.2147/ott.s272208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022] Open
Abstract
Cholangiocarcinoma is one of the most aggressive cancers, with a 5-year survival rate of 11-44% after surgical resection. However, there is no established systemic therapy after failure of the gemcitabine plus cisplatin first-line therapy with exception of FOLFOX. Fibroblast growth factor receptor (FGFR) genomic aberrations have been detected in cholangiocarcinoma, and targeting these genomic aberrations with FGFR inhibitors has shown remarkable clinical benefits in advanced cholangiocarcinoma. In this article, we provide up-to-date information on the clinical development of selective FGFR inhibitors in advanced cholangiocarcinoma, focusing on infigratinib. In a Phase 1 trial, infigratinib showed a safe profile. In a following Phase 2 trial, infigratinib showed remarkable efficacy in advanced cholangiocarcinoma with FGFR2 fusions or rearrangements, and the Food and Drug Administration (FDA) approved infigratinib for cholangiocarcinoma in May 2021 largely based on tumor response and duration of response. Currently infigratinib is on a Phase 3 trial (PROOF301) as a first-line setting compared to the GEMCIS therapy in advanced cholangiocarcinoma. Given that the FGFR genomic aberrations including FGFR2 fusions are rarely accompanied with other targetable mutations, infigratinib and other FGFR inhibitors are continuously expected to be the novel targeted agents in cholangiocarcinoma harboring these aberrations. Acquired resistance to infigratinib was reported in several recent studies which could potentially be a barrier to overcome. Active clinical trials including PROOF301 are expected to elucidate the clinical benefits of infigratinib in this disease. Infigratinib combined with immunotherapy is also a potential future direction of investigation in cholangiocarcinoma.
Collapse
Affiliation(s)
- James Yu
- Department of Internal Medicine, Adventhealth Orlando, Orlando, FL, USA
| | - Amit Mahipal
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Richard Kim
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
40
|
DW14383 is an irreversible pan-FGFR inhibitor that suppresses FGFR-dependent tumor growth in vitro and in vivo. Acta Pharmacol Sin 2021; 42:1498-1506. [PMID: 33288861 PMCID: PMC8379184 DOI: 10.1038/s41401-020-00567-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
Fibroblast growth factor receptor (FGFR) is a promising anticancer target. Currently, most FGFR inhibitors lack sufficient selectivity and have nonnegligible activity against kinase insert domain receptor (KDR), limiting their feasibility due to the serious side effects. Notably, compensatory activation occurs among FGFR1-4, suggesting the urgent need to develop selective pan-FGFR1-4 inhibitors. Here, we explored the antitumor activity of DW14383, a novel irreversible FGFR1-4 inhibitor. DW14383 exhibited equivalently high potent inhibition against FGFR1, 2, 3 and 4, with IC50 values of less than 0.3, 1.1, less than 0.3, and 0.5 nmol/L, respectively. It is a selective FGFR inhibitor, exhibiting more than 1100-fold selectivity for FGFR1 over recombinant KDR, making it one of the most selective FGFR inhibitors over KDR described to date. Furthermore, DW14383 significantly inhibited cellular FGFR1-4 signaling, inducing G1/S cell cycle arrest, which in turn antagonized FGFR-dependent tumor cell proliferation. In contrast, DW14383 had no obvious antiproliferative effect against cancer cell lines without FGFR aberration, further confirming its selectivity against FGFR. In representative FGFR-dependent xenograft models, DW14383 oral administration substantially suppressed tumor growth by simultaneously inhibiting tumor proliferation and angiogenesis via inhibiting FGFR signaling. In summary, DW14383 is a promising selective irreversible pan-FGFR inhibitor with pan-tumor spectrum potential in FGFR1-4 aberrant cancers, which has the potential to overcome compensatory activation among FGFR1-4.
Collapse
|
41
|
Rao GN, Rosaian AS, Jawahar G, Raj PHN, Rachel JB, Emmanuel PB. Fibroblastic Growth Factor as a Diagnostic and Prognostic Marker in Odontogenic Cysts and Tumors: A Systematic Review. J Pharm Bioallied Sci 2021; 13:S6-S10. [PMID: 34447033 PMCID: PMC8375897 DOI: 10.4103/jpbs.jpbs_563_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/02/2022] Open
Abstract
Cellular signaling proteins maintain the basic activities of cell and communication, between the cells for normal growth and development and pathological situation as well. Fibroblast growth factor (FGF) and fibroblast growth factor receptors (FGFRs) have a comparatively huge part to play in the cellular communication processes. Human FGF has 22 members, 18 ligands, and 4 tyrosine kinase receptors for binding and is expressed in a wide range of cells. Any alteration in these factors would disrupt their normal function, leading to various abnormalities. The aim of this systematic analysis, is to understand the FGFs, the physiological and pathological role of FGF in oral diseases, and to predict the use of FGF in the predilection toward odontogenic cyst and tumors. This review helps confer the role of FGF in various physiological and pathological aspects in systemic diseases and analyzes its role in diagnosis and prognosis of odontogenic cysts and tumors.
Collapse
Affiliation(s)
- Gururaj Narayana Rao
- Department of Oral and Maxillofacial Pathology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Adlin Saroja Rosaian
- Department of Oral and Maxillofacial Pathology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Gowthami Jawahar
- Department of Oral and Maxillofacial Pathology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - P Hari Nivas Raj
- Department of Oral and Maxillofacial Pathology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - J Beryl Rachel
- Department of Oral and Maxillofacial Pathology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | | |
Collapse
|
42
|
Trivedi N, Kumar D. Fibroblast growth factor and kidney disease: Updates for emerging novel therapeutics. J Cell Physiol 2021; 236:7909-7925. [PMID: 34196395 DOI: 10.1002/jcp.30497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023]
Abstract
The discovery of fibroblast growth factors (FGFs) and fibroblast growth factor receptors (FGFRs) provided a profound new insight into physiological and metabolic functions. FGF has a large family by having divergent structural elements and enable functional divergence and specification. FGF and FGFRs are highly expressed during kidney development. Signals from the ureteric bud regulate morphogenesis, nephrogenesis, and nephron progenitor survival. Thus, FGF signaling plays an important role in kidney progenitor cell aggregation at the sites of new nephron formation. This review will summarize the current knowledge about functions of FGF signaling in kidney development and their ability to promote regeneration in injured kidneys and its use as a biomarker and therapeutic target in kidney diseases. Further studies are essential to determine the predictive significance of the various FGF/FGFR deviations and to integrate them into clinical algorithms.
Collapse
Affiliation(s)
- Neerja Trivedi
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Devendra Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
43
|
Su X, Liu Z, Yue L, Wu X, Wei W, Que H, Ye T, Luo Y, Zhang Y. Design, synthesis and biological evaluation of 1 H-pyrrolo[2,3- b]pyridine derivatives as potent fibroblast growth factor receptor inhibitors. RSC Adv 2021; 11:20651-20661. [PMID: 35479379 PMCID: PMC9033946 DOI: 10.1039/d1ra02660g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Abnormal activation of FGFR signaling pathway plays an essential role in various types of tumors. Therefore, targeting FGFRs represents an attractive strategy for cancer therapy. Herein, we report a series of 1H-pyrrolo[2,3-b]pyridine derivatives with potent activities against FGFR1, 2, and 3. Among them, compound 4h exhibited potent FGFR inhibitory activity (FGFR1–4 IC50 values of 7, 9, 25 and 712 nM, respectively). In vitro, 4h inhibited breast cancer 4T1 cell proliferation and induced its apoptosis. In addition, 4h also significantly inhibited the migration and invasion of 4T1 cells. Furthermore, 4h with low molecular weight would be an appealing lead compound which was beneficial to the subsequent optimization. In general, this research has been developing a class of 1H-pyrrolo[2,3-b]pyridine derivatives targeting FGFR with development prospects. Discovery of a new class of 1H- pyrrorole [2,3-b]pyridine FGFR inhibitors with high ligand efficiency.![]()
Collapse
Affiliation(s)
- Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Zhihao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Xiuli Wu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Wei Wei
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Hanyun Que
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| | - Yi Luo
- Department of Orthopedics, West China Hospital of Sichuan University Wai Nan Guo Xue Xiang 37# 610041 Chengdu Sichuan China
| | - Yiwen Zhang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu Sichuan 610041 China
| |
Collapse
|
44
|
Holzhauser S, Wild N, Zupancic M, Ursu RG, Bersani C, Näsman A, Kostopoulou ON, Dalianis T. Targeted Therapy With PI3K and FGFR Inhibitors on Human Papillomavirus Positive and Negative Tonsillar and Base of Tongue Cancer Lines With and Without Corresponding Mutations. Front Oncol 2021; 11:640490. [PMID: 34046344 PMCID: PMC8144504 DOI: 10.3389/fonc.2021.640490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives Human papillomavirus positive (HPV+) tonsillar and base of tongue squamous cell carcinoma (TSCC/BOTSCC), the major subsites of oropharyngeal squamous cell carcinoma (OPSCC) have favorable outcome, but upon relapse, outcome is poor and new therapies needed. Since, phosphatidyl-inositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) and fibroblast-growth-factor-receptor-3 (FGFR3) mutations often occur in such tumors, here, we tested targeted therapy directed to such genes in TSCC/BOTSCC cell lines. We also combined the two types of inhibitors with each other, and cisplatin or docetaxel that are used clinically. Methods The HPV+ CU-OP-2, -3, -20, UPCI-SCC-154, and HPV- CU-OP-17 and UT-SCC-60A cell lines were first tested for common PIK3CA/FGFR3 mutations by competitive-allele-specific TaqMan-PCR. They were then treated with the food and drug administration (FDA) approved drugs, alpelisib (BYL719) and erdafitinib (JNJ-42756493) alone and in combination with cisplatin or docetaxel. Viability, proliferation, apoptosis and cytotoxicity responses were thereafter followed by WST-1 assays and the IncuCyte S3 Live® Cell Analysis System. Results HPV+ CU-OP-2 had a pS249C-FGFR3, and like CU-OP-20, a pE545K-PIK3CA mutation, while no other lines had such mutations. Irrespectively, dose dependent responses to all PI3K/FGFR inhibitors were obtained, and upon combining the inhibitors, positive effects were observed. Cisplatin and docetaxel also induced dose dependent responses, and upon combination with the inhibitors, both positive and neutral effects were found. Conclusions The data suggest that FDA approved drugs alpelisib and erdafitinib efficiently inhibit TSCC/BOTSCC cell line growth, especially when combined irrespective of presence of corresponding mutations and should be further explored, for use upon recurrent disease.
Collapse
Affiliation(s)
- Stefan Holzhauser
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Wild
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mark Zupancic
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ramona G Ursu
- Department of Microbiology, University of Medicine and Pharmacy, Grigore T. Popa Iasi, Iaşi, Romania
| | - Cinzia Bersani
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Näsman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Castelli R, Taranto S, Furiassi L, Bozza N, Marseglia G, Ferlenghi F, Rivara S, Retini M, Bedini A, Spadoni G, Matarazzo S, Ronca R, Presta M, Mor M, Giacomini A. Chemical modification of NSC12 leads to a specific FGF-trap with antitumor activity in multiple myeloma. Eur J Med Chem 2021; 221:113529. [PMID: 34004471 DOI: 10.1016/j.ejmech.2021.113529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Inhibition of FGF/FGFR signaling is a promising strategy for the treatment of malignances dependent from FGF stimulation, including multiple myeloma (MM). The steroidal derivative NSC12 (compound 1) is a pan-FGF trap endowed with antitumor activity in vivo. Chemical modifications of compound 1 were explored to investigate structure-activity relationships, focusing on the role of the bis(trifluoromethyl)1,3-propanediol chain, the stereochemistry at C20 and functionalization of C3 position. Our studies unveiled compound 25b, the pregnane 3-keto 20R derivative of compound 1 as an effective agent, blocking the proliferation of MM cells in vitro by inhibiting FGF-dependent receptor activation and slowing MM growth in vivo. Importantly, the absence of the hydroxyl group at C3 prevents binding to estrogen receptors, which might concur to the antitumor activity observed for compound 1, leading to a specific FGF/FGFR system inhibitor, and further supporting the role of FGFR in anticancer therapy in MM.
Collapse
Affiliation(s)
- Riccardo Castelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124, Parma, Italy
| | - Sara Taranto
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, via Branze 39, I-25123, Brescia, Italy
| | - Lucia Furiassi
- Dipartimento di Scienze Biomolecolari, Università, degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029, Urbino, Italy
| | - Nicole Bozza
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124, Parma, Italy
| | - Giuseppe Marseglia
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124, Parma, Italy
| | - Francesca Ferlenghi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124, Parma, Italy
| | - Silvia Rivara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124, Parma, Italy.
| | - Michele Retini
- Dipartimento di Scienze Biomolecolari, Università, degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029, Urbino, Italy
| | - Annalida Bedini
- Dipartimento di Scienze Biomolecolari, Università, degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029, Urbino, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università, degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029, Urbino, Italy
| | - Sara Matarazzo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, via Branze 39, I-25123, Brescia, Italy
| | - Roberto Ronca
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, via Branze 39, I-25123, Brescia, Italy
| | - Marco Presta
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, via Branze 39, I-25123, Brescia, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124, Parma, Italy
| | - Arianna Giacomini
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, via Branze 39, I-25123, Brescia, Italy
| |
Collapse
|
46
|
Epstein RJ, Tian LJ, Gu YF. 2b or Not 2b: How Opposing FGF Receptor Splice Variants Are Blocking Progress in Precision Oncology. JOURNAL OF ONCOLOGY 2021; 2021:9955456. [PMID: 34007277 PMCID: PMC8110382 DOI: 10.1155/2021/9955456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023]
Abstract
More than ten thousand peer-reviewed studies have assessed the role of fibroblast growth factors (FGFs) and their receptors (FGFRs) in cancer, but few patients have yet benefited from drugs targeting this molecular family. Strategizing how best to use FGFR-targeted drugs is complicated by multiple variables, including RNA splicing events that alter the affinity of ligands for FGFRs and hence change the outcomes of stromal-epithelial interactions. The effects of splicing are most relevant to FGFR2; expression of the FGFR2b splice isoform can restore apoptotic sensitivity to cancer cells, whereas switching to FGFR2c may drive tumor progression by triggering epithelial-mesenchymal transition. The differentiating and regulatory actions of wild-type FGFR2b contrast with the proliferative actions of FGFR1 and FGFR3, and may be converted to mitogenicity either by splice switching or by silencing of tumor suppressor genes such as CDH1 or PTEN. Exclusive use of small-molecule pan-FGFR inhibitors may thus cause nonselective blockade of FGFR2 isoforms with opposing actions, undermining the rationale of FGFR2 drug targeting. This splice-dependent ability of FGFR2 to switch between tumor-suppressing and -driving functions highlights an unmet oncologic need for isoform-specific drug targeting, e.g., by antibody inhibition of ligand-FGFR2c binding, as well as for more nuanced molecular pathology prediction of FGFR2 actions in different stromal-tumor contexts.
Collapse
Affiliation(s)
- Richard J. Epstein
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
- Garvan Institute of Medical Research and UNSW Clinical School, 84 Victoria St, Darlinghurst 2010 Sydney, Australia
| | - Li Jun Tian
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| | - Yan Fei Gu
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| |
Collapse
|
47
|
Targeting FGFR inhibition in cholangiocarcinoma. Cancer Treat Rev 2021; 95:102170. [DOI: 10.1016/j.ctrv.2021.102170] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
|
48
|
Huang L, Wu X, Fu X, Wang H, Tang B, Xiao Y, Zhou C, Zhao Z, Wan Y, Chen H, Tang Z, Yao H, Shan Z, Bu T. Ligand based 3D-QSAR model, pharmacophore, molecular docking and ADME to identify potential fibroblast growth factor receptor 1 inhibitors. J Biomol Struct Dyn 2021; 40:7584-7597. [PMID: 33734039 DOI: 10.1080/07391102.2021.1899049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The FGF/FGFR system may affect tumor cells and stromal microenvironment through autocrine and paracrine stimulation, thereby significantly promoting oncogene transformation and tumor growth. Abnormal expression of FGFR1 in cells is considered to be the main cause of tumorigenesis and a potential target for the treatment of cancer. In this study, a combination of structure-based drug carriers and molecular docking-based virtual screening was used to screen new potential FGFR1 inhibitors. Forty eight known inhibitors were collected to establish 3 D-QSAR models and pharmacophore models, investigate the relationship between the activity and conformation of compounds, and verify the efficiency of pharmacophore. In Accelrys Discovery Studio 2016, the ZINC database was filtered by Lipinski's Rule of Five and SMART's filtration. Then, Hypo01 was used for virtual screening of ZINC database. Compounds with predicted activity values less than 1 μM were molecularly docked with FGFR1 protein crystals, the docking results were observed, and the interaction between compounds and targets was studied. The absorption, distribution, metabolism and excretion (ADME) and toxicity of potential inhibitors were studied, and a compound with new structural scaffolds were obtained. It could be further studied to explore their better therapeutic effects.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lu Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Xulong Wu
- Chengdu Agricultural College, Chengdu, China
| | - Xiaoli Fu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Haoxiang Wang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Biao Tang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Ya'an, China
| | - Caixia Zhou
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Zhiqiao Zhao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yujun Wan
- Sichuan Food Fermentation Industry Research and Design Institute, Chengdu, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Zhi Shan
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
49
|
Yang W, Sun Y. Promising Molecular Targets for the Targeted Therapy of Biliary Tract Cancers: An Overview. Onco Targets Ther 2021; 14:1341-1366. [PMID: 33658799 PMCID: PMC7920611 DOI: 10.2147/ott.s297643] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Biliary tract cancer (BTC) is a leading cause of cancer-related death, due to the limited benefits of current systematic therapies and the heterogeneity of the tumor itself. High heterogeneity means that the clinical and molecular features vary between different subtypes of BTC, while the underlying molecular mechanisms remain unclear. Targeted therapy, where inhibitors are developed to selectively combine with targeted molecules in order to block abnormal signaling pathways in BTC, has shown promise as an emerging form of treatment for various types of cancer. In this article, a comprehensive review is conducted to examine potential molecular targets for BTC targeted therapy and their mechanisms. Furthermore, preliminary data published from clinical trials is utilized to analyze the main drugs used to combat BTC. The collective information presented in this article has provided useful insights into the current understanding of BTC.
Collapse
Affiliation(s)
- Wenwei Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yongkun Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| |
Collapse
|
50
|
Yue S, Li Y, Chen X, Wang J, Li M, Chen Y, Wu D. FGFR-TKI resistance in cancer: current status and perspectives. J Hematol Oncol 2021; 14:23. [PMID: 33568192 PMCID: PMC7876795 DOI: 10.1186/s13045-021-01040-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) play key roles in promoting the proliferation, differentiation, and migration of cancer cell. Inactivation of FGFRs by tyrosine kinase inhibitors (TKI) has achieved great success in tumor-targeted therapy. However, resistance to FGFR-TKI has become a concern. Here, we review the mechanisms of FGFR-TKI resistance in cancer, including gatekeeper mutations, alternative signaling pathway activation, lysosome-mediated TKI sequestration, and gene fusion. In addition, we summarize strategies to overcome resistance, including developing covalent inhibitors, developing dual-target inhibitors, adopting combination therapy, and targeting lysosomes, which will facilitate the transition to precision medicine and individualized treatment.
Collapse
Affiliation(s)
- Sitong Yue
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yukun Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Xiaojuan Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Juan Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Meixiang Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Yongheng Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Daichao Wu
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
| |
Collapse
|