1
|
Khan AJ, Khan IU, man S, Liu S, Ailun G, Abbas M, Zhang F. MRPL24 drives breast cancer metastasis and stemness by targeting c-MYC, BRD4, and STAT3. 3 Biotech 2025; 15:37. [PMID: 39802327 PMCID: PMC11718041 DOI: 10.1007/s13205-024-04196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
The study aims to investigate the clinicopathological significance of MRPL24 in human cancers, with a particular focus on breast cancer (BC). Comprehensive bioinformatics analyses were conducted using data from The Cancer Genome Atlas (TCGA) and various advanced database, including cBioPortal, UALCAN, TIMER, Prognoscan, TISIDB, KM Plotter, and The Human Protein Atlas, to provide a detailed evaluation of MRPL55's role in cancer. The findings were further validated through experimental studies. Pan-cancer analysis of TCGA/ICGC data revealed significant amplification of MRPL24 across multiple cancer types, with the highest amplification rate of 60% observed in metastatic breast cancer. MRPL24 was found to be overexpressed in primary breast tumors, metastatic, and various molecular subtypes of breast cancer. High MRPL24 expression was associated with poor prognosis and lower survival rates in breast cancer patients. RT-PCR and western blot confirmed MRPL24 depletion in breast cancer cells. Knockdown of MRPL24 was shown to suppress proliferation, and clonogenic potential in breast cancer cells and inhibit cell migration. Additionally, MRPL24 depletion sensitized breast cancer cells to PD0325901 and 5-FU treatment. Mechanistic studies revealed that MRPL24 knock-down downregulates mRNA levels of oncogenic genes, including c-MYC, BRD4, WNT3, and STAT3. Positive correlations were observed between MRPL24 and key genes involved in ferroptosis regulation, such as ERBB2, ERBB3, GRB2, PIK3CA, AKT1, MAPK3, and MAPK1. Finally, through virtual screening and molecular dynamics simulations, we have identified three FDA-approved drugs with strong binding affinities and interactions with MRPL24. These findings underscore MRPL24's oncogenic role in breast cancer and suggest potential therapeutic strategies targeting this protein. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04196-z.
Collapse
Affiliation(s)
- Abdul Jamil Khan
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Islam Uddin Khan
- Complete Genomics Biochemistry-1, Department US CG Biochem, MGI Tech Co., Ltd. Beishan Industrial Zone, Yantian District, Shenzhen, 518083 China
| | - Shad man
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, 010020 China
| | - Shihao Liu
- Department of Informatics and Computer Engineering, Simon Kuznets Kharkiv National University of Economics, Nau Kyaveave., 9-A, Kharkiv, 61166 Ukraine
| | - Gaowa Ailun
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 China
| | - Manzar Abbas
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, 011500 China
| | - Feng Zhang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai, 200093 China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001 China
| |
Collapse
|
2
|
Kondakova I, Sereda E, Sidenko E, Vtorushin S, Vedernikova V, Burov A, Spirin P, Prassolov V, Lebedev T, Morozov A, Karpov V. Association of Proteasome Activity and Pool Heterogeneity with Markers Determining the Molecular Subtypes of Breast Cancer. Cancers (Basel) 2025; 17:159. [PMID: 39796785 PMCID: PMC11720674 DOI: 10.3390/cancers17010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Proteasomes degrade intracellular proteins. Different proteasome forms were identified. Proteasome inhibitors are used in cancer therapy, and novel drugs directed to specific proteasome forms are developed. Breast cancer (BC) therapy depends on the subtype of the tumor, determined by the expression level of Ki67, HER-2, estrogen and progesterone receptors. Relationships between the presence of specific proteasome forms and proteins that determine the BC subtype remain unclear. Here, using gene expression data in 19,145 tumor samples from 144 datasets and tissues from 159 patients with different subtypes of BC, we investigated the association between the activity and expression of proteasomes and levels of BC subtype markers. METHODS Bioinformatic analysis of proteasome subunit (PSMB1-10) gene expression in BC was performed. Proteasome heterogeneity in BC cell lines was investigated by qPCR. By Western blotting, proteasome composition was assessed in cells and patient tissue lysates. Proteasome activities were studied using fluorogenic substrates. BC molecular subtypes were determined by immunohistochemistry. RESULTS BC subtypes demonstrate differing proteasome subunit expression pattern and strong PSMB8-10 co-correlation in tumors. A significant increase in chymotrypsin- and caspase-like proteasome activities in BC compared to adjacent tissues was revealed. The subunit composition of proteasomes in tumor tissues of BC subtypes varied. Regression analysis demonstrated a positive correlation between proteasome activities and the expression of Ki67, estrogen receptors and progesterone receptors. CONCLUSION BC subtypes demonstrate differences within the proteasome pool. Correlations between the proteasome activity, hormone receptors and Ki67 indicate possible mutual influence. Obtained results facilitate development of novel drug combinations for BC therapy.
Collapse
Affiliation(s)
- Irina Kondakova
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
| | - Elena Sereda
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgeniya Sidenko
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Sergey Vtorushin
- Tomsk National Research Medical Center, Cancer Research Institute, Russian Academy of Sciences, 634009 Tomsk, Russia; (I.K.); (E.S.); (E.S.); (S.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Valeria Vedernikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Moscow Center for Advanced Studies, Kulakova 20, 123592 Moscow, Russia
| | - Alexander Burov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| | - Pavel Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| | - Timofey Lebedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (V.V.); (A.B.); (P.S.); (V.P.); (T.L.); (A.M.)
| |
Collapse
|
3
|
Guo Q, Peng Y, Zhang G, Lin H, Chen Q. Effect of Huaier granule on prognosis of breast cancer: A single-center propensity score matching retrospective study. Chin Med J (Engl) 2025; 138:93-98. [PMID: 38269479 PMCID: PMC11717507 DOI: 10.1097/cm9.0000000000002966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Huaier granule is an important medicinal fungus extract widely used in cancer treatment. Previous retrospective studies have reported its effectiveness in breast cancer patients, but the imbalanced baseline characteristics of participants could have biased the results. Therefore, this retrospective study aimed to examine the efficacy of Huaier granule on the prognosis of breast cancer patients. METHODS In this single-center cohort study, breast cancer patients diagnosed and treated at the Guangdong Provincial Hospital of Chinese Medicine between 2009 and 2017 were selected. The data were retrospectively analyzed and divided into two groups according to whether the patients received Huaier granules. The propensity score matching (PSM) method was used to eliminate selection bias. The disease-free survival (DFS) and overall survival (OS) for these groups were compared using the Kaplan-Meier method and the Cox regression. RESULTS This study included 214 early invasive breast cancer patients, 107 in the Huaier group and 107 in the control group. In the Kaplan-Meier analysis, the 2-year and 5-year DFS rates were significantly different in the Huaier group and control group (hazard ratio [HR], 0.495; 95% confidence interval [CI], 0.257-0.953; P = 0.023). The 2-year and 5-year OS rates were also significantly different (HR, 0.308; 95% CI, 0.148-0.644; P = 0.001). On multivariable Cox regression, Huaier granule was associated with improved DFS (HR, 0.440; 95% CI, 0.223-0.868; P = 0.018) and OS (HR, 0.236; 95% CI, 0.103-0.540; P = 0.001). CONCLUSION In this retrospective study, Huaier granules improved the DFS and OS of early invasive breast cancer patients, providing real-world evidence for further prospective studies on treating breast cancer with Huaier granules.
Collapse
Affiliation(s)
- Qianqian Guo
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Yuting Peng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery (HKAP), Hong Kong 999077, China
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
- Northwestern Polytechnical University-Hong Kong Baptist University United Research Center of Space Musculoskeletal Health, Shenzhen, Guangdong 518063, China
| | - Huan Lin
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| | - Qianjun Chen
- Breast Department, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China
| |
Collapse
|
4
|
Solmaz ÖA, Kutluer N, Bozan MB. Carbonic Anhydrase IX Enzyme in Triple Negative Breast Carcinoma: Relationship With Prognostic Factors and Response to Neoadjuvant Chemotherapy. Eur J Breast Health 2025; 21:57-62. [PMID: 39744916 PMCID: PMC11706115 DOI: 10.4274/ejbh.galenos.2024.2024-6-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/15/2024] [Indexed: 01/11/2025]
Abstract
Objective Triple negative breast carcinoma (TNBC) is characterized by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2 receptor expression. Carbonic anhydrase IX (CA IX) is a tumor-associated cell surface glycoprotein that is involved in adaptation to hypoxia-induced acidosis and plays a role in cancer progression. The aim of this study was to investigate CA IX expression in TNBC and its relationship with treatment effect. Materials and Methods Immunohistochemical staining was performed on tru-cut biopsy materials with CA IX antibody. Positive staining was graded as low (<10%) and high (>10%). In addition, the relationship between tumor diameter, histological grade and the treatment effect on mastectomy materials performed after neoadjuvant treatment was evaluated. Results TNBCs with positive staining for CA IX exhibited higher histological grade, and higher Ki-67 index compared to TNBCs with negative staining (p < 0.05). The response to treatment decreased as the degree of CA IX staining increased. There was no significant difference between the high staining group and low staining group in terms of patient age, tumor diameter and breast localisation. Conclusion CA IX enzyme is a poor prognostic marker in TNBC cases. However, overexpression of CA IX was associated with reduced response to treatment.
Collapse
Affiliation(s)
- Özgen Arslan Solmaz
- Department of Pathology, Elazığ Fethi Sekin City Hospital, University of Health Sciences Turkey, Elazığ, Turkey
| | - Nizamettin Kutluer
- Department of General Surgery, Elazığ Fethi Sekin City Hospital, University of Health Sciences Turkey, Elazığ, Turkey
| | - Mehmet Buğra Bozan
- Department of General Surgery, Elazığ Fethi Sekin City Hospital, University of Health Sciences Turkey, Elazığ, Turkey
| |
Collapse
|
5
|
Ibrahim FM, Saleh RO, Uinarni H, Bokov DO, Menon SV, Zarifovich KB, Misra N, Al-Hamdani MM, Husseen B, Jawad MA. Exosomal noncoding RNA (ncRNA) in breast cancer pathogenesis and therapy; two sides of the same coin. Exp Cell Res 2025; 444:114359. [PMID: 39608481 DOI: 10.1016/j.yexcr.2024.114359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Over the past few years, breast cancer has become the most prevalent type of cancer globally, with the primary cause of death from the disease being metastatic cancer. This has led to the development of early detection techniques, mainly using non-invasive biomarkers in a range of body fluids. Exosomes are unique extracellular vesicles (EVs) transmitting cellular signals over great distances via various cargo. They are readily apparent in physiological fluids due to release by breast cancer cells or breast cancer-tumor microenvironment (TME) cells. In light of this, numerous biological and functional facets of human tumours, such as breast cancer, are intimately associated with exosomal noncoding RNAs (ncRNAs), containing miRNAs (microRNAs), lncRNAs (long noncoding RNAs), and circRNAs (circular RNAs). Exosomal ncRNAs serve a critical role in various steps of breast cancer development, enabling the exchange of genetic information between cancer cells and other cells (e.g., immune cells), thus regulating tumour angiogenesis, growth, metastasis, immune responses and drug resistance. They interact with multiple regulatory complexes with dissimilar enzymatic actions, which, in turn, modify the chromatin sceneries, including nucleosome modifications, DNA methylation, and histone modifications. Herein, we look into the exosomes' underlying regulatory mechanisms in breast cancer. Furthermore, we inspect the existing understanding of the functions of exosomal miRNAs, lncRNAs, and circRNAs in breast cancer to authenticate their possible significance in identifying biomarkers, deciphering their role in immune escape and drug resistance, and finally, analyzing treatment practices.
Collapse
Affiliation(s)
- Fatma Magdi Ibrahim
- Community Health Nursing, RAK Medical and Health Sciences University, Dubai, United Arab Emirates; Geriatric Department, Mansoura University, Mansoura, Egypt.
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Herlina Uinarni
- Department of Anatomy, School of Medicine and Health Sciences, the Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia; Radiology Department of Pantai Indah Kapuk Hospital Jakarta, Jakarta, Indonesia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation.
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | | | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun 248007, India.
| | | | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq.
| | | |
Collapse
|
6
|
Nemours S, Solé C, Goicoechea I, Armesto M, Arestin M, Urruticoechea A, Rezola M, López IÁ, Schaapveld R, Schultz I, Zhang L, Lawrie CH. Use of Gain-of-Function Screening to Identify miRNAs Involved in Paclitaxel Resistance in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:13630. [PMID: 39769392 PMCID: PMC11728027 DOI: 10.3390/ijms252413630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Paclitaxel is a widely used chemotherapeutic agent for the treatment of breast cancer (BC), including as a front-line treatment for triple-negative breast cancer (TNBC) patients. However, resistance to paclitaxel remains one of the major causes of death associated with treatment failure. Multiple studies have demonstrated that miRNAs play a role in paclitaxel resistance and are associated with both disease progression and metastasis. In the present study, we used a miRNA-encoding lentiviral library as a gain-of-function screen for paclitaxel resistance in the MDA-MB-231 TNBC cell line. We identified that miR-181b, miR-29a, miR-30c, miR-196 and miR-1295 conferred a resistant phenotype to cells. The expression of miR-29a also induced resistance to eribulin and vinorelbine, while miR-181b and miR-30c induced resistance to vinorelbine. We measured the levels of these miRNAs in breast cancer patients and observed higher levels of miR-29a in treatment-refractory patients. Taken together, we suggest that miR-29a and miR-181b may be good candidates for miRNA inhibition to overcome resistance to chemotherapy.
Collapse
Affiliation(s)
- Stéphane Nemours
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
| | - Carla Solé
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
| | - Ibai Goicoechea
- Department of Personalized Medicine, NASERTIC, Government of Navarra, 31011 Pamplona, Spain
| | - María Armesto
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
| | - María Arestin
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
| | - Ander Urruticoechea
- Breast Cancer Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (A.U.); (I.Á.L.)
- Gipuzkoa Cancer Unit, OSI Donostialdea—Onkologikoa Foundation, Paseo Dr Begiristain 121, 20014 San Sebastian, Spain
| | - Marta Rezola
- Department of Pathology, Hospital Universitario Donostia Osakidetza, 20014 Donostia, Spain;
| | - Isabel Álvarez López
- Breast Cancer Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (A.U.); (I.Á.L.)
- Gipuzkoa Cancer Unit, OSI Donostialdea—Onkologikoa Foundation, Paseo Dr Begiristain 121, 20014 San Sebastian, Spain
| | - Roel Schaapveld
- InteRNA Technologies, 3584 Utrecht, The Netherlands; (R.S.); (I.S.)
| | - Iman Schultz
- InteRNA Technologies, 3584 Utrecht, The Netherlands; (R.S.); (I.S.)
| | - Lei Zhang
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai 201800, China;
| | - Charles H. Lawrie
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai 201800, China;
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
7
|
De La Cruz P, McAdams J, Morales Aquino M, Fernandez AI, Elliott A, Lustberg M, Schorl C, Ribeiro JR, James NE. NF-κB associated markers of prognosis in early and metastatic triple negative breast cancer. Breast Cancer Res 2024; 26:175. [PMID: 39623404 PMCID: PMC11613493 DOI: 10.1186/s13058-024-01925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. While PD-1 based immunotherapies overall have led to improved treatment outcomes for this disease, a diverse response to frontline chemotherapy and immunotherapy still exist in TNBC, highlighting the need for more robust prognostic markers. METHODS Tumor-intrinsic immunotranscriptomics, serum cytokine profiling, and tumor burden studies were conducted in two syngeneic mouse models to assess differential effects in both the early-stage and metastatic setting. Bioinformatic analyses of both early and metastatic TNBC patient data were performed to assess if identified NF-κB-associated factors are associated with improved patient clinical outcomes. RESULTS NF-κB signaling driven by lymphotoxin beta expression is associated with tumor regression in TNBC mouse models. Furthermore, lymphotoxin beta expression in patient TNBC cohorts is prognostic of improved survival outcomes. CONCLUSIONS This study highlights the potential role for NF-κB-associated factors, specifically lymphotoxin beta to be used as prognostic markers in TNBC, which could ultimately provide insight for improved targeted treatment approaches in the clinic.
Collapse
Affiliation(s)
- Payton De La Cruz
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, Rhode Island, USA
| | - Julia McAdams
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, Rhode Island, USA
| | | | | | | | - Maryam Lustberg
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christoph Schorl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University Providence, Providence, Rhode Island, USA
| | - Jennifer R Ribeiro
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, Rhode Island, USA
- Department of Obstetrics and Gynecology Warren-Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Nicole E James
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, Rhode Island, USA.
- Department of Obstetrics and Gynecology Warren-Alpert Medical School of Brown University, Providence, Rhode Island, USA.
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, 200 Chestnut Street, Room 208, Providence, Rhode Island, 02903, USA.
| |
Collapse
|
8
|
Fournier M, Javary J, Roh V, Fournier N, Radtke F. Reciprocal inhibition of NOTCH and SOX2 shapes tumor cell plasticity and therapeutic escape in triple-negative breast cancer. EMBO Mol Med 2024; 16:3184-3217. [PMID: 39478150 PMCID: PMC11628624 DOI: 10.1038/s44321-024-00161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/11/2024] Open
Abstract
Cancer cell plasticity contributes significantly to the failure of chemo- and targeted therapies in triple-negative breast cancer (TNBC). Molecular mechanisms of therapy-induced tumor cell plasticity and associated resistance are largely unknown. Using a genome-wide CRISPR-Cas9 screen, we investigated escape mechanisms of NOTCH-driven TNBC treated with a gamma-secretase inhibitor (GSI) and identified SOX2 as a target of resistance to Notch inhibition. We describe a novel reciprocal inhibitory feedback mechanism between Notch signaling and SOX2. Specifically, Notch signaling inhibits SOX2 expression through its target genes of the HEY family, and SOX2 inhibits Notch signaling through direct interaction with RBPJ. This mechanism shapes divergent cell states with NOTCH positive TNBC being more epithelial-like, while SOX2 expression correlates with epithelial-mesenchymal transition, induces cancer stem cell features and GSI resistance. To counteract monotherapy-induced tumor relapse, we assessed GSI-paclitaxel and dasatinib-paclitaxel combination treatments in NOTCH inhibitor-sensitive and -resistant TNBC xenotransplants, respectively. These distinct preventive combinations and second-line treatment option dependent on NOTCH1 and SOX2 expression in TNBC are able to induce tumor growth control and reduce metastatic burden.
Collapse
Affiliation(s)
- Morgane Fournier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Swiss Cancer Center Leman (SCCL), Station 19, CH-1015, Lausanne, Switzerland
| | - Joaquim Javary
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Swiss Cancer Center Leman (SCCL), Station 19, CH-1015, Lausanne, Switzerland
| | - Vincent Roh
- Translational Data Science Facility, Swiss Institute of Bioinformatics (SIB), AGORA Cancer Research Center, CH-1011, Lausanne, Switzerland
| | - Nadine Fournier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Swiss Cancer Center Leman (SCCL), Station 19, CH-1015, Lausanne, Switzerland
- Translational Data Science Facility, Swiss Institute of Bioinformatics (SIB), AGORA Cancer Research Center, CH-1011, Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Swiss Cancer Center Leman (SCCL), Station 19, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
9
|
Wang X, Li X, Dong T, Yu W, Jia Z, Hou Y, Yang J, Liu Y. Global biomarker trends in triple-negative breast cancer research: a bibliometric analysis. Int J Surg 2024; 110:7962-7983. [PMID: 38857504 PMCID: PMC11634138 DOI: 10.1097/js9.0000000000001799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/26/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is defined as breast cancer that is negative for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2) in cancer tissue. The lack of specific biomarkers makes the diagnosis and prognosis of TNBC challenging. METHOD A comprehensive literature review and bibliometric analysis was performed using CiteSpace, VOSviewer and Scimago Graphica. RESULTS TNBC biomarker research has been growing rapidly in recent years, reflecting the enormous academic interest in TNBC biomarker research. A total of 127 journals published relevant studies and 1749 authors were involved in the field, with developed countries such as the United States, France, and the United Kingdom contributing greatly to the field. Collaborative network analysis found that the research in this field has not yet formed good communication and interaction, and the partnership should be strengthened in the future in order to promote the in-depth development of TNBC biomarker research. A comprehensive analysis of keywords and co-cited literature, etc. found that TNBC biomarker research mainly focuses on immune checkpoint markers, microenvironment-related markers, circulating tumor DNA, metabolic markers, genomics markers and so on. These research hotspots will help to better understand the molecular characteristics and biological processes of TNBC, and provide more accurate biomarkers for its diagnosis, treatment and prognosis. CONCLUSIONS The bibliometric analysis highlighted global trends and key directions in TNBC biomarker research. Future developments in TNBC biomarker research are likely to be in the direction of multi-omics integration, meticulous study of the microenvironment, targeted therapeutic biomarkers, application of liquid biopsy, application of machine learning and artificial intelligence, and individualized therapeutic strategies. Young scholars should learn and collaborate across disciplines, pay attention to new technologies and methods, improve their data analysis skills, and continue to follow up on the latest research trends in order to meet the challenges and opportunities in the field of TNBC biomarkers.
Collapse
Affiliation(s)
- Xingxin Wang
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuhao Li
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tiantian Dong
- Traditional Chinese Medicine External Treatment Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenyan Yu
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhixia Jia
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Hou
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiguo Yang
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanxiang Liu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Yin QH, Hu JB, Zhou Q, Weng J, Shen ED, Wen F, Liu SL, Yin LL, Tong YJ, Long L, Tang KW, Bai ST, Ou LD. Unveiling miRNA30b's Role in Suppressing ADAM12 to Combat Triple-Negative Breast Cancer. Breast J 2024; 2024:5202941. [PMID: 39742357 PMCID: PMC11540880 DOI: 10.1155/2024/5202941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/25/2024] [Accepted: 10/15/2024] [Indexed: 01/03/2025]
Abstract
Background: Triple-negative breast cancer, a subtype of breast cancer, is characterized by a poor prognosis. Recent studies have shown that miRNA30b acts as an oncogene and is vital for the proliferation of malignancies across various systems. This study aimed to elucidate the impact of miRNA30b on the proliferation, migration, and invasion capabilities of breast cancer cells in vitro. Methods: Triple-negative breast cancer cell lines MDA-MB-231 were transiently transfected with miRNA30b inhibitor, mimic, or the negative control by Lipofectamine 2000. Successful transfection was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Functional assays, including CCK8, clone formation, scratch, and transwell assays, were conducted to evaluate the proliferation, invasion, and migration ability of MDA-MB-231 cells in each group. The target protein of miRNA30b was determined using an online prediction data website, and the dual-luciferase assay confirmed whether there was a binding site between miRNA30b and ADAM12. The effect was further verified by Western blot analysis. Results: MDA-MB-231 cells were transfected with miRNA30b inhibitor, mimic, and negative control. miRNA30b expression was downregulated in the cells. Relative to the negative control group, miRNA30b expression significantly increased in the mimic group and decreased in the miRNA30b inhibitor group, with the differences being statistically significant. The miRNA30b mimic group exhibited a significant increase in miRNA30b expression and a corresponding promotion of cell proliferation, colony formation, and migration. Conversely, the miRNA30b inhibitor group displayed significantly reduced miRNA30b expression and suppressed cell proliferation, colony formation, and migration abilities compared to the negative control cells. Bioinformatics software predicted ADAM12 as a potential target of miRNA30b. Dual-luciferase assays confirmed the presence of a binding site between miRNA30b and ADAM12. Western blot analysis revealed that overexpression of miRNA30b downregulated ADAM12 expression in MDA-MB-231 cells. Conclusions: miRNA30b could promote proliferation, migration, and invasion of TNBC cell lines MDA-MB-231. The effect of miRNA30b on triple-negative breast cancer would be achieved partly at least through inhibiting the expression of ADAM12.
Collapse
Affiliation(s)
- Qing-hua Yin
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Jian-bing Hu
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Qiang Zhou
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Jie Weng
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Er-dong Shen
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Fang Wen
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Song-lian Liu
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Lei-lan Yin
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Ya-jun Tong
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Ling Long
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Ke-wei Tang
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Si-te Bai
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| | - Lu-di Ou
- Department of Oncology, Yueyang Central Hospital, Yueyang 414000, Hunan, China
| |
Collapse
|
11
|
Jayan A, Sukumar JS, Fangman B, Patel T, Raghavendra AS, Liu D, Pasyar S, Rauch R, Basen-Engquist K, Tripathy D, Wang Y, Khan SS, Barcenas CH. Real-World Immune-Related Adverse Events in Patients With Early Triple-Negative Breast Cancer Who Received Pembrolizumab. JCO Oncol Pract 2024:OP2400371. [PMID: 39388649 DOI: 10.1200/op.24.00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/24/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
PURPOSE The addition of pembrolizumab to chemotherapy in high-risk early triple-negative breast cancer (TNBC) improves cancer outcomes. However, pembrolizumab induces varied immune-related adverse events (irAEs) where some can be severe or lifelong. This retrospective study describes real-world patterns of irAEs in patients with TNBC who received pembrolizumab. METHODS We evaluated irAEs in patients with TNBC from a comprehensive cancer center and a community hospital who received pembrolizumab with chemotherapy between 2021 and 2023, excluding those enrolled in clinical trials. We used national guidelines to grade toxicities. Logistic regression assessed the effect of clinicopathologic variables on irAEs adjusting for covariates. RESULTS We identified 233 patients with a median age of 51 years, 62% had stage II TNBC, 35% had stage III TNBC, 25% were Hispanic, 21% were Black, and 42% were White. Eighty patients (34%) developed 100 separate irAEs. The most common irAEs were endocrinopathies (52%) and GI (23%); there were 26 grade ≥3 irAEs, which all resulted in hospitalization, the most common being GI (13 instances); 45 required systemic steroids, 16 required additional immunosuppressive therapy, and 32 patients discontinued pembrolizumab because of irAEs. Two patients who developed colitis eventually died due to complications. Most (67 instances) irAEs were unresolved at the time of last follow-up, but 55% (37/67) had improved to grade 1. No clinicopathologic factors were associated with the development or severity of irAEs. CONCLUSION In this real-world diverse population, we observed rates of irAEs comparable with KEYNOTE-522, where endocrinopathies were the most prevalent, but GI irAEs were also prevalent and severe. This emphasizes a critical issue as pembrolizumab is increasingly being used in early TNBC and could have long-term survivorship implications.
Collapse
Affiliation(s)
- Athira Jayan
- Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX
- Department of General Internal Medicine, MD Anderson Cancer Center, Houston, TX
| | - Jasmine S Sukumar
- Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | - Benjamin Fangman
- Department of General Oncology, MD Anderson Cancer Center, Houston, TX
| | - Tejal Patel
- Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX
- Department of Biostatistics, MD Anderson Cancer Center, Houston,TX
| | | | - Diane Liu
- Department of Health Disparities Research, MD Anderson Cancer Center, Houston, TX
| | - Sarah Pasyar
- Department of Health Disparities Research, MD Anderson Cancer Center, Houston, TX
| | - Ronald Rauch
- Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | | | - Debasish Tripathy
- Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, Houston, TX
| | - Sonya S Khan
- Department of Endocrine Neoplasia and HD, MD Anderson Cancer Center, Houston, TX
| | - Carlos H Barcenas
- Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
12
|
Kim CM, Park KH, Yu YS, Kim JW, Park JY, Park K, Yu JH, Lee JE, Sim SH, Seo BK, Kim JK, Lee ES, Park YH, Kong SY. A 10-Gene Signature to Predict the Prognosis of Early-Stage Triple-Negative Breast Cancer. Cancer Res Treat 2024; 56:1113-1125. [PMID: 38754473 PMCID: PMC11491257 DOI: 10.4143/crt.2024.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a particularly challenging subtype of breast cancer, with a poorer prognosis compared to other subtypes. Unfortunately, unlike luminal-type cancers, there is no validated biomarker to predict the prognosis of patients with early-stage TNBC. Accurate biomarkers are needed to establish effective therapeutic strategies. MATERIALS AND METHODS In this study, we analyzed gene expression profiles of tumor samples from 184 TNBC patients (training cohort, n=76; validation cohort, n=108) using RNA sequencing. RESULTS By combining weighted gene expression, we identified a 10-gene signature (DGKH, GADD45B, KLF7, LYST, NR6A1, PYCARD, ROBO1, SLC22A20P, SLC24A3, and SLC45A4) that stratified patients by risk score with high sensitivity (92.31%), specificity (92.06%), and accuracy (92.11%) for invasive disease-free survival. The 10-gene signature was validated in a separate institution cohort and supported by meta-analysis for biological relevance to well-known driving pathways in TNBC. Furthermore, the 10-gene signature was the only independent factor for invasive disease-free survival in multivariate analysis when compared to other potential biomarkers of TNBC molecular subtypes and T-cell receptor β diversity. 10-gene signature also further categorized patients classified as molecular subtypes according to risk scores. CONCLUSION Our novel findings may help address the prognostic challenges in TNBC and the 10-gene signature could serve as a novel biomarker for risk-based patient care.
Collapse
Affiliation(s)
- Chang Min Kim
- CbsBioscience. Inc., Daejeon, Korea
- Department of Pharmacy, College of Pharmacy, CHA University, Seongnam, Korea
| | - Kyong Hwa Park
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | | | - Ju Won Kim
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | | | - Kyunghee Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Jong-Han Yu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Eon Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Hoon Sim
- Breast Cancer Center, National Cancer Center, Goyang, Korea
| | - Bo Kyoung Seo
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Jin Kyeoung Kim
- Department of Pharmacy, College of Pharmacy, CHA University, Seongnam, Korea
| | - Eun Sook Lee
- Breast Cancer Center, National Cancer Center, Goyang, Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Young Kong
- Targeted Therapy Branch, Research Institute, National Cancer Center, Goyang, Korea
- Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Korea
| |
Collapse
|
13
|
Long Y, Xu Z, Yu J, Hu X, Xie Y, Duan X, Li N, Yan Y, Wang Y, Qin J. Targeting xCT with sulfasalazine suppresses triple-negative breast cancer growth via inducing autophagy and coordinating cell cycle and proliferation. Anticancer Drugs 2024; 35:830-843. [PMID: 39016262 DOI: 10.1097/cad.0000000000001630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
There is a substantial unmet need for effective treatment strategies in triple-negative breast cancer (TNBC). Recently, renewed attention has been directed towards targeting glutamine (Gln) metabolism to enhance the efficacy of cancer treatment. Nonetheless, a comprehensive exploration into the mechanistic implications of targeting Gln metabolism in TNBC is lacking. In this study, our objective was to probe the sensitivity of TNBC to alterations in Gln metabolism, using representative TNBC cell lines: MDA-MB-231, MDA-MB-468, and 4T1. Through an integration of bioinformatics, in-vitro, and in-vivo investigations, we demonstrated that sulfasalazine (SAS), like erastin (a known xCT inhibitor), effectively suppressed the expression and transport function of xCT, resulting in a depletion of glutathione levels in MDA-MB-231 and MDA-MB-468 cells. Furthermore, both xCT knockdown and SAS treatment demonstrated the promotion of cellular autophagy. We unveiled a positive correlation between xCT and the autophagy-related molecule p62, their co-expression indicating poor survival outcomes in breast cancer patients. In addition, our research revealed the influence of SAS and xCT on the expression of proteins regulating cell cycle and proliferation. Treatment with SAS or xCT knockdown led to the inhibition of MYC, CDK1, and CD44 expression. Significantly, the combined administration of SAS and rapamycin exhibited a synergistic inhibitory effect on the growth of transplanted breast tumor in mouse models constructed from murine-derived 4T1 cells. Taken together, our findings suggested the potential and clinical relevance of the SAS and rapamycin combination in the treatment of TNBC.
Collapse
Affiliation(s)
- Yaping Long
- Department of Immunology, School of Medicine, Nankai University
| | - Zizheng Xu
- Department of Immunology, School of Medicine, Nankai University
| | - Jing Yu
- Department of Immunology, School of Medicine, Nankai University
| | - Xiao Hu
- Department of Immunology, School of Medicine, Nankai University
| | - Yu Xie
- Department of Immunology, School of Medicine, Nankai University
| | - Xianxian Duan
- Department of Immunology, School of Medicine, Nankai University
| | - Ning Li
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University
| | - Yan Yan
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Yue Wang
- Department of Immunology, School of Medicine, Nankai University
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin, China
| | - Junfang Qin
- Department of Immunology, School of Medicine, Nankai University
| |
Collapse
|
14
|
Li J, Zhang X, Liu X, Ma X, Wang Y, Liu Y. JARID2 activation by NFYA promotes stemness of triple-negative breast cancer cells through the PI3K/AKT pathway. Expert Rev Anticancer Ther 2024; 24:1029-1040. [PMID: 39254227 DOI: 10.1080/14737140.2024.2394167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/19/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND This study aimed to investigate the role of Jumonji AT Rich Interacting Domain 2 (JARID2) in regulating triple-negative breast cancer (TNBC) stemness and its mechanism. RESEARCH DESIGN AND METHODS Bioinformatics analysis examined JARID2 expression, prognosis, and transcription factors. Quantitative polymerase chain reaction, western blot, and immunohistochemistry detected expression. Dual luciferase reporter gene and chromatin immunoprecipitation assays verified binding. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay detected viability and proliferation. Sphere formation assay detected the sphere formation efficiency. Flow cytometry detected CD44+/CD24- -marked stem cells. A xenograft tumor model verified the effect of JARID2 in vivo. RESULTS JARID2 and nuclear transcription factor Y subunit α (NFYA) were upregulated in TNBC tissues and positively correlated. Knockdown of JARID2 or NFYA inhibited cell stemness by inhibiting the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway. Enforced JARID2 expression rescued the suppressive effect of NFYA knockdown on the PI3K/AKT signaling pathway and cell stemness. Knockdown of JARID2 inhibited tumor growth and cell stemness in mice but was alleviated by concurrent overexpression of NFYA. CONCLUSIONS NFYA promotes TNBC cell stemness by upregulating JARID2 expression and regulating the PI3K/AKT signaling pathway, suggesting JARID2 as a potential target for innovating drugs that target TNBC stem cells.
Collapse
Affiliation(s)
- Jianjie Li
- Breast Cancer Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangmei Zhang
- Breast Cancer Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueliang Liu
- Breast Cancer Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangmin Ma
- Breast Cancer Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanfang Wang
- Breast Cancer Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunjiang Liu
- Breast Cancer Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Wang L, Hu Z, Bai H, Chang L, Chen C, Li W. miRNA-105-5p regulates the histone deacetylase HDAC2 through FOXG1 to affect the malignant biological behavior of triple-negative breast cancer cells. Am J Med Sci 2024:S0002-9629(24)01476-9. [PMID: 39313115 DOI: 10.1016/j.amjms.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a specific subtype of breast cancer (BC). Some potential molecular targets have been identified, and miR-105-5p was found to be abnormally expressed in TNBC tissues. OBJECTIVE The objective of this study was to probe the effect of miR-105-5p on TNBC via FOXG1/HDAC2-mediated acetylation. METHODS An animal model of TNBC was established by injecting BC cells into the axillary area of nude mice. The levels of miR-105-5p, FOXG1, HDAC2, Bcl-2, Bax, and Ki67 were detected via RT‒qPCR, Western blotting and immunohistochemistry. Flow cytometry, CCK-8, Transwell and colony formation assays were used to measure apoptosis, proliferation and migration, respectively. Total histone acetylation levels were measured by ELISA. The binding of FOXG1 to HDAC2 was detected by co-immunoprecipitation. The binding relationship between miR-105-5p and FOXG1 was verified using a dual-luciferase reporter gene assay. RESULTS In this study, miR-105-5p and HDAC2 were highly expressed in the MDA-MB-231 and BT-549 BC cell lines, whereas FOXG1 was expressed at low levels. The inhibition of miR-105-5p inhibited the proliferation and migration of MDA-MB-231 and BT-549 cells and promoted their apoptosis. Bioinformatics analysis revealed that miR-105-5p and FOXG1 had a negative targeting regulatory relationship. FOXG1 overexpression had a similar effect on cancer cells as the inhibition of miR-105-5p. Moreover, experiments revealed that FOXG1 and HDAC2 could bind to each other and that HDAC2 overexpression or treatment with the histone acetyltransferase inhibitor Garcinol weakened the effect of FOXG1 overexpression. In addition, FOXG1 knockdown inhibited the effect of the miR-105-5p inhibitor, while Garcinol treatment further enhanced the effect of FOXG1 knockdown, inhibited histone acetylation, promoted the proliferation and migration of cancer cells, and inhibited apoptosis. Moreover, the in vivo results confirmed the in vitro results. CONCLUSION miR-105-5p promotes HDAC2 expression by reducing FOXG1, inhibits histone acetylation, and aggravates the malignant biological behavior of TNBC cells.
Collapse
Affiliation(s)
- Li Wang
- Department of Radiotherapy, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650000, Yunnan, China
| | - Zaoxiu Hu
- Department of Pathology, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650000, Yunnan, China
| | - Han Bai
- Department of Radiotherapy, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650000, Yunnan, China
| | - Li Chang
- Department of Radiotherapy, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650000, Yunnan, China
| | - Ceshi Chen
- Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650000, Yunnan, China.
| | - Wenhui Li
- Department of Radiotherapy, Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650000, Yunnan, China.
| |
Collapse
|
16
|
Bano S, Majumder A, Srivastava A, Nayak KB. Deciphering the Potentials of Cardamom in Cancer Prevention and Therapy: From Kitchen to Clinic. Biomolecules 2024; 14:1166. [PMID: 39334932 PMCID: PMC11430645 DOI: 10.3390/biom14091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/31/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Cardamom (cardamum) is a spice produced from the seeds of several Elettaria and Amomum plants of the Zingiberaceae family. Cardamom has been demonstrated to offer numerous benefits, including its antioxidant, antimicrobial, anti-inflammatory, and other metabolic (anti-diabetic) properties, and its potential to reduce cancer risk. Recently, researchers have extracted and tested multiple phytochemicals from cardamom to assess their potential effectiveness against various types of human malignancy. These studies have indicated that cardamom can help overcome drug resistance to standard chemotherapy and protect against chemotherapy-induced toxicity due to its scavenging properties. Furthermore, chemical compounds in cardamom, including limonene, cymene, pinene, linalool, borneol, cardamonin, indole-3-carbinol, and diindolylmethane, primarily target the programmed cell death lignin-1 gene, which is more prevalent in cancer cells than in healthy cells. This review provides the medicinal properties and pharmacological uses of cardamom, its cellular effects, and potential therapeutic uses in cancer prevention and treatment, as well as its use in reducing drug resistance and improving the overall health of cancer patients. Based on previous preclinical studies, cardamom shows significant potential as an anti-cancer agent, but further exploration for clinical use is warranted due to its diverse mechanisms of action.
Collapse
Affiliation(s)
- Shabana Bano
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | - Ayush Srivastava
- Department of Neurological Surgery, University of California, San Francisco, CA 94158, USA
| | - Kasturi Bala Nayak
- Quantitative Biosciences Institute, Department of Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
17
|
Metwali E, Pennington S. Mass Spectrometry-Based Proteomics for Classification and Treatment Optimisation of Triple Negative Breast Cancer. J Pers Med 2024; 14:944. [PMID: 39338198 PMCID: PMC11432759 DOI: 10.3390/jpm14090944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Triple-negative breast cancer (TNBC) presents a significant medical challenge due to its highly invasive nature, high rate of metastasis, and lack of drug-targetable receptors, which together lead to poor prognosis and limited treatment options. The traditional treatment guidelines for early TNBC are based on a multimodal approach integrating chemotherapy, surgery, and radiation and are associated with low overall survival and high relapse rates. Therefore, the approach to treating early TNBC has shifted towards neoadjuvant treatment (NAC), given to the patient before surgery and which aims to reduce tumour size, reduce the risk of recurrence, and improve the pathological complete response (pCR) rate. However, recent studies have shown that NAC is associated with only 30% of patients achieving pCR. Thus, novel predictive biomarkers are essential if treatment decisions are to be optimised and chemotherapy toxicities minimised. Given the heterogeneity of TNBC, mass spectrometry-based proteomics technologies offer valuable tools for the discovery of targetable biomarkers for prognosis and prediction of toxicity. These biomarkers can serve as critical targets for therapeutic intervention. This review aims to provide a comprehensive overview of TNBC diagnosis and treatment, highlighting the need for a new approach. Specifically, it highlights how mass spectrometry-based can address key unmet clinical needs by identifying novel protein biomarkers to distinguish and early prognostication between TNBC patient groups who are being treated with NAC. By integrating proteomic insights, we anticipate enhanced treatment personalisation, improved clinical outcomes, and ultimately, increased survival rates for TNBC patients.
Collapse
Affiliation(s)
- Essraa Metwali
- School of Medicine, UCD Conway Institute for Biomolecular Research, University College Dublin, D04 C1P1 Dublin, Ireland;
- King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard, Jeddah-Makka Expressway, Jeddah 22384, Saudi Arabia
| | - Stephen Pennington
- School of Medicine, UCD Conway Institute for Biomolecular Research, University College Dublin, D04 C1P1 Dublin, Ireland;
| |
Collapse
|
18
|
Banerjee R, Maitra I, Bhattacharya T, Banerjee M, Ramanathan G, Rayala SK, Venkatraman G, Rajeswari D. Next-generation biomarkers for prognostic and potential therapeutic enhancement in Triple negative breast cancer. Crit Rev Oncol Hematol 2024; 201:104417. [PMID: 38901639 DOI: 10.1016/j.critrevonc.2024.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Triple-negative breast carcinoma (TNBC) is one of the most challenging subtypes of breast carcinoma and it has very limited therapeutic options as it is highly aggressive. The prognostic biomarkers are crucial for early diagnosis of the tumor, it also helps in anticipating the trajectory of the illness and optimizing the therapy options. Several therapeutic biomarkers are being used. Among them, the next-generation biomarkers that include Circulating tumor (ct) DNA, glycogen, lipid, and exosome biomarkers provide intriguing opportunities for enhancing the prognosis of TNBC. Lipid and glycogen biomarkers serve as essential details on the development of the tumor along with the efficacy of the treatment, as it exhibits metabolic alteration linked to TNBC. Several types of biomarkers have predictive abilities in TNBC. Elevated levels are associated with worse outcomes. ctDNA being a noninvasive biomarker reveals the genetic composition of the tumor, as well as helps to monitor the progression of the disease. Traditional therapies are ineffective in TNBC due to a lack of receptors, targeted drug delivery provides a tailored approach to overcome drug resistance and site-specific action by minimizing the side effects in TNBC treatment. This enhances therapeutic outcomes against the aggressive nature of breast cancer. This paper includes all the recent biomarkers which has been researched so far in TNBC and the state of art for TNBC which is explored.
Collapse
Affiliation(s)
- Risav Banerjee
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Indrajit Maitra
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Trisha Bhattacharya
- Department of Biotechnology, Indian Academy Degree College, Autonomous, Hennur cross, Kalyan Nagar, Bengaluru, Karnataka 560043, India
| | - Manosi Banerjee
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
| | - Ganesh Venkatraman
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Devi Rajeswari
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
19
|
Fang T, Hu S, Song X, Wang J, Zuo R, Yun S, Jiang S, Guo D. Combination of monensin and erlotinib synergistically inhibited the growth and cancer stem cell properties of triple-negative breast cancer by simultaneously inhibiting EGFR and PI3K signaling pathways. Breast Cancer Res Treat 2024; 207:435-451. [PMID: 38958784 DOI: 10.1007/s10549-024-07374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Cancer stem cells (CSCs) in triple-negative breast cancer (TNBC) are recognized as a highly challenging subset of cells, renowned for their heightened propensity for relapse and unfavorable prognosis. Monensin, an ionophoric antibiotic, has been reported to exhibit significant therapeutic efficacy against various cancers, especially CSCs. Erlotinib is classified as one of the EGFR-TKIs and has been previously identified as a promising therapeutic target for TNBC. Our research aims to assess the effectiveness of combination of monensin and erlotinib as a potential treatment strategy for TNBC. METHODS The combination of monensin and erlotinib was assessed for its potential anticancer activity through various in vitro assays, including cytotoxicity assay, colony formation assay, wound healing assay, transwell assay, mammosphere formation assay, and proportion of CSCs assay. Additionally, an in vivo study using tumor-bearing nude mice was conducted to evaluate the inhibitory effect of the monensin and erlotinib combination on tumor growth. RESULTS The results indicated that combination of monensin with erlotinib synergistically inhibited cell proliferation, the migration rate, the invasion ability and decreased the CSCs proportion, and CSC markers SOX2 and CD133 in vivo and in vitro. Furthermore, the primary proteins involved in the signaling pathways of the EGFR/ERK and PI3K/AKT are simultaneously inhibited by the combination treatment of monensin and erlotinib in vivo and in vitro. CONCLUSIONS The simultaneous inhibition of the EGFR/ERK and PI3K/AKT/mTOR signaling pathways by the combination of monensin and erlotinib exhibited a synergistic effect on suppressing tumor proliferation and cancer cell stemness in TNBC.
Collapse
Affiliation(s)
- Tian Fang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Department of Comparative Medicine, Affiliated Hospital of Medicine School, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Shiheng Hu
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xinhao Song
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Junqi Wang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Runan Zuo
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shifeng Yun
- Department of Comparative Medicine, Affiliated Hospital of Medicine School, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Shanxiang Jiang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| | - Dawei Guo
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
20
|
Liu X, Zhang J, Zhao J, Cheng Y, Jiang D. TSPAN1 overexpression as an indicator of poor prognosis in estrogen receptor-positive breast cancer. Transl Cancer Res 2024; 13:4159-4171. [PMID: 39262478 PMCID: PMC11385530 DOI: 10.21037/tcr-24-409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/25/2024] [Indexed: 09/13/2024]
Abstract
Background Tetraspanin 1 (TSPAN1) is a newly discovered protein of the tetrameric protein family encoded by the TSPAN1 gene localized in the 1p34 chromosome region. TSPAN1 has been shown to be associated with various malignancies. In this study, we aimed to investigate the prognostic significance of TSPAN1 in breast cancer. Estrogen receptor-positive (ER+) breast cancer is the largest breast cancer subgroup, and ER-targeted therapies have significantly prolonged survival and improved symptoms in advanced breast cancer. TSPAN1 overexpression was found to be associated with a poor prognosis in ER+ breast cancer. Methods We analyzed the expression of TSPAN1 in breast cancer tissues and cell lines using western blotting and quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results TSPAN1 expression was higher in breast cancer cells as compared with normal breast tissue. There was a significant association between a high TSPAN1 level and a low survival rate. Inhibition of TSPAN1 significantly reduced the proliferation and invasion of BT474 cells both in vitro and in vivo. The downregulation of TSPAN1 in breast cancer cells significantly reduced the levels of p-mitogen-activated protein kinase 1 (MEK1) (S298) and p-extracellular signal-regulating kinase (ERK) 1/2. Conclusions TSPAN1 modulates downstream extracellular matrix (ECM) receptor signaling cascades and promotes cellular proliferation and invasion in breast cancer. TSPAN1 inhibition may be a potential new treatment strategy for breast cancer.
Collapse
Affiliation(s)
- Xiangjuan Liu
- Department of Breast Surgery, Yantaishan Hospital, Yantai, China
| | - Jiahong Zhang
- Department of First General Surgery, Yantai Penglai People's Hospital, Yantai, China
| | - Jun Zhao
- Department of Oncology, Yantai Penglai People's Hospital, Yantai, China
| | - Yan Cheng
- Department of Breast Surgery, Yantaishan Hospital, Yantai, China
| | - Dandan Jiang
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
21
|
de Moraes FCA, Souza MEC, Sano VKT, Moraes RA, Melo AC. Association of tumor-infiltrating lymphocytes with clinical outcomes in patients with triple-negative breast cancer receiving neoadjuvant chemotherapy: a systematic review and meta-analysis. Clin Transl Oncol 2024:10.1007/s12094-024-03661-8. [PMID: 39154313 DOI: 10.1007/s12094-024-03661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE Triple-negative breast cancer (TNBC) presents a clinical challenge as an aggressive tumor, correlated with unfavorable prognosis. Tumor-infiltrating lymphocytes (TILs) have garnered interest as a potential prognostic biomarker. However, the disparity in outcomes between varying TILs rates remains inadequately explored. METHODS PubMed, Scopus, Web of Science, and Cochrane databases were searched for studies about the prognostic value of TILs in patients with TNBC receiving neoadjuvant chemotherapy. The hazard ratios (HRs) or odds ratios (ORs) were computed for binary endpoints, with 95% confidence intervals (CIs). RESULTS Twenty-nine studies were included, involving a population of six thousand one hundred sixty-one (80.41%) with TNBC. The cut-off TILs value ranged from 10 to 60%, with 50% being the most related value. Compared with the low-TIL expression group, the disease-free survival (DFS) (HR 0.71; 95% CI 0.61-0.82; p < 0.00001) and overall survival (OS) (HR 0.76; 95% CI 0.63-0.90; p = 0.002) rates showed significant improvement with higher TIL infiltrations. In the subgroup analyses of the lymphocyte subtypes CD4 + and CD8 + , there was statistical significance favoring higher TILs rates in both subtypes, each associated with improved DFS (HR 0.48; 95% CI 0.33-0.71; p = 0.0002) and OS (HR 0.53; 95% CI 0.36-0.78; p = 0.001), regardless of which cell subtype was predominantly infiltrated. The complete pathological response analysis showed better rates for the higher TIL group than the control for both the TIL (OR 1.29; 95% CI 1.13-1.48; p = 0.0003) and Ki-67 (OR 2.74; 95% CI 2.01-3.73; p < 0.00001) analyses. CONCLUSION Higher expressions of TILs in patients with TNBC were associated with improved significantly DFS, OS, and pCR outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Ana C Melo
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
22
|
Subhan MA, Torchilin VP. Advances in siRNA Drug Delivery Strategies for Targeted TNBC Therapy. Bioengineering (Basel) 2024; 11:830. [PMID: 39199788 PMCID: PMC11351222 DOI: 10.3390/bioengineering11080830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Among breast cancers, triple-negative breast cancer (TNBC) has been recognized as the most aggressive type with a poor prognosis and low survival rate. Targeted therapy for TNBC is challenging because it lacks estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Chemotherapy, radiation therapy, and surgery are the common therapies for TNBC. Although TNBC is prone to chemotherapy, drug resistance and recurrence are commonly associated with treatment failure. Combination therapy approaches using chemotherapy, mAbs, ADC, and antibody-siRNA conjugates may be effective in TNBC. Recent advances with siRNA-based therapy approaches are promising for TNBC therapy with better prognosis and reduced mortality. This review discusses advances in nanomaterial- and nanobiomaterial-based siRNA delivery platforms for TNBC therapy exploring targeted therapy approaches for major genes, proteins, and TFs upregulated in TNBC tumors, which engage in molecular pathways associated with low TNBC prognosis. Bioengineered siRNA drugs targeting one or several genes simultaneously can downregulate desired genes, significantly reducing disease progression.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Division of Nephrology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
23
|
Zhang R, Jiang Q, Zhuang Z, Zeng H, Li Y. A bibliometric analysis of drug resistance in immunotherapy for breast cancer: trends, themes, and research focus. Front Immunol 2024; 15:1452303. [PMID: 39188717 PMCID: PMC11345160 DOI: 10.3389/fimmu.2024.1452303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
While breast cancer treatments have advanced significantly nowadays, yet metastatic, especially triple-negative breast cancer (TNBC), remains challenging with low survival. Cancer immunotherapy, a promising approach for HER2-positive and TNBC, still faces resistance hurdles. Recently, numerous studies have set their sights on the resistance of immunotherapy for breast cancer. Our study provides a thorough comprehension of the current research landscape, hotspots, and emerging breakthroughs in this critical area through a meticulous bibliometric analysis. As of March 26, 2024, a total of 1341 articles on immunology resistance in breast cancer have been gathered from Web of Science Core Collection, including 765 articles and 576 reviews. Bibliometrix, CiteSpace and VOSviewer software were utilized to examine publications and citations per year, prolific countries, contributive institutions, high-level journals and scholars, as well as highly cited articles, references and keywords. The research of immunotherapy resistance in breast cancer has witnessed a remarkable surge over the past seven years. The United States and China have made significant contributions, with Harvard Medical School being the most prolific institution and actively engaging in collaborations. The most contributive author is Curigliano, G from the European Institute of Oncology in Italy, while Wucherpfennig, K. W. from the Dana-Farber Cancer Institute in the USA, had the highest citations. Journals highly productive primarily focus on clinical, immunology and oncology research. Common keywords include "resistance", "expression", "tumor microenvironment", "cancer", "T cell", "therapy", "chemotherapy" and "cell". Current research endeavors to unravel the mechanisms of immune resistance in breast cancer through the integration of bioinformatics, basic experiments, and clinical trials. Efforts are underway to develop strategies that improve the effectiveness of immunotherapy, including the exploration of combination therapies and advancements in drug delivery systems. Additionally, there is a strong focus on identifying novel biomarkers that can predict patient response to immunology. This study will provide researchers with an up-to-date overview of the present knowledge in drug resistance of immunology for breast cancer, serving as a valuable resource for informed decision-making and further research on innovative approaches to address immunotherapy resistance.
Collapse
Affiliation(s)
- Rendong Zhang
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Qiongzhi Jiang
- Department of Radiation Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhemin Zhuang
- Engineering College, Shantou University, Shantou, Guangdong, China
| | - Huancheng Zeng
- Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Yaochen Li
- The Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
24
|
Weem KW, Tong KC. Additional biomarkers for pathological complete response in triple negative breast cancer. Ther Adv Med Oncol 2024; 16:17588359241267148. [PMID: 39076844 PMCID: PMC11284770 DOI: 10.1177/17588359241267148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024] Open
Affiliation(s)
- Khui Wei Weem
- Manchester Royal Infirmary Hospital, Oxford Road, Manchester M13 9WL, UK
| | | |
Collapse
|
25
|
Enan ET, El Hafez AA, Hussin E, El Din Ismail Hany HS. Immunohistochemical Expression of Caspase1 and Epidermal Growth Factor Receptor in Invasive Breast Carcinoma and Their Biological and Prognostic Associations. Asian Pac J Cancer Prev 2024; 25:2529-2537. [PMID: 39068588 PMCID: PMC11480596 DOI: 10.31557/apjcp.2024.25.7.2529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Despite advances in breast carcinoma therapies, drug resistance mechanisms as anti-apoptosis and anti-pyroptosis limit the application of these therapies. This work assesses the immunohistochemical (IHC) expression of Caspase1 and EGFR in breast carcinoma and analyzes their clinicopathological associations as prognostic markers and potential therapeutic targets. Caspase1/EGFR expression patterns are utilized to specify breast carcinoma patients who may benefit from these therapies. METHODS After reviewing the hematoxylin and eosin-stained slides and the routine breast carcinoma IHC stains (estrogen receptors, progesterone receptors, HER2/NEU, Ki-67) by two pathologists and preparation of tissue microarray blocks, anti-Caspase-1 and EGFR IHC staining was performed using Horseradish Peroxidase (HRP) technique. Intensity and percentage-based scoring was applied dividing the 153 included breast carcinomas into Caspase1-negative and positive expression groups; and EGFR low and overexpression groups. Groups were statistically analyzed in relation to age, tumor size, histological and molecular subtype, grade, nodal status, metastasis/recurrence, TNM stage and Ki-67 proliferation index. Kaplan-Meier's analysis was used to compare disease-free survival (DFS) and overall survival (OS). Combined patterns based on Caspase1 and EGFR expression status were created to stratify patients into prognostic groups. RESULTS Caspase1 was positive in 54.2% of breast carcinomas and its positivity was significantly associated with smaller tumor size, absence of metastasis/recurrence, luminal A and B molecular subtypes and longer OS (p<0.05). EGFR overexpression was detected in 32.7% of carcinomas and was significantly associated with larger tumor size, TNBLBC and a shorter OS (p<0.05). Caspase1-negative/EGFR-overexpression pattern comprised 14.4% of carcinomas and had the worst prognostic associations including larger tumor size, metastasis/recurrence, TNBLBC subtype and shortest OS (p=0.002, 0.002, 0.004 and ≤0.001 respectively). Conclusions: Combined Caspase1/EGFR IHC expression may provide a tool for selection of patients who benefit from combined EGFR-inhibitors with miR-155-5p down-regulators or photodynamic therapy via induction of apoptosis/pyroptosis in EGFR-overexpression carcinomas through enhanced Caspase1 signaling.
Collapse
Affiliation(s)
- Eman Tawfik Enan
- Anatomic Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Amal Abd El Hafez
- Anatomic Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
- Faculty of Medicine, Horus University-Egypt (HUE), New Damietta, Egypt.
| | - Emadeldeen Hussin
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | |
Collapse
|
26
|
Xiao Y, Zhao X, Guo Y, Li Y. Expression and function of cytokine interleukin-22 gene in the tumor microenvironment of triple negative breast cancer. Cytokine 2024; 179:156590. [PMID: 38581864 DOI: 10.1016/j.cyto.2024.156590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) and interleukin-22 (IL-22) in cytokines have recently attracted much attention due to their potential impact on tumor biology. However, the role of IL-22 in triple negative breast cancer (TNBC) TME is still poorly understood. This article investigated the gene expression and function of IL-22 in TNBC TME. METHODS Tumor samples from TNBC patients were collected, and adjacent noncancerous tissues were used as controls. A functional test was performed to evaluate the impact of IL-22 for TNBC cells, including proliferation, migration, and apoptosis. RESULTS IL-22 gene expression in TNBC tumor samples was markedly higher relative to adjacent non-cancerous tissues (P < 0.05). In addition, it was also observed that IL-22facilitated proliferation and migration of TNBC cells, and inhibit apoptosis. This article reveals the role of IL-22 in the TME of TNBC. The up-regulation of IL-22 gene expression in TNBC tumors and its promoting effect on cancer cell invasiveness highlight its potential as a therapeutic target in TNBC treatment strategies. CONCLUSION The findings suggested that targeting IL-22 and its related pathways can offer new insights for developing effective therapies for TNBC.
Collapse
Affiliation(s)
- Yibin Xiao
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xia Zhao
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yihui Guo
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yanping Li
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
27
|
Sandoval-Ato R, Coral-Gonzales P, Coronel-Arias S, Espinoza-Mantilla L, Terrones-Chaparro G, Serna-Alarcón V. Clinical and radiological manifestations associated with triple-negative breast cancer in women from northern Peru. A case-control study. Ecancermedicalscience 2024; 18:1720. [PMID: 39021537 PMCID: PMC11254400 DOI: 10.3332/ecancer.2024.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 07/20/2024] Open
Abstract
Objective Triple-negative breast cancer (TNBC) has an aggressive clinical behaviour, with advanced stages at initial diagnostic evaluation, early recurrences and poor survival, so the purpose was to determine the clinical and radiological manifestations associated with TNBC. Materials and methods A case-control study in women diagnosed with breast cancer from January 2015 to August 2022 at the 'Instituto Regional de Enfermedades Neoplásicas del Norte'. We classified cases (Triple Negative subtype) and controls (Luminal A, Luminal B and HER2) according to immunohistochemistry ical analysis. Bivariate and multivariate logistic regression models were used to calculate the odds ratio (OR) with their respective 95% confidence intervals (CIs). Results The medical reports of 88 cases and 236 controls were reviewed. Cases were more likely to report pain (p = 0.001), nodules on ultrasound (p = 0.01) and mammography (p = 0.003), superior median size (p < 0.05), posterior enhancement (p = 0.001) and moderate density (p = 0.003). Multivariate analysis identified that TNBC was more likely to have a nodular type lesion by ultrasound (OR: 9.73, 95% CI: 1.10-86.16; p = 0.04), ultrasound lesion larger than 36 mm (OR: 4.99, 95% CI: 1.75-14.17; p = 0.003) and moderate density (OR: 3.83, 95% CI: 1.44-10.14; p = 0.007). Conclusion There are particular clinical and imaging manifestations of TNBC, showing that radiological lesions that presented characteristics in ultrasound as nodular type lesions larger than 36 mm and in mammography moderate grade density, were associated with this subtype of breast tumours in a Peruvian population.
Collapse
Affiliation(s)
- Raúl Sandoval-Ato
- Escuela de Posgrado, Facultad de Medicina, Universidad Privada Antenor Orrego, Trujillo 13008, Perú
- Unidad de Investigación Clínica, Scientia Clinical and Epidemiological Research Institute, Trujillo 13001, Perú
- https://orcid.org/0000-0001-8666-7188
| | - Patricia Coral-Gonzales
- Servicio de Radiodiagnóstico, Instituto Regional de Enfermedades Neoplásicas Norte, Trujillo 13008, Perú
- Escuela Profesional de Medicina, Facultad de Medicina, Universidad Privada Antenor Orrego, Trujillo 13008, Perú
- https://orcid.org/0000-0002-8734-4687
| | - Sebastian Coronel-Arias
- Servicio de Radiodiagnóstico, Instituto Regional de Enfermedades Neoplásicas Norte, Trujillo 13008, Perú
- https://orcid.org/0000-0002-2607-7191
| | - Luisa Espinoza-Mantilla
- Servicio de Radiodiagnóstico, Instituto Regional de Enfermedades Neoplásicas Norte, Trujillo 13008, Perú
- https://orcid.org/0000-0002-5465-7775
| | - Grace Terrones-Chaparro
- Servicio de Radiodiagnóstico, Instituto Regional de Enfermedades Neoplásicas Norte, Trujillo 13008, Perú
- https://orcid.org/0000-0001-6938-1401
| | - Victor Serna-Alarcón
- Escuela Profesional de Medicina, Facultad de Medicina, Universidad Privada Antenor Orrego, Trujillo 13008, Perú
- https://orcid.org/0000-0002-9803-6217
| |
Collapse
|
28
|
Sajjad F, Jalal A, Jalal A, Gul Z, Mubeen H, Rizvi SZ, Un-Nisa EA, Asghar A, Butool F. Multi-omic analysis of dysregulated pathways in triple negative breast cancer. Asia Pac J Clin Oncol 2024. [PMID: 38899578 DOI: 10.1111/ajco.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
The aggressive characteristics of triple-negative breast cancer (TNBC) and the absence of targeted medicines make TNBC a challenging clinical case. The molecular landscape of TNBC has been well-understood thanks to recent developments in multi-omic analysis, which have also revealed dysregulated pathways and possible treatment targets. This review summarizes the utilization of multi-omic approaches in elucidating TNBC's complex biology and therapeutic avenues. Dysregulated pathways including cell cycle progression, immunological modulation, and DNA damage response have been uncovered in TNBC by multi-omic investigations that integrate genomes, transcriptomics, proteomics, and metabolomics data. Methods like this pave the door for the discovery of new therapeutic targets, such as the EGFR, PARP, and mTOR pathways, which in turn direct the creation of more precise treatments. Recent developments in TNBC treatment strategies, including immunotherapy, PARP inhibitors, and antibody-drug conjugates, show promise in clinical trials. Emerging biomarkers like MUC1, YB-1, and immune-related markers offer insights into personalized treatment approaches and prognosis prediction. Despite the strengths of multi-omic analysis in offering a more comprehensive view and personalized treatment strategies, challenges exist. Large sample sizes and ensuring high-quality data remain crucial for reliable findings. Multi-omic analysis has revolutionized TNBC research, shedding light on dysregulated pathways, potential targets, and emerging biomarkers. Continued research efforts are imperative to translate these insights into improved outcomes for TNBC patients.
Collapse
Affiliation(s)
- Fatima Sajjad
- School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ahmer Jalal
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Amir Jalal
- Department of Biochemistry, Sahara Medical College, Narowal, Pakistan
| | - Zulekha Gul
- Environmental and Biological Science, Nanjing University of Science and Technology, Nanjing, China
| | - Hira Mubeen
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Seemal Zahra Rizvi
- Faculty of Sciences and Technology, University of Central Punjab, Lahore, Pakistan
| | - Ex Alim Un-Nisa
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| | - Andleeb Asghar
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Farah Butool
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University Lahore, Lahore, Pakistan
| |
Collapse
|
29
|
Malla R, Srilatha M, Muppala V, Farran B, Chauhan VS, Nagaraju GP. Neoantigens and cancer-testis antigens as promising vaccine candidates for triple-negative breast cancer: Delivery strategies and clinical trials. J Control Release 2024; 370:707-720. [PMID: 38744346 DOI: 10.1016/j.jconrel.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Immunotherapy is gaining prominence as a promising strategy for treating triple-negative breast cancer (TNBC). Neoantigens (neoAgs) and cancer-testis antigens (CTAs) are tumor-specific targets originating from somatic mutations and epigenetic changes in cancer cells. These antigens hold great promise for personalized cancer vaccines, as supported by preclinical and early clinical evidence in TNBC. This review delves into the potential of neoAgs and CTAs as vaccine candidates, emphasizing diverse strategies and delivery approaches. It also highlights the current status of vaccination modalities undergoing clinical trials in TNBC therapy. A comprehensive understanding of neoAgs, CTAs, vaccination strategies, and innovative delivery methods is crucial for optimizing neoAg-based immunotherapies in clinical practice.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, AP, India
| | - Veda Muppala
- Department of Neuroscience, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Batoul Farran
- Division of Hematology and Oncology, Department of Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Virander Singh Chauhan
- Molecular Medicine Group, Molecular Medicines International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
30
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
31
|
Zhang Z, Huo W, Li J. circATAD2 mitigates CD8 + T cells antitumor immune surveillance in breast cancer via IGF2BP3/m 6A/PD-L1 manner. Cancer Immunol Immunother 2024; 73:130. [PMID: 38748254 PMCID: PMC11096152 DOI: 10.1007/s00262-024-03705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Immune surveillance and chemotherapy sensitivity play critical functions in the tumorigenesis of breast cancer (BC). Emerging findings have indicated that circular RNA (circRNA) and N6-methyladenosine (m6A) both participate in the BC tumorigenesis. Here, present study aimed to investigate the roles of m6A-modified circATAD2 on BC and explore better understanding for BC precision therapeutic. Results reported that m6A-modifid circRNA (m6A-circRNA) microarray revealed the m6A-circRNA landscape in BC. M6A-modifid circATAD2 upregulated in BC samples and was closely correlated to poor prognosis. Functionally, circATAD2 promoted the immune evasion of BC cells and reduced the CD8+ T cells' killing effect. Mechanistically, MeRIP-seq unveiled the m6A modification in the 3'-UTR of PD-L1 mRNA, which was bound by circATAD2 and recognized by m6A reader IGF2BP3 to enhance PD-L1 mRNA stability and expression. In summary, these findings revealed the circATAD2/m6A/IGF2BP3/PD-L1 axis in BC immune surveillance, suggesting the potential that circATAD2 as a potential target for PD-L1-mediated BC.
Collapse
Affiliation(s)
- Zhiling Zhang
- Department of Breast Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030012, China.
| | - Wenjie Huo
- Department of Breast Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Jie Li
- Department of Breast Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| |
Collapse
|
32
|
Wood SJ, Gao Y, Lee JH, Chen J, Wang Q, Meisel JL, Li X. High tumor infiltrating lymphocytes are significantly associated with pathological complete response in triple negative breast cancer treated with neoadjuvant KEYNOTE-522 chemoimmunotherapy. Breast Cancer Res Treat 2024; 205:193-199. [PMID: 38286889 DOI: 10.1007/s10549-023-07233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
INTRODUCTION For patients with locally advanced triple negative breast cancer (TNBC), the standard of care is to administer the KEYNOTE-522 (K522) regimen, including chemotherapy and immunotherapy (pembrolizumab) given in the neoadjuvant setting. Pathological complete response (pCR) is more likely in patients who receive the K522 regimen than in patients who receive standard chemotherapy. Studies have shown that pCR is a strong predictor of long-term disease-free survival. However, factors predicting pCR to K522 are not well understood and require further study in real-world populations. METHODS We evaluated 76 patients who were treated with the K522 regimen at our institution. Twenty-nine pre-treatment biopsy slides were available for pathology review. Nuclear grade, Nottingham histologic grade, Ki-67, lymphovascular invasion, and tumor infiltrating lymphocytes (TIL) were evaluated in these 29 cases. For the cases that did not have available slides for review from pre-treatment biopsies, these variables were retrieved from available pathology reports. In addition, clinical staging, race, and BMI at the time of biopsy were retrieved from all 76 patients' charts. Binary logistic regression models were used to correlate these variables with pCR. RESULTS At the current time, 64 of 76 patients have undergone surgery at our institution following completion of K522 and 31 (48.4%) of these achieved pCR. In univariate analysis, only TIL was significantly associated with pCR (p = 0.014) and this finding was also confirmed in multivariate analysis, whereas other variables including age, race, nuclear grade, Nottingham grade, Ki-67, lymphovascular invasion, BMI, pre-treatment tumor size, and lymph node status were not associated with pCR (p > 0.1). CONCLUSION Our real-world data demonstrates high TIL is significantly associated with pCR rate in the K522 regimen and may potentially serve as a biomarker to select optimal treatment. The pCR rate of 48.4% in our study is lower than that reported in K522, potentially due to the smaller size of our study; however, this may also indicate differences between real-world data and clinical trial results. Larger studies are warranted to further investigate the role of immune cells in TNBC response to K522 and other treatment regimens.
Collapse
Affiliation(s)
- Sarah J Wood
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Yuan Gao
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Ji-Hoon Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jessica Chen
- Emory College of Arts and Sciences, Emory University, Atlanta, GA, USA
| | - Qun Wang
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Jane L Meisel
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
33
|
Ospital IA, Táquez Delgado MA, Nicoud MB, Corrêa MF, Borges Fernandes GA, Andrade IW, Lauretta P, Martínez Vivot R, Comba MB, Zanardi MM, Speisky D, Uriburu JL, Fernandes JPS, Medina VA. Therapeutic potential of LINS01 histamine H 3 receptor antagonists as antineoplastic agents for triple negative breast cancer. Biomed Pharmacother 2024; 174:116527. [PMID: 38579399 DOI: 10.1016/j.biopha.2024.116527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
The aims of this work were to evaluate the expression of histamine H3 receptor (H3R) in triple negative breast cancer (TNBC) samples and to investigate the antitumoral efficacy and safety of the LINS01 series of H3R antagonists, through in silico, in vitro, and in vivo approaches. Antitumor activity of LINS01009, LINS01010, LINS01022, LINS01023 was assayed in vitro in 4T1 and MDA-MB-231 TNBC cells (0.01-100 μM), and in vivo in 4T1 tumors orthotopically established in BALB/c mice (1 or 20 mg/kg). Additionally, H3R expression was assessed in 50 human TNBC samples. We have described a higher H3R mRNA expression in basal-like/TNBC tumors vs. matched normal tissue using TCGA Pan-Cancer Atlas data, and a higher H3R expression in human tumor samples vs. peritumoral tissue evidenced by immunohistochemistry associated with poorer survival. Furthermore, while all the essayed compounds showed antitumoral properties, LINS01022 and LINS01023 exhibited the most potent antiproliferative effects by: i) inducing cell apoptosis and suppressing cell migration in 4T1 and MDA-MB-231 TNBC cells, and ii) inhibiting cell growth in paclitaxel-resistant 4T1 cells (potentiating the paclitaxel antiproliferative effect). Moreover, 20 mg/kg LINS01022 reduced tumor size in 4T1 tumor-bearing mice, exhibiting a safe toxicological profile and potential for druggability estimated by ADME calculations. We conclude that the H3R is involved in the regulation of TNBC progression, offering promising therapeutic potential for the novel LINS01 series of H3R antagonists.
Collapse
Affiliation(s)
- Ignacio A Ospital
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Mónica A Táquez Delgado
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Melisa B Nicoud
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Michelle F Corrêa
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Isabela W Andrade
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Paolo Lauretta
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Rocío Martínez Vivot
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - María Betina Comba
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Rosario 2000, Argentina
| | - María Marta Zanardi
- Instituto de Investigaciones en Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Rosario 2000, Argentina
| | | | | | - João P S Fernandes
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Vanina A Medina
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina.
| |
Collapse
|
34
|
Szulc A, Woźniak M. Targeting Pivotal Hallmarks of Cancer for Enhanced Therapeutic Strategies in Triple-Negative Breast Cancer Treatment-In Vitro, In Vivo and Clinical Trials Literature Review. Cancers (Basel) 2024; 16:1483. [PMID: 38672570 PMCID: PMC11047913 DOI: 10.3390/cancers16081483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This literature review provides a comprehensive overview of triple-negative breast cancer (TNBC) and explores innovative targeted therapies focused on specific hallmarks of cancer cells, aiming to revolutionize breast cancer treatment. TNBC, characterized by its lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), presents distinct features, categorizing these invasive breast tumors into various phenotypes delineated by key elements in molecular assays. This article delves into the latest advancements in therapeutic strategies targeting components of the tumor microenvironment and pivotal hallmarks of cancer: deregulating cellular metabolism and the Warburg effect, acidosis and hypoxia, the ability to metastasize and evade the immune system, aiming to enhance treatment efficacy while mitigating systemic toxicity. Insights from in vitro and in vivo studies and clinical trials underscore the promising effectiveness and elucidate the mechanisms of action of these novel therapeutic interventions for TNBC, particularly in cases refractory to conventional treatments. The integration of targeted therapies tailored to the molecular characteristics of TNBC holds significant potential for optimizing clinical outcomes and addressing the pressing need for more effective treatment options for this aggressive subtype of breast cancer.
Collapse
Affiliation(s)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
35
|
Yang Q, Chen Z, Qiu Y, Huang W, Wang T, Song L, Sun X, Li C, Xu X, Kang L. Theranostic role of 89Zr- and 177Lu-labeled aflibercept in breast cancer. Eur J Nucl Med Mol Imaging 2024; 51:1246-1260. [PMID: 38135849 DOI: 10.1007/s00259-023-06575-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) has a poor prognosis due to the absence of effective therapeutic targets. Vascular endothelial growth factor (VEGF) family are expressed in 30-60% of TNBC, therefore providing potential therapeutic targets for TNBC. Aflibercept (Abe), a humanized recombinant fusion protein specifically bound to VEGF-A, B and placental growth factor (PIGF), has proven to be effective in the treatment in some cancers. Therefore, 89Zr/177Lu-labeled Abe was investigated for its theranostic role in TNBC. METHODS Abe was radiolabeled with 89Zr and 177Lu via the conjugation of chelators. Flow cytometry and cell immunofluorescent staining were performed to evaluate the binding affinity of Abe. Sequential PET imaging and fluorescent imaging were conducted in TNBC tumor bearing mice following the injection of 89Zr-labeled Abe and Cy5.5-labeled Abe. Treatment study was performed after the administration of 177Lu-labeled Abe. Tumor volume and survival were monitored and SPECT imaging and biodistribution studies were conducted. Safety evaluation was performed including body weight, blood cell measurement, and hematoxylin-eosin (H&E) staining of major organs. Expression of VEGF and CD31 was tested by immunohistochemical staining. Dosimetry was estimated using the OLINDA software. RESULTS FITC-labeled Abe showed a strong binding affinity to VEGF in TNBC 4T1 cells and HUVECs by flow cytometry and cell immunofluorescence. Tumor uptake of 89Zr-labeled Abe peaked at 120 h (SUVmax = 3.2 ± 0.64) and persisted before 168 h (SUVmax = 2.54 ± 0.42). The fluorescence intensity of the Cy5.5-labeled Abe group surpassed that of the Cy5.5-labeled IgG group, implying that Cy5.5-labeled Abe is a viable candidate monitoring in vivo tumor targeting and localization. 177Lu-labeled Abe (11.1 MBq) served well as the therapeutic component to suppress tumor growth with standardized tumor volume at 16 days, significantly smaller than PBS group (about 815.66 ± 3.58% vs 3646.52 ± 11.10%, n = 5, P < 0.01). Moreover, SPECT images confirmed high contrast between tumors and normal organs, indicating selective tumor uptake of 177Lu-labeled Abe. No discernible abnormalities in blood cells, and no evident histopathological abnormality observed in liver, spleen, and kidney. Immunohistochemical staining showed that 177Lu-labeled Abe effectively inhibited the expression of VEGF and CD31 of tumor, suggesting that angiogenesis may be suppressed by 177Lu-labeled Abe. The whole-body effective dose for an adult human was estimated to be 0.16 mSv/MBq. CONCLUSION 89Zr/177Lu-labeled Abe could be a TNBC-specific marker with diagnostic value and provide insights into targeted therapy in the treatment of TNBC. Further clinical evaluation and translation may be of high significance for TNBC.
Collapse
Affiliation(s)
- Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Yongkang Qiu
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Tianyao Wang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Lele Song
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Xinyao Sun
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China
| | - Cuicui Li
- Department of Nuclear Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University, 95 Yong'an Rd., Xicheng Dist., Beijing, 100050, China.
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, No. 8 Xishiku Str., Xicheng Dist., Beijing, 100034, China.
| |
Collapse
|
36
|
Li Z, Liu Q, Cai Y, Ye N, He Z, Yao Y, Ding Y, Wang P, Qi C, Zheng L, Wang L, Zhou J, Zhang QQ. EPAC inhibitor suppresses angiogenesis and tumor growth of triple-negative breast cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167114. [PMID: 38447883 DOI: 10.1016/j.bbadis.2024.167114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
AIMS Exchange protein directly activated by cAMP 1 (EPAC1), a major isoform of guanine nucleotide exchange factors, is highly expressed in vascular endothelia cells and regulates angiogenesis in the retina. High intratumor microvascular densities (MVD) resulting from angiogenesis is responsible for breast cancer development. Downregulation of EPAC1 in tumor cell reduces triple-negative breast cancer (TNBC)-induced angiogenesis. However, whether Epac1 expressed in vascular endothelial cells contributes to angiogenesis and tumor development of TNBC remains elusive. MAIN METHODS We employed NY0123, a previously identified potent EPAC inhibitor, to explore the anti-angiogenic biological role of EPAC1 in vitro and in vivo through vascular endothelial cells, rat aortic ring, Matrigel plug, and chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) assays, as well as the in vivo xenograft tumor models of TNBC in both chick embryo and mice. KEY FINDINGS Inhibiting EPAC1 in vascular endothelial cells by NY0123 significantly suppresses angiogenesis and tumor growth of TNBC. In addition, NY0123 possesses a better inhibitory efficacy than ESI-09, a reported specific EPAC inhibitor tool compound. Importantly, inhibiting EPAC1 in vascular endothelia cells regulates the typical angiogenic signaling network, which is associated with not only vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor-2 (VEGFR2) signaling, but also PI3K/AKT, MEK/ERK and Notch pathway. CONCLUSIONS Our findings support that EPAC1 may serve as an effective anti-angiogenic therapeutic target of TNBC, and EPAC inhibitor NY0123 has the therapeutic potential to be developed for the treatment of TNBC.
Collapse
Affiliation(s)
- Zishuo Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiao Liu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuhao Cai
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Zinan He
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuying Yao
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Ding
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Cuiling Qi
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lingyun Zheng
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lijing Wang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States.
| | - Qian-Qian Zhang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
37
|
Wang Y, Bu N, Luan XF, Song QQ, Ma BF, Hao W, Yan JJ, Wang L, Zheng XL, Maimaitiyiming Y. Harnessing the potential of long non-coding RNAs in breast cancer: from etiology to treatment resistance and clinical applications. Front Oncol 2024; 14:1337579. [PMID: 38505593 PMCID: PMC10949897 DOI: 10.3389/fonc.2024.1337579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Breast cancer (BC) is the most common malignancy among women and a leading cause of cancer-related deaths of females worldwide. It is a complex and molecularly heterogeneous disease, with various subtypes that require different treatment strategies. Despite advances in high-resolution single-cell and multinomial technologies, distant metastasis and therapeutic resistance remain major challenges for BC treatment. Long non-coding RNAs (lncRNAs) are non-coding RNAs with more than 200 nucleotides in length. They act as competing endogenous RNAs (ceRNAs) to regulate post-transcriptional gene stability and modulate protein-protein, protein-DNA, and protein-RNA interactions to regulate various biological processes. Emerging evidence suggests that lncRNAs play essential roles in human cancers, including BC. In this review, we focus on the roles and mechanisms of lncRNAs in BC progression, metastasis, and treatment resistance, and discuss their potential value as therapeutic targets. Specifically, we summarize how lncRNAs are involved in the initiation and progression of BC, as well as their roles in metastasis and the development of therapeutic resistance. We also recapitulate the potential of lncRNAs as diagnostic biomarkers and discuss their potential use in personalized medicine. Finally, we provide lncRNA-based strategies to promote the prognosis of breast cancer patients in clinical settings, including the development of novel lncRNA-targeted therapies.
Collapse
Affiliation(s)
- Yun Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Bu
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-fei Luan
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian-qian Song
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ba-Fang Ma
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Wenhui Hao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing-jing Yan
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Wang
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-ling Zheng
- Department of Pharmacy, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yasen Maimaitiyiming
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Women’s Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
38
|
Ou X, Tan Y, Xie J, Yuan J, Deng X, Shao R, Song C, Cao X, Xie X, He R, Li Y, Tang H. Methylation of GPRC5A promotes liver metastasis and docetaxel resistance through activating mTOR signaling pathway in triple negative breast cancer. Drug Resist Updat 2024; 73:101063. [PMID: 38335844 DOI: 10.1016/j.drup.2024.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
AIMS This study aims to explore the function and mechanism of G Protein-coupled receptor class C group 5 member A (GPRC5A) in docetaxel-resistance and liver metastasis of breast cancer. METHODS Single-cell RNA transcriptomic analysis and bioinformatic analysis are used to screen relevant genes in breast cancer metastatic hepatic specimens. MeRIP, dual-luciferase analysis and bioinformation were used to detect m6A modulation. Mass spectrometry (MS), co-inmunoprecipitation (co-IP) and immunofluorescence colocalization were executed to explore the mechanism of GPRC5A in breast cancer cells. RESULT GPRC5A was upregulated in triple-negative breast cancer (TNBC) and was associated with a poor prognosis. In vitro and in vivo experiments demonstrated that knockdown of GPRC5A alleviated metastasis and resistance to docetaxel in TNBC. Overexpression of GPRC5A had the opposite effects. The m6A methylation of GPRC5A mRNA was modulated by METTL3 and YTHDF1, which facilitates its translation. GPRC5A inhibited the ubiquitination-dependent degradation of LAMTOR1, resulting in the recruitment of mTORC1 to lysosomes and activating the mTORC1/p70s6k signaling pathway. CONCLUSION METTL3/YTHDF1 axis up-regulates GPRC5A expression by m6A methylation. GPRC5A activates mTORC1/p70s6k signaling pathway by recruiting mTORC1 to lysosomes, consequently promotes docetaxel-resistance and liver metastasis.
Collapse
Affiliation(s)
- Xueqi Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yeru Tan
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ruonan Shao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xi Cao
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rongfang He
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yuehua Li
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
39
|
Hu Z, Wang N, Zhang Y, Zhang D, Sun S, Yu H, Lin Y, Zhao X, Wang H, Wu X, Ichiki Y, Watanabe S, Gong Z, Chang J, Wang J. PD-L1 mRNA derived from tumor-educated platelets as a potential immunotherapy biomarker in non-small cell lung cancer. Transl Lung Cancer Res 2024; 13:345-354. [PMID: 38496687 PMCID: PMC10938106 DOI: 10.21037/tlcr-24-29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Background To date, the role of programmed death ligand-1 (PD-L1) messenger RNA (mRNA) derived from tumor-educated platelets (TEPs) has not been well investigated in patients with advanced non-small cell lung cancer (NSCLC). A few reports have examined whether mRNA in TEPs can predict the clinical responses of patients with advanced NSCLC following immunotherapy. This study aimed to identify novel biomarkers to improve the clinical benefits and outcomes of NSCLC patients. Methods Advanced NSCLC patients receiving a combination of immunotherapy and chemotherapy, or immunotherapy alone as a first- or second-line treatment at the Fudan University Shanghai Cancer Center were enrolled in this study. All the patients had wild-type epidermal growth factor receptor/anaplastic lymphoma kinase. The patients were enrolled in clinical trials for immune checkpoint inhibitors (ICIs), including nivolumab, pembrolizumab, atezolizumab, durvalumab, tremelimumab, and camrelizumab. Tumoral PD-L1 expression was tested by immunohistochemistry (PD-L1 22C3 pharmDx kit, Agilent, Santa Clara, CA, USA) in archived tissue samples, when available, to calculate the tumor proportion scores (TPSs). RNA and exosomal RNA of blood were isolated before immunotherapy using the Yunying RNA extraction kit (Yunying Medicine, Shanghai, China). The concentration and quality of the RNA was determined using a Qubit fluorometer (Life Technologies, Carlsbad, CA, USA). Finally, we analyzed the predictive value of TEP-derived PD-L1 mRNA expression and association with the level of the tumoral PD-L1 expression. Results In total, 72 patients were enrolled in this study. Most of the patients were male (n=54, 75.0%), had adenocarcinoma (n=49, 68.1%). We found there was no significant correlation between the TEP-derived mRNA of PD-L1 and tumoral PD-L1 expression based on the results of the Pearson Correlation test (r=-0.19, P=0.233). Based on the median of PD-L1 mRNA, 72 patients were divided into a high PD-L1 group and a low PD-L1 group. We found that 19 patients (44.4%) responded to immunotherapy [partial response or progression-free survival (PFS) >6 months] in the high PD-L1 group, but only five patients (13.9%) responded to immunotherapy in the low PD-L1 group (P<0.01). The median PFS of the low PD-L1 group was lower than that of the high PD-L1 group (2.8 vs. 8.3 months, P<0.001). For the patients who were treated with immunotherapy alone (n=64), a similar PFS advantage was observed in the high PD-L1 group (2.8 vs. 8.0 months, P=0.002). Conclusions This article presented the first data on TEP-derived PD-L1 mRNA in advanced NSCLC patients following immunotherapy and showed the potential advantage of using it as the surrogate biomarker for predicting the PFS and overall survival of patients following immunotherapy.
Collapse
Affiliation(s)
- Zhihuang Hu
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Na Wang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yao Zhang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | | | - Si Sun
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Hui Yu
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Ying Lin
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Xinmin Zhao
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Huijie Wang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Xianghua Wu
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Yoshinobu Ichiki
- Department of General Thoracic Surgery, Saitama Medical Center, Hidaka, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Jianhua Chang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Medical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, China
| | - Jialei Wang
- Department of Thoracic Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Thoracic Oncology, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Deng M, Tang F, Chang X, Liu P, Ji X, Hao M, Wang Y, Yang R, Ma Q, Zhang Y, Miao J. Immunotherapy for Ovarian Cancer: Disappointing or Promising? Mol Pharm 2024; 21:454-466. [PMID: 38232985 DOI: 10.1021/acs.molpharmaceut.3c00986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Ovarian cancer, one of the deadliest malignancies, lacks effective treatment, despite advancements in surgical techniques and chemotherapy. Thus, new therapeutic approaches are imperative to improving treatment outcomes. Immunotherapy, which has demonstrated considerable success in managing various cancers, has already found its place in clinical practice. This review aims to provide an overview of ovarian tumor immunotherapy, including its basics, key strategies, and clinical research data supporting its potential. In particular, this discussion highlights promising strategies such as checkpoint inhibitors, vaccines, and pericyte transfer, both individually and in combination. However, the advancement of new immunotherapies necessitates large controlled randomized trials, which will undoubtedly shape the future of ovarian cancer treatment.
Collapse
Affiliation(s)
- Mengqi Deng
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Fan Tang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Xiangyu Chang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Penglin Liu
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Xuechao Ji
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Menglin Hao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Yixiao Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Ruiye Yang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| | - Qingqing Ma
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
- Nanyuan Hospital of Fengtai District, Beijing 100006, China
| | - Yubo Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Shandong 266011, China
| | - Jinwei Miao
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China
| |
Collapse
|
41
|
Piedra-Delgado L, Chambergo-Michilot D, Morante Z, Fairen C, Jerves-Coello F, Luque-Benavides R, Casas F, Bustamante E, Razuri-Bustamante C, Torres-Roman JS, Fuentes H, Gomez H, Narvaez-Rojas A, De la Cruz-Ku G, Araujo J. Survival according to the site of metastasis in triple-negative breast cancer patients: The Peruvian experience. PLoS One 2024; 19:e0293833. [PMID: 38300959 PMCID: PMC10833533 DOI: 10.1371/journal.pone.0293833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/19/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Evidence regarding differences in survival associated with the site of metastasis in triple-negative breast cancer (TNBC) remains limited. Our aim was to analyze the overall survival (OS), distant relapse free survival (DRFS), and survival since the diagnosis of the relapse (MS), according to the side of metastasis. METHODS This was a retrospective study of TNBC patients with distant metastases at the Instituto Nacional de Enfermedades Neoplasicas (Lima, Peru) from 2000 to 2014. Prognostic factors were determined by multivariate Cox regression analysis. RESULTS In total, 309 patients were included. Regarding the type of metastasis, visceral metastasis accounted for 41% and the lung was the most frequent first site of metastasis (33.3%). With a median follow-up of 10.2 years, the 5-year DRFS and OS were 10% and 26%, respectively. N staging (N2-N3 vs. N0, HR = 1.49, 95%CI: 1.04-2.14), metastasis in visceral sites (vs. bone; HR = 1.55, 95%CI: 0.94-2.56), the central nervous system (vs. bone; HR = 1.88, 95% CI: 1.10-3.22), and multiple sites (vs. bone; HR = 2.55, 95%CI:1.53-4.25) were prognostic factors of OS whereas multiple metastasis (HR = 2.30, 95% CI: 1.42-3.72) was a predictor of MS. In terms of DRFS, there were no differences according to metastasis type or solid organ. CONCLUSION TNBC patients with multiple metastasis and CNS metastasis have an increased risk of death compared to those with bone metastasis in terms of OS and MS.
Collapse
Affiliation(s)
| | | | - Zaida Morante
- Departamento de Oncología Médica, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Carlos Fairen
- Boston Medical Center, Boston, Massachusetts, United States of America
| | | | | | - Fresia Casas
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | | | - Hugo Fuentes
- Departamento de Oncología Médica, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Henry Gomez
- Departamento de Oncología Médica, Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú
| | - Alexis Narvaez-Rojas
- Department of Surgical Oncology, Miller School of Medicine, University Of Miami, Miami, Florida, United States of America
| | | | - Jhajaira Araujo
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Chorrillos, Lima, Peru
| |
Collapse
|
42
|
Sun Q, Yang J, Wu Q, Shen W, Yang Y, Yin D. Targeting Lysosome for Enhanced Cancer Photodynamic/Photothermal Therapy in a "One Stone Two Birds" Pattern. ACS APPLIED MATERIALS & INTERFACES 2024; 16:127-141. [PMID: 38118049 DOI: 10.1021/acsami.3c13162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Highly immunogenic programmed death of tumor cells, such as immunogenic cell death (ICD) and pyroptosis, strengthens antitumor responses and thus represents a promising target for cancer immunotherapy. However, the development of ICD and pyroptosis inducers remains challenging, and their efficiency is typically compromised by self-protective autophagy. Here, we report a potent ICD and pyroptosis-inducing strategy by coupling combined photodynamic/photothermal therapy (PTT/PDT) to biological processes in cancer cells. For this purpose, we rationally synthesize a lysosomal-targeting boron-dipyrromethene dimer (BDPd) with intense NIR absorption/emission, high reactive oxygen species (ROS) yield, and photothermal abilities, which can be self-assembled with Pluronic F127, producing lysosomal-acting nanomicelles (BDPd NPs) to facilitate cancer cell internalization of BDPd and generation of intracellular ROS. Owing to the favorable lysosomal-targeting ability of the morpholine group on BDPd, the intracellular BDPd NPs can accumulate in the lysosome and induce robust lysosomal damage in cancer cells upon 660 nm laser irradiation, which results in the synergetic induction of pyroptosis and ICD via activating NLRP3/GSDMD and caspase-3/GSDME pathways simultaneously. More importantly, PTT/PDT-induced self-protective autophagic degradation was blocked due to the dysfunction of lysosomes. Either intratumorally or intravenously, the injected BDPd NPs could markedly inhibit the growth of established tumor tissues upon laser activation, provoke local and systemic antitumor immune responses, and prolong the survival time in the mouse triple-negative breast cancer model. Collectively, this work represents a promising strategy to boost the therapeutic potential of PTT/PDT by coupling phototherapeutic reagents with the subcellular organelles, creating a "one stone two birds" pattern.
Collapse
Affiliation(s)
- Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Jinming Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
- Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021 ,China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230031, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
- Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei 230021 ,China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
| |
Collapse
|
43
|
Zaluzec EK, Sempere LF. Systemic and Local Strategies for Primary Prevention of Breast Cancer. Cancers (Basel) 2024; 16:248. [PMID: 38254741 PMCID: PMC10814018 DOI: 10.3390/cancers16020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
One in eight women will develop breast cancer in the US. For women with moderate (15-20%) to average (12.5%) risk of breast cancer, there are few options available for risk reduction. For high-risk (>20%) women, such as BRCA mutation carriers, primary prevention strategies are limited to evidence-based surgical removal of breasts and/or ovaries and anti-estrogen treatment. Despite their effectiveness in risk reduction, not many high-risk individuals opt for surgical or hormonal interventions due to severe side effects and potentially life-changing outcomes as key deterrents. Thus, better communication about the benefits of existing strategies and the development of new strategies with minimal side effects are needed to offer women adequate risk-reducing interventions. We extensively review and discuss innovative investigational strategies for primary prevention. Most of these investigational strategies are at the pre-clinical stage, but some are already being evaluated in clinical trials and others are expected to lead to first-in-human clinical trials within 5 years. Likely, these strategies would be initially tested in high-risk individuals but may be applicable to lower-risk women, if shown to decrease risk at a similar rate to existing strategies, but with minimal side effects.
Collapse
Affiliation(s)
- Erin K. Zaluzec
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology & Toxicology, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Lorenzo F. Sempere
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
44
|
Ekemen S, Bilir E, Soultan HEA, Zafar S, Demir F, Tabandeh B, Toprak S, Yapicier O, Coban C. The Programmed Cell Death Ligand 1 and Lipocalin 2 Expressions in Primary Breast Cancer and Their Associations with Molecular Subtypes and Prognostic Factors. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:1-13. [PMID: 38192518 PMCID: PMC10771776 DOI: 10.2147/bctt.s444077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Purpose Breast cancers exhibit molecular heterogeneity, leading to diverse clinical outcomes and therapeutic responses. Immune checkpoint inhibitors targeting PD-L1 have shown promise in various malignancies, including breast cancer. Lipocalin 2 (LCN2) has also been associated with tumor aggressiveness and prognostic potential in breast cancers. However, the expression of PD-L1 and LCN2 in breast cancer subtypes and their prognostic implications remains poorly investigated. Methods A retrospective analysis of 89 primary breast cancer cases was conducted to assess PD-L1 and LCN2 expressions using immunohistochemistry. Cases were classified into four different molecular subtypes based on ER, PR, HER2, and Ki-67 status. Associations between PD-L1 and LCN2 expressions and various prognostic factors were examined. Results Although low expression of LCN2 (Allred score of <3) was observed even in normal breast tissue, LCN2 expression with increasing Allred score (≥3) positively correlated with the histological grade, high Ki-67 proliferation index, and ER/PR negativity. Significant elevations of LCN2 and PD-L1 expressions were observed in triple-negative and HER2-positive breast cancers. Conclusion The results of the study highlight the association of LCN2 with known prognostic factors and molecular subtypes. To identify potential immunotherapy recipients, it would be useful to evaluate LCN2 as well as PD-L1 immune targets in different subgroups of breast cancer patients. Further studies with larger patient numbers are warranted to validate these observations and establish standardized scoring criteria for LCN2 expression assessment.
Collapse
Affiliation(s)
- Suheyla Ekemen
- Vocational School of Health Services, Acibadem University, Istanbul, Turkey
- Division of Malaria Immunology, Department of Microbiology and Immunology, Institute of Medical Science (IMSUT), the University of Tokyo, Tokyo, Japan
| | - Ebru Bilir
- Residency Program, Bahcesehir University School of Medicine, Istanbul, Turkey
| | | | - Sadia Zafar
- Residency Program, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Figen Demir
- Department of Public Health, Acibadem University School of Medicine, Istanbul, Turkey
| | - Babek Tabandeh
- Department of General Surgery, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Sadik Toprak
- Department of Forensic Medicine, Istanbul University School of Medicine, Istanbul, Turkey
| | - Ozlem Yapicier
- Department of Pathology, Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Cevayir Coban
- Division of Malaria Immunology, Department of Microbiology and Immunology, Institute of Medical Science (IMSUT), the University of Tokyo, Tokyo, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
- International Vaccine Design Center, Institute of Medical Science (IMSUT), the University of Tokyo, Tokyo, Japan
| |
Collapse
|
45
|
Khan M, Sunkara V, Yadav M, Bokhari SFH, Rehman A, Maheen A, Shehryar A, Chilla SP, Nasir M, Niaz H, Choudhari J, Anika NN, Amir M. Ferroptosis and Triple-Negative Breast Cancer: A Systematic Overview of Prognostic Insights and Therapeutic Potential. Cureus 2024; 16:e51719. [PMID: 38318597 PMCID: PMC10838809 DOI: 10.7759/cureus.51719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
In the realm of oncology, the prognosis and treatment of triple-negative breast cancer (TNBC) have long been challenges for researchers and clinicians. Characterized by its aggressive nature and limited therapeutic options, TNBC demands innovative approaches to understanding its underlying mechanisms and improving patient outcomes. One such avenue of exploration that has emerged in recent years is the study of ferroptosis, a form of regulated cell death driven by iron-dependent lipid peroxidation. Ferroptosis has garnered increasing attention due to its potential relevance in the context of TNBC. This systematic review aims to shed light on the intricate interplay between ferroptosis and the prognosis of TNBC. The article delves into a comprehensive examination of the existing literature to provide a holistic understanding of the subject. By investigating ferroptosis as both an intervention and a prognostic factor in TNBC, this article seeks to unravel its potential as a therapeutic target and prognostic marker. The emerging evidence and heterogeneity of ferroptosis in TNBC underscore the need for a systematic approach to assess its impact on patient outcomes. This review will serve as a valuable resource for researchers, clinicians, and healthcare professionals striving to enhance our knowledge of TNBC and explore novel avenues for prognosis and treatment.
Collapse
Affiliation(s)
- Mohsin Khan
- Interventional Radiology, Musgrove Park Hospital, Taunton, GBR
| | | | - Mansi Yadav
- Internal Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, IND
| | | | | | - Azka Maheen
- Medicine, Gomal Medical College, Dera Ismail Khan, PAK
| | | | - Srikar P Chilla
- Medicine, Care Hospitals, Hyderabad, IND
- School of Health Sciences, University of East London, London, GBR
| | - Maheen Nasir
- Anesthesiology, National University of Medical Sciences, Lahore, PAK
| | - Humaira Niaz
- Internal Medicine, Peshawar Medical College, Peshawar, PAK
| | - Jinal Choudhari
- Research & Academic Affairs, Larkin Community Hospital, Miami, USA
| | - Nabila N Anika
- Medicine, Holy Family Red Crescent Medical College and Hospital, Dhaka, BGD
| | - Maaz Amir
- Internal Medicine, King Edward Medical University, Lahore, PAK
| |
Collapse
|
46
|
Yu B, Luo J, Yang Y, Zhen K, Shen B. Novel molecular insights into pyroptosis in triple-negative breast cancer prognosis and immunotherapy. J Gene Med 2024; 26:e3645. [PMID: 38041540 DOI: 10.1002/jgm.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Patients with triple-negative breast cancer (TNBC) often have a poor prognostic outcome. Current treatment strategies cannot benefit all TNBC patients. Previous findings suggested pyroptosis as a novel target for suppressing cancer development, although the relationship between TNBC and pyroptosis-related genes (PRGs) was still unclear. METHODS Gene expression data and clinical follow-up of TNBC patients were collected from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO). PRGs were screened using weighted gene co-expression network analysis. Cox regression analysis and the least absolute shrinkage and selection operator (i.e. LASSO) technique were applied to construct a pyroptosis-related prognostic risk score (PPRS) model, which was further combined with the clinicopathological characteristics of TNBC patients to develop a survival decision tree and a nomogram. The model was used to calculate the PPRS, and then the overall survival, immune infiltration, immunotherapy response and drug sensitivity of TNBC patients were analyzed based on the PPRS. RESULTS The PPRS model was closely related to clinicopathological features and can independently and accurately predict the prognosis of TNBC. According to normalized PPRS, patients in different cohorts were divided into two groups. Compared with the high-PPRS group, the low-PPRS group had significantly higher ESTIMATE (i.e. Estimation of STromal and Immune cells in MAlignantTumours using Expression data) score, immune score and stromal score, and it also had overexpressed immune checkpoints and significantly reduced Tumor Immune Dysfunction and Exclusion (TIDE) score, as well as higher sensitivity to paclitaxel, veliparib, olaparib and talazoparib. A decision tree and nomogram based on PPRS and clinical characteristics can improve the prognosis stratification and survival prediction for TNBC patients. CONCLUSIONS A PPRS model was developed to predict TNBC patients' immune characteristics and response to immunotherapy, chemotherapy and targeted therapy, as well as their survival outcomes.
Collapse
Affiliation(s)
- Bin Yu
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Luo
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifei Yang
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Zhen
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Binjie Shen
- Linping Campus, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
47
|
Huang X, Huang J, Huang Q, Zhou S. A ten long noncoding RNA-based prognostic risk model construction and mechanism study in the basal-like immune-suppressed subtype of triple-negative breast cancer. Transl Cancer Res 2023; 12:3653-3671. [PMID: 38193005 PMCID: PMC10774046 DOI: 10.21037/tcr-23-147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/21/2023] [Indexed: 01/10/2024]
Abstract
Background According to the Fudan University Shanghai Cancer Center (FUSCC) system, triple-negative breast cancer (TNBC) is divided into four stable subtypes: (I) luminal androgen receptor, (II) immunomodulatory, (III) basal-like immune-suppressed (BLIS), and (IV) mesenchymal-like. However, the treatment outcomes of the corresponding targeted therapies are unsatisfactory, especially for the BLIS subtype. Therefore, we aimed to identify the key long noncoding RNAs (lncRNAs) to construct a prognostic model for BLIS subtype and discover potential targets to explore potential therapeutic strategies in this study. Methods The FUSCC cohort was used to establish a prognostic risk model via least absolute shrinkage and selection operator (LASSO) and Cox regression analysis. The Cancer Genome Atlas (TCGA) cohort was then used to evaluate and verify the model. To understand the functional aspects of the model, functional, immune landscape, mutation, and drug sensitivity analyses were performed between high- and low-risk groups. Results Ten prognostic-related lncRNAs identified, including C5ORF66-AS2, DIO3OS, FZD10-DT, LINC00393, LNC-ERI1-32, LNC-FOXO1-2, LNC-SPARCL1-1, HCG23, LNC-MMD-4 and LNC-TMEM106C-6, were selected for risk score system construction. The results showed that the model constructed could divide the patients with BLIS subtype into two groups of high and low risk, and patients with higher risk scores had shorter recurrence-free survival. In addition, drug sensitivity analysis identified 3 compounds, including BMS-754807, cytochalasin b, and linifanib, that could have a potential therapeutic effect on patients with the BLIS subtype. Conclusions The risk prognosis model showed good prognostic value for the BLIS subtype patients, and the ten lncRNAs may be potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoying Huang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jinlong Huang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiuyan Huang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shihao Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
48
|
Williams NO, Quiroga D, Johnson C, Brufsky A, Chambers M, Bhattacharya S, Patterson M, Sardesai SD, Stover D, Lustberg M, Noonan AM, Cherian M, Bystry DM, Hill KL, Chen M, Phelps MA, Grever M, Stephens JA, Ramaswamy B, Carson WE, Wesolowski R. Phase Ib study of HSP90 inhibitor, onalespib (AT13387), in combination with paclitaxel in patients with advanced triple-negative breast cancer. Ther Adv Med Oncol 2023; 15:17588359231217976. [PMID: 38152697 PMCID: PMC10752118 DOI: 10.1177/17588359231217976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023] Open
Abstract
Background Heat shock protein 90 (HSP90) is a molecular chaperone required for stabilization of client proteins over-activated in triple-negative breast cancer (TNBC). Over-expression of HSP90 client proteins has been implicated in paclitaxel resistance. Onalespib (AT13387) is a potent inhibitor of HSP90 that could improve paclitaxel efficacy when administered in combination. Design This phase Ib trial administered onalespib with paclitaxel in patients with advanced TNBC to assess safety and establish a recommended phase II dose (RP2D). Objectives The primary objectives were determining the dose-limiting toxicities and maximum tolerated dose of combination therapy. Secondary objectives included pharmacokinetic (PK) analysis and determination of overall response rate (ORR), duration of response (DOR), and progression-free survival (PFS). Methods Patients with advanced TNBC were treated with standard dose intravenous paclitaxel in combination with intravenous onalespib at doses ranging from 120 to 260 mg/m2 administered on days 1, 8, and 15 of a 28-day cycle using a standard 3 + 3 design. A total of 15 patients were enrolled to dose expansion cohort at RP2D to confirm safety profile. Results Thirty-one patients were enrolled in the study, of which over 90% had received prior taxane therapy. Paclitaxel was given for metastatic disease in 23% of patients. Adverse events (AEs) included anemia (grade 3: 20%), lymphopenia (grade 3: 17%), and neutropenia (grade 3: 33%, grade 4: 4%). The most frequent grade ⩾3 non-hematologic AE was diarrhea (7%). The established RP2D was 260 mg/m2 onalespib when given with paclitaxel at 80 mg/m2. PK analysis revealed a modest drug interaction profile for onalespib in the combination regimen. ORR was 20%. Three patients achieved complete responses, all of whom had received prior taxane therapy. Median DOR was 5.6 months; median PFS was 2.9 months. Conclusion Combination treatment with onalespib and paclitaxel had an acceptable toxicity profile and RP2D was determined to be 260 mg/m2 of onalespib. Combination therapy showed antitumor activity in patients with advanced TNBC. Trial registration Onalespib and paclitaxel in treating patients with advanced TNBC https://clinicaltrials.gov/ct2/show/NCT02474173.
Collapse
Affiliation(s)
- Nicole O. Williams
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Dionisia Quiroga
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Courtney Johnson
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Adam Brufsky
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mara Chambers
- University of Kentucky Markey Cancer Center, Lexington, KY, USA
| | | | - Maria Patterson
- Stefanie Spielman Comprehensive Breast Center, The Ohio State University, Columbus, OH, USA
| | - Sagar D. Sardesai
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Daniel Stover
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Maryam Lustberg
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Anne M. Noonan
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Mathew Cherian
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Darlene M. Bystry
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Kasey L. Hill
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Min Chen
- The Ohio State University College of Pharmacy, Columbus, OH, USA
| | - Mitch A. Phelps
- The Ohio State University – Arthur G. James Comprehensive Cancer Center, Columbus, OH, USA
- The Ohio State University College of Pharmacy, Columbus, OH, USA
| | - Michael Grever
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Julie A. Stephens
- Center for Biostatistics, Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - William E. Carson
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Robert Wesolowski
- The Ohio State University Comprehensive Cancer Center, 1800 Cannon Drive, 1310D Lincoln Tower, Columbus, OH 43210, USA
| |
Collapse
|
49
|
Qiao L, Dong C, Jia W, Ma B. NAA20 recruits Rin2 and promotes triple-negative breast cancer progression by regulating Rab5A-mediated activation of EGFR signaling. Cell Signal 2023; 112:110922. [PMID: 37827343 DOI: 10.1016/j.cellsig.2023.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with poor prognosis and high mortality. To improve the prognosis and survival of TNBC patients, it is necessary to explore new targets and signaling pathways to develop novel therapies for TNBC treatment. N-α-acetyltransferase 20 (NAA20) is one of the catalytic subunits of N-terminal acetyltransferase (NatB). It has been reported that NAA20 played a critical role in cancer progression. In this study, we found that NAA20 expression was markedly higher in TNBC tissues than in paracancerous normal tissues using The Cancer Genome Atlas (TCGA) analysis. This result was further confirmed by qRT-PCR and immunohistochemistry (IHC). Knockdown of NAA20 significantly inhibited TNBC cell viability by CCK8 and colony formation assays and cell migration and invasion by Transwell assays. Additionally, NAA20 knockdown decreased the expression of EGFR in TNBC cells. Upon stimulation with EGF and knockdown of NAA20, EGFR internalization and degradation were observed by confocal microscopy. The western blot results showed that NAA20 knockdown down-regulated PI3K, AKT, and mTOR phosphorylation. Next, we further explored the underlying molecular mechanisms of NAA20 by co-immunoprecipitation (Co-IP). The results suggested that there was an interacting relationship between NAA20 and Rab5A. Over-expression of NAA20 could potentiate the expression of Rab5A. Furthermore, the knockdown of Rab5A inhibited EGFR expression and the phosphorylation of downstream signaling targets. NAA20 over-expression offset the knockdown effect of Rab5A and activated EGFR signaling. Finally, we constructed a xenograft mouse model transfected TNBC cells to investigate the role of NAA20 in vivo. NAA20 knockdown markedly suppressed tumor growth and decreased tumor volume and weight. In conclusion, our study demonstrated that NAA20, a novel target of TNBC, could promote TNBC progression by regulating Rab5A-mediated activation of EGFR signaling.
Collapse
Affiliation(s)
- Lei Qiao
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Chao Dong
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Wenlei Jia
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Binlin Ma
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China.
| |
Collapse
|
50
|
Ma B, Li F, Ma B. Down-regulation of COL1A1 inhibits tumor-associated fibroblast activation and mediates matrix remodeling in the tumor microenvironment of breast cancer. Open Life Sci 2023; 18:20220776. [PMID: 38045487 PMCID: PMC10693014 DOI: 10.1515/biol-2022-0776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
We investigated the effects of collagen type I alpha 1 (COL1A1) on tumor-associated fibroblast activation and matrix remodeling in the tumor microenvironment of breast cancer. Cells were divided into the blank control, negative control, and siRNA-COL1A1 groups, or HKF control, HKF + exosomes (EXO), HKF + siRNA negative control-EXO, and HKF + siRNA-COL1A1-EXO co-culture groups. Western blot and quantitative real-time PCR detected gene expressions. COL Ⅰ, COL Ⅲ, and TGF-β1 were detected by enzyme-linked immunosorbent assay. We found that compared with blank and negative control groups, COL1A1 expression and the secretion of exosomes by breast cancer cells were inhibited in the siRNA-COL1A1 group. Compared with the HKF control group, the COL Ⅰ, COL Ⅲ, TGF-β1, α-SMA, and fibroblast activation protein (FAP) were increased, while the E-cadherin and CAV-1 were decreased in the HKF + EXO, HKF + siRNA negative control-EXO, and HKF + siRNA-COL1A1-EXO co-culture groups. Compared with HKF + EXO and HKF + siRNA negative control-EXO co-culture groups, the COL Ⅰ, COL Ⅲ, TGF-β1, α-SMA, and FAP were decreased, and the E-cadherin and CAV-1 were increased in the HKF + siRNA-COL1A1-EXO co-culture group. Collectively, COL1A1 down-regulation may inhibit exosome secretion possibly via inhibiting COL Ⅰ and upregulating CAV-1, thereby inhibiting tumor-associated fibroblast activation and matrix remodeling in the tumor microenvironment.
Collapse
Affiliation(s)
- Bin Ma
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi830011, Xinjiang, China
- Department of Thyriod and Breast Surgery, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu610041, China
| | - Fangfang Li
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi830011, Xinjiang, China
| | - Binlin Ma
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi830011, Xinjiang, China
| |
Collapse
|