1
|
Shen Q, Qiu L, Zhou Y, Wang L, Pan J, Zhang X, Chen Y, Yao H, Wang J, Yu X. Pan-cancer analysis of DCBLD1 and its association with the diagnosis, immunotherapy, and prognosis of cervical cancer. Int Immunopharmacol 2025; 148:114167. [PMID: 39879834 DOI: 10.1016/j.intimp.2025.114167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Cervical cancer (CESC) is a leading cause of death attributed to cancer worldwide. Advanced-stage cervical cancer presents unique challenges, such as few treatment modalities. Though DCBLD1 has been earlier connected to a variety of cancers, there has been no extensive investigation on DCBLD1 regarding cervical cancer. This study seeks to assess the expression and prognostic significance of DCBLD1 in multiple cancer types, heavily relying on cervical cancer, as well as its implications on immune modulation. METHODS The pan-cancer expression of box-like genes in DCBLD1 was investigated in 33 cancer types using The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE). Survival analyses involving Overall Survival (OS) and Progression-Free Survival (PFS) were conducted to evaluate the relationship between DCBLD1 expression and the prognosis of these neoplasms. Furthermore, immune infiltration gene co-expression and tumor microenvironment (TME) analyses were performed. In vitro assays in cervical cancer cell lines were done to analyze the functional impact of silencing DCBLD1 on cell proliferation, migration, and invasion. RESULTS DCBLD1 was significantly overexpressed in 16 cancer types, including cervical cancer, and was associated with poor prognosis for several of these cancer types. In CESC, the expression of DCBLD1 was significantly associated with shorter OS and PFS. While immune infiltration analysis showed a significant association for DCBLD1 with several immune cells, including CD4+ memory T cells and macrophages, the functional assays demonstrated that silencing DCBLD1 in cervical cancer cells inhibited their cell proliferation, migration, and invasion, implicating it in tumor progression. CONCLUSIONS DCBLD1 could serve as an amendable biomarker of poor prognosis in cervical cancer and other cancers whose high expression level correlates with immune infiltration, which may suggest its role in modulating the tumor microenvironment. This shows that targeting DCBLD1 could prove effective as a potential therapeutic modality in conjunction with other immune-based therapies for cervical cancer.
Collapse
Affiliation(s)
- Qilong Shen
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou 313000 PR China
| | - Liping Qiu
- Department of Obstetrics, Huzhou Maternity & Child Health Care Hospital, Huzhou 313000 PR China
| | - Yinjian Zhou
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou 313000 PR China
| | - Longling Wang
- Clinc of Huzhou No. 2 High School, Huzhou 313000 PR China
| | - Jiewei Pan
- Department of Gynecological Oncology, Huzhou Maternity & Child Health Care Hospital, Huzhou 313000 PR China
| | - Xiaoxing Zhang
- Department of Obstetrics, Huzhou Maternity & Child Health Care Hospital, Huzhou 313000 PR China
| | - Yun Chen
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou 313000 PR China
| | - Huaqi Yao
- Department of Anesthesiology, Huzhou Maternity & Child Health Care Hospital, Huzhou 313000 PR China
| | - Junlin Wang
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou 313000 PR China
| | - Xieyan Yu
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou 313000 PR China.
| |
Collapse
|
2
|
Pu M, Xiao X, Lv S, Ran D, Huang Q, Zhou M, Lei Q, Kong L, Zhang Q. METTL3-dependent DLG2 inhibits the malignant progression of cervical cancer by inactivating the Hippo/YAP signaling. Hereditas 2025; 162:9. [PMID: 39856747 PMCID: PMC11762078 DOI: 10.1186/s41065-025-00365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Discs large homolog 2 (DLG2) has been implicated in cancer development, yet its role in cervical cancer remains unclear. This study aims to explore the regulatory mechanism of DLG2 in cervical cancer and its clinical implications. METHODS Quantitative reverse transcription polymerase chain reaction and western blotting assays were employed to detect RNA and protein expression, respectively. Colony formation assay, 5-Ethynyl-2'-deoxyuridine assay, flow cytometry, and transwell assays were conducted for cell functional analysis. A xenograft mouse model assay was performed to analyze tumor tumorigenesis in vivo. m6A RNA immunoprecipitation assay was used to analyze the association of METTL3 and DLG2. RESULTS DLG2 was underexpressed in cervical cancer tissues and cells. Elevating DLG2 levels significantly suppressed cervical cancer cell proliferation, migration, and invasion, while promoting apoptosis. Additionally, DLG2 overexpression led to the deactivation of the Hippo/YAP signaling pathway. In vivo, DLG2 overexpression was shown to reduce tumor formation. We also discovered that METTL3 destabilized DLG2 mRNA through an m6A-dependent mechanism. Moreover, lowering DLG2 expression mitigated the effects of METTL3 silencing on cervical cancer cell malignancy. CONCLUSION DLG2 acted as a tumor suppressor in cervical cancer by inhibiting the Hippo/YAP signaling pathway. The METTL3-dependent regulation of DLG2 mRNA stability could be a critical factor in cervical cancer progression.
Collapse
Affiliation(s)
- Mei Pu
- Department of Obstetrics and Gynecology, Dazhou Vocational and Technical College, Dazhou, 635001, China
| | - Xia Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Shasha Lv
- Department of Obstetrics and Gynecology, Dazhou Vocational and Technical College, Dazhou, 635001, China
| | - Daqing Ran
- Department of Obstetrics and Gynecology, Dazhou Vocational and Technical College, Dazhou, 635001, China
| | - Qian Huang
- Department of Obstetrics and Gynecology, Dazhou Vocational and Technical College, Dazhou, 635001, China
| | - Mingming Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Qirong Lei
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, China
| | - Lingshuang Kong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, China.
| | - Qing Zhang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, China.
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Jiangyang District, Luzhou, 646000, China.
| |
Collapse
|
3
|
Wang YY, Ye LH, Zhao AQ, Gao WR, Dai N, Yin Y, Zhang X. M6A modification regulates tumor suppressor DIRAS1 expression in cervical cancer cells. Cancer Biol Ther 2024; 25:2306674. [PMID: 38372700 PMCID: PMC10878024 DOI: 10.1080/15384047.2024.2306674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/14/2024] [Indexed: 02/20/2024] Open
Abstract
DIRAS family GTPase 1 (DIRAS1) has been reported as a potential tumor suppressor in other human cancer. However, its expression pattern and role in cervical cancer remain unknown. Knockdown of DIRAS1 significantly promoted the proliferation, growth, migration, and invasion of C33A and SiHa cells cultured in vitro. Overexpression of DIRAS1 significantly inhibited the viability and motility of C33A and SiHa cells. Compared with normal cervical tissues, DIRAS1 mRNA levels were significantly lower in cervical cancer tissues. DIRAS1 protein expression was also significantly reduced in cervical cancer tissues compared with para-cancerous tissues. In addition, DIRAS1 expression level in tumor tissues was significantly negatively correlated with the pathological grades of cervical cancer patients. DNA methylation inhibitor (5-Azacytidine) and histone deacetylation inhibitor (SAHA) resulted in a significant increase in DIRAS1 mRNA levels in C33A and SiHa cells, but did not affect DIRAS1 protein levels. FTO inhibitor (FB23-2) significantly down-regulated intracellular DIRAS1 mRNA levels, but significantly up-regulated DIRAS1 protein levels. Moreover, the down-regulation of METTL3 and METTL14 expression significantly inhibited DIRAS1 protein expression, whereas the down-regulation of FTO and ALKBH5 expression significantly increased DIRAS1 protein expression. In conclusion, DIRAS1 exerts a significant anti-oncogenic function and its expression is significantly downregulated in cervical cancer cells. The m6A modification may be a key mechanism to regulate DIRAS1 mRNA stability and protein translation efficiency in cervical cancer.
Collapse
Affiliation(s)
- Yu-Yan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lian-Hua Ye
- Department of Internal Medicine, Zigong Fourth People’s Hospital, Zigong, Sichuan, China
| | - An-Qi Zhao
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei-Ran Gao
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ning Dai
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu Yin
- Operating Rooms, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xin Zhang
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
4
|
Mokresh ME, Alomari O, Varda A, Akdag G, Odabas H. Safety and efficacy of tisotumab vedotin with cervical cancers: A systematic review and meta-analysis. J Obstet Gynaecol Res 2024; 50:2195-2210. [PMID: 39428336 DOI: 10.1111/jog.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Tisotumab vedotin (TV) holds promise for treating recurrence or metastatic cervical cancer (r/mCC), with recent FDA approval for second-line use in recurrent or metastatic cases. Our research aims to evaluate TV's efficacy and safety in these patients, focusing on overall survival (OS) and progression-free survival (PFS) outcomes. METHODS We searched five electronic databases in February 2024, retrieved articles, screened them based on inclusion and exclusion criteria, and assessed their quality. A meta-analysis of the extracted data was performed and applied a random-effects model for our analysis. RESULTS The search identified 86 articles, with six meeting the inclusion criteria. Meta-analysis revealed 80.8% and 48.0% OS at 6 and 12 months, and a 29.9% PFS at 6 months. Combined treatment with carboplatin or pembrolizumab showed 33.0% PFS at 1 year and 15.1% at 2 years. The objective response rate (ORR) was 21.0%, reaching 43.3% with combined treatment. Confirmed disease control rate (CDCR) was 70.0% overall and in combination. The median duration of response (DOR) was 6.1 months, increasing to 9.5 months in combined treatment, with a consistent time to response (TTR) of 1.4 months. Adverse events included ocular issues (conjunctivitis 30.3%, dry eye 18.7%) and common side effects (nausea 38.4%, epistaxis 35.7%). CONCLUSION This systematic review and meta-analysis highlights the potential of TV as a treatment option for r/mCC patients. However, healthcare providers must communicate safety profiles and recommend prophylactic measures for optimal patient outcomes. Further studies, particularly assessing combination treatments, are needed to clarify TV's role in treatment algorithms and improve clinical outcomes.
Collapse
Affiliation(s)
- Muhammed Edib Mokresh
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Omar Alomari
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Abdullah Varda
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Goncagul Akdag
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, Turkey
| | - Hatice Odabas
- Department of Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, Turkey
| |
Collapse
|
5
|
Guo F, Kong W, Li D, Zhao G, Anwar M, Xia F, Zhang Y, Ma C, Ma X. M2-type tumor-associated macrophages upregulated PD-L1 expression in cervical cancer via the PI3K/AKT pathway. Eur J Med Res 2024; 29:357. [PMID: 38970071 PMCID: PMC11225336 DOI: 10.1186/s40001-024-01897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND AND PURPOSE PD-1/PD-L1 inhibitors have become a promising therapy. However, the response rate is lower than 30% in patients with cervical cancer (CC), which is related to immunosuppressive components in tumor microenvironment (TME). Tumor-associated macrophages (TAMs), as one of the most important immune cells, are involved in the formation of tumor suppressive microenvironment. Therefore, it will provide a theoretical basis for curative effect improvement about the regulatory mechanism of TAMs on PD-L1 expression. METHODS The clinical data and pathological tissues of CC patients were collected, and the expressions of PD-L1, CD68 and CD163 were detected by immunohistochemistry. Bioinformatics was used to analyze the macrophage subtypes involved in PD-L1 regulation. A co-culture model was established to observe the effects of TAMs on the morphology, migration and invasion function of CC cells, and the regulatory mechanism of TAMs on PD-L1. RESULTS PD-L1 expression on tumor cells could predict the poor prognosis of patients. And there was a strong correlation between PD-L1 expression with CD163+TAMs infiltration. Similarly, PD-L1 expression was associated with M1/M2-type TAMs infiltration in bioinformatics analysis. The results of cell co-culture showed that M1/M2-type TAMs could upregulate PD-L1 expression, especially M2-type TAMs may elevate the PD-L1 expression via PI3K/AKT pathway. Meanwhile, M1/M2-type TAMs can affect the morphological changes, and enhance migration and invasion abilities of CC cells. CONCLUSIONS PD-L1 expression in tumor cells can be used as a prognostic factor and is closely related to CD163+TAMs infiltration. In addition, M2-type TAMs can upregulate PD-L1 expression in CC cells through PI3K/AKT pathway, enhance the migration and invasion capabilities, and affect the tumor progression.
Collapse
Affiliation(s)
- Fan Guo
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
- Postdoctoral Research Workstation of Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Weina Kong
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Dewei Li
- Center of Respiratory and Critical Care Medicine, The People's Hospital of the Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Gang Zhao
- Department of Blood Transfusion, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Miyessar Anwar
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Feifei Xia
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China
| | - Yuanming Zhang
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cailing Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, 137 Li Yu Shan South Road, Urumqi, 830054, Xinjiang, China.
| | - Xiumin Ma
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, No 789 Suzhou Road, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
6
|
Zhai C, Cui Y, Guo L, Chen C, Song Y, Zhong J, Wang Y. Progress in the study of antibody-drug conjugates for the treatment of cervical cancer. Front Oncol 2024; 14:1395784. [PMID: 38903711 PMCID: PMC11187480 DOI: 10.3389/fonc.2024.1395784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Cervical cancer is the second most prevalent malignancy affecting women's health globally, and the number of morbidity and mortality from cervical cancer continues to rise worldwide. The 5-year survival rate of patients with recurrent or metastatic cervical cancer is significantly reduced, and existing treatment modalities have low efficacy and high adverse effects, so there is a strong need for new, effective, and well-tolerated therapies. Antibody-drug conjugates (ADCs) are a new targeted therapeutic modality that can efficiently kill tumor cells. This review aims to summarize the composition, research, and development history and mechanism of action of ADCs, to review the research progress of ADCs in the treatment of cervical cancer, and to summarize and prospect the application of ADCs.
Collapse
Affiliation(s)
- Congcong Zhai
- Department of Oncology, Gannan Medical University, Ganzhou, China
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Yan Cui
- Department of Oncology, Bengbu Medical University, Lu’an, China
| | - Ling Guo
- Department of Oncology, Gannan Medical University, Ganzhou, China
| | - Cixiang Chen
- Department of Oncology, Gannan Medical University, Ganzhou, China
| | - Yanfang Song
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Jinghua Zhong
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
- Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China
| | - Yili Wang
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| |
Collapse
|
7
|
Salarzaei M, van de Laar RLO, Ewing-Graham PC, Najjary S, van Esch E, van Beekhuizen HJ, Mustafa DAM. Unraveling Differences in Molecular Mechanisms and Immunological Contrasts between Squamous Cell Carcinoma and Adenocarcinoma of the Cervix. Int J Mol Sci 2024; 25:6205. [PMID: 38892393 PMCID: PMC11172577 DOI: 10.3390/ijms25116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
This study aims to refine our understanding of the inherent heterogeneity in cervical cancer by exploring differential gene expression profiles, immune cell infiltration dynamics, and implicated signaling pathways in the two predominant histological types of cervix carcinoma, Squamous Cell Carcinoma (SCC) and Adenocarcinoma (ADC). Targeted gene expression data that were previously generated from samples of primary cervical cancer were re-analyzed. The samples were grouped based on their histopathology, comparing SCC to ADC. Each tumor in the study was confirmed to be high risk human papilloma virus (hrHPV) positive. A total of 21 cervical cancer samples were included, with 11 cases of SCC and 10 of ADC. Data analysis revealed a total of 26 differentially expressed genes, with 19 genes being overexpressed in SCC compared to ADC (Benjamini-Hochberg (BH)-adjusted p-value < 0.05). Importantly, the immune checkpoint markers CD274 and CTLA4 demonstrated significantly higher expression in SCC compared to ADC. In addition, SCC showed a higher infiltration of immune cells, including B and T cells, and cytotoxic cells. Higher activation of a variety of pathways was found in SCC samples including cytotoxicity, interferon signaling, metabolic stress, lymphoid compartment, hypoxia, PI3k-AKT, hedgehog signaling and Notch signaling pathways. Our findings show distinctive gene expression patterns, signaling pathway activations, and trends in immune cell infiltration between SCC and ADC in cervical cancer. This study underscores the heterogeneity within primary cervical cancer, emphasizing the potential benefits of subdividing these tumours based on histological and molecular differences.
Collapse
Affiliation(s)
- Morteza Salarzaei
- Department of Gynaecologic Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (H.J.v.B.)
| | - Ralf L. O. van de Laar
- Department of Gynaecologic Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (H.J.v.B.)
| | - Patricia C. Ewing-Graham
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Shiva Najjary
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Edith van Esch
- Department of Gynecology and Obstetrics, Catharina Ziekenhuis Eindhoven, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands;
| | - Heleen J. van Beekhuizen
- Department of Gynaecologic Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (H.J.v.B.)
| | - Dana A. M. Mustafa
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
8
|
Wang Y, Xu M, Yao Y, Li Y, Zhang S, Fu Y, Wang X. Extracellular cancer‑associated fibroblasts: A novel subgroup in the cervical cancer microenvironment that exhibits tumor‑promoting roles and prognosis biomarker functions. Oncol Lett 2024; 27:167. [PMID: 38449793 PMCID: PMC10915806 DOI: 10.3892/ol.2024.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/10/2024] [Indexed: 03/08/2024] Open
Abstract
Tumor invasion and metastasis are the processes that primarily cause adverse outcomes in patients with cervical cancer. Cancer-associated fibroblasts (CAFs), which participate in cancer progression and metastasis, are novel targets for the treatment of tumors. The present study aimed to assess the heterogeneity of CAFs in the cervical cancer microenvironment through single-cell RNA sequencing. After collecting five cervical cancer samples and obtaining the CAF-associated gene sets, the CAFs in the cervical cancer microenvironment were divided into myofibroblastic CAFs and extracellular (ec)CAFs. The ecCAFs appeared with more robust pro-tumorigenic effects than myCAFs according to enrichment analysis. Subsequently, through combining the ecCAF hub genes and bulk gene expression data for cervical cancer obtained from The Cancer Genome Atlas and Gene Ontology databases, univariate Cox regression and least absolute shrinkage and selection operator analyses were performed to establish a CAF-associated risk signature for patients with cancer. The established risk signature demonstrated a stable and strong prognostic capability in both the training and validation cohorts. Subsequently, the association between the risk signature and clinical data was evaluated, and a nomogram to facilitate clinical application was established. The risk score was demonstrated to be associated with both the tumor immune microenvironment and the therapeutic responses. Moreover, the signature also has predictive value for the prognosis of head and neck squamous cell carcinoma, and bladder urothelial carcinoma, which were also associated with human papillomavirus infection. In conclusion, the present study assessed the heterogeneity of CAFs in the cervical cancer microenvironment, and a subgroup of CAFs that may be closely associated with tumor progression was defined. Moreover, a signature based on the hub genes of ecCAFs was shown to have biomarker functionality in terms of predicting survival rates, and therefore this CAF subgroup may become a therapeutic target for cervical cancer in the future.
Collapse
Affiliation(s)
- Yuehan Wang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Mingxia Xu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yeli Yao
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ying Li
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Songfa Zhang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yunfeng Fu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xinyu Wang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
9
|
Kang J, Jiang J, Xiang X, Zhang Y, Tang J, Li L. Identification of a new gene signature for prognostic evaluation in cervical cancer: based on cuproptosis-associated angiogenesis and multi-omics analysis. Cancer Cell Int 2024; 24:23. [PMID: 38200479 PMCID: PMC10782580 DOI: 10.1186/s12935-023-03189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Patients with recurrent or metastatic cervical cancer are in urgent need of novel prognosis assessment or treatment approaches. In this study, a novel prognostic gene signature was discovered by utilizing cuproptosis-related angiogenesis (CuRA) gene scores obtained through weighted gene co-expression network analysis (WGCNA) of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. To enhance its reliability, the gene signature was refined by integrating supplementary clinical variables and subjected to cross-validation. Meanwhile, the activation of the VEGF pathway was inferred from an analysis of cell-to-cell communication, based on the expression of ligands and receptors in cell transcriptomic datasets. High-CuRA patients had less infiltration of CD8 + T cells and reduced expression of most of immune checkpoint genes, which indicated greater difficulty in immunotherapy. Lower IC50 values of imatinib, pazopanib, and sorafenib in the high-CuRA group revealed the potential value of these drugs. Finally, we verified an independent prognostic gene SFT2D1 was highly expressed in cervical cancer and positively correlated with the microvascular density. Knockdown of SFT2D1 significantly inhibited ability of the proliferation, migration, and invasive in cervical cancer cells. CuRA gene signature provided valuable insights into the prediction of prognosis and immune microenvironment of cervical cancer, which could help develop new strategies for individualized precision therapy for cervical cancer patients.
Collapse
Affiliation(s)
- Jiawen Kang
- Department of Gynecologic Oncology, School of Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya, Central South University, Changsha, Hunan, China
- Department of Clinical Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China
| | - Jingwen Jiang
- Department of Clinical Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China
| | - Xiaoqing Xiang
- Department of Clinical Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China
| | - Yong Zhang
- Department of Clinical Medicine, Medical College of Hunan Normal University, Changsha, Hunan, China.
| | - Jie Tang
- Department of Gynecologic Oncology, School of Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya, Central South University, Changsha, Hunan, China.
| | - Lesai Li
- Department of Gynecologic Oncology, School of Medicine, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Yin S, Cui H, Qin S, Yu S. Manipulating TGF-β signaling to optimize immunotherapy for cervical cancer. Biomed Pharmacother 2023; 166:115355. [PMID: 37647692 DOI: 10.1016/j.biopha.2023.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Cervical cancer is a serious threat to women's health globally. Therefore, identifying key molecules associated with cervical cancer progression is essential for drug development, disease monitoring, and precision therapy. Recently, TGF-β (transforming growth factor-beta) has been identified as a promising target for cervical cancer treatment. For advanced cervical cancer, TGF-β participates in tumor development by improving metastasis, stemness, drug resistance, and immune evasion. Accumulating evidence demonstrates that TGF-β blockade effectively improves the therapeutic effects, especially immunotherapy. Currently, agents targeting TGF-β and immune checkpoints such as PD-L1 have been developed and tested in clinical studies. These bispecific antibodies might have the potential as therapeutic agents for cervical cancer treatment in the future.
Collapse
Affiliation(s)
- Shuping Yin
- Department of Obstetrics and Gynecology, Changxing People's Hospital of Zhejiang Huzhou, Changxing 313100, China
| | - Han Cui
- Department of Obstetrics and Gynecology, Changxing People's Hospital of Zhejiang Huzhou, Changxing 313100, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Shengnan Yu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, 400042 Chongqing, China.
| |
Collapse
|
11
|
Huang J, Zeng X, Chen H, Luo D, Li R, Wu X, Yu Y, Chen A, Li C, Pan Y. Clinical analysis of decision implementation by a multidisciplinary team in cervical cancer cases in Ganzhou, China. Front Oncol 2023; 13:1160626. [PMID: 37664056 PMCID: PMC10470119 DOI: 10.3389/fonc.2023.1160626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Objective In this study, we evaluated the role of a multidisciplinary team (MDT) in clinical practice for cervical cancer by analyzing the development of a single-case multidisciplinary consultation for cervical cancer. Methods Patients in MDT consultations for cervical cancer were retrospectively analyzed for clinical information, decision content of MDT discussion, implementation, and follow-up results. Results Of the 392 patients who met the inclusion criteria, 359 had a first episode, of which 284 were stage IA-IIA2 (79.11%) and 75 were stage IIB-IVB (20.89%). Of these 392, 33 had a recurrence (8.42%). A total of 416 cases were analyzed, and neoadjuvant chemotherapy with surgery was recommended in 43 cases, of which 40 cases were implemented, and 36 of the 40 achieved the expected outcome. Surgical treatment was recommended in 241 cases, of which 226 underwent surgery, and 215 of them achieved the expected outcome. Radiotherapy was recommended in 31 cases, of which 26 cases underwent it, and 22 of them achieved the expected efficacy. Concurrent chemoradiotherapy was recommended in 57 cases, of which 49 underwent it, and 39 of them achieved the expected efficacy. Other treatments were recommended in 44 cases, of which 23 cases were implemented, and 10 of them achieved the expected efficacy, with statistically significant differences compared with cases without implementation (P <0.05). MDT decisions were correlated with age; the younger the patients, the higher the implementation efficiency (P <0.05). The difference between MDT expectation in all implementation and partial implementation and age was statistically significant (P <0.05). No significant difference was found between age and MDT expectation in all not fully implemented decisions (P >0.05). Some decisions were not fully implemented due to economic status and fear of certain treatments of the patient. Conclusion The MDT plays an important role in clinical practice such as clinical staging, treatment plan, and the complete treatment management of patients with cervical cancer, which can significantly improve the near-term treatment effect, whereas its effect on a long-term prognosis needs further clinical observation and active exploration.
Collapse
Affiliation(s)
- Jing Huang
- Department of Gynecology and Oncology, Ganzhou Cancer Hospital, Jiangxi, China
| | - Xueqin Zeng
- Department of Institute of Cancer Research, Ganzhou Cancer Hospital, Jiangxi, China
| | - Hailong Chen
- Department of Chemotherapy Center, Ganzhou Cancer Hospital, Jiangxi, China
| | - Deping Luo
- Department of Gynecology and Oncology, Ganzhou Cancer Hospital, Jiangxi, China
| | - Rong Li
- Department of Pathology, Ganzhou Cancer Hospital, Jiangxi, China
| | - Xiuhong Wu
- Department of Radiotherapy Center, Ganzhou Cancer Hospital, Jiangxi, China
| | - Ying Yu
- Department of Gynecology and Oncology, Ganzhou Cancer Hospital, Jiangxi, China
| | - Ailin Chen
- Department of Image Center, Ganzhou Cancer Hospital, Jiangxi, China
| | - Chan Li
- Department of Gynecology and Oncology, Ganzhou Cancer Hospital, Jiangxi, China
| | - Yiyun Pan
- Department of Chemotherapy Center, Ganzhou Cancer Hospital, Jiangxi, China
| |
Collapse
|
12
|
Ranga S, Yadav R, Chhabra R, Chauhan MB, Tanwar M, Yadav C, Kadian L, Ahuja P. Long non-coding RNAs as critical regulators and novel targets in cervical cancer: current status and future perspectives. Apoptosis 2023:10.1007/s10495-023-01840-6. [PMID: 37095313 PMCID: PMC10125867 DOI: 10.1007/s10495-023-01840-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
Cervical cancer is among the leading causes of cancer-associated mortality in women. In spite of vaccine availability, improved screening procedures, and chemoradiation therapy, cervical cancer remains the most commonly diagnosed cancer in 23 countries and the leading cause of cancer deaths in 36 countries. There is, therefore, a need to come up with novel diagnostic and therapeutic targets. Long non-coding RNAs (lncRNAs) play a remarkable role in genome regulation and contribute significantly to several developmental and disease pathways. The deregulation of lncRNAs is often observed in cancer patients, where they are shown to affect multiple cellular processes, including cell cycle, apoptosis, angiogenesis, and invasion. Many lncRNAs are found to be involved in the pathogenesis as well as progression of cervical cancer and have shown potency to track metastatic events. This review provides an overview of lncRNA mediated regulation of cervical carcinogenesis and highlights their potential as diagnostic and prognostic biomarkers as well as therapeutic targets for cervical cancer. In addition, it also discusses the challenges associated with the clinical implication of lncRNAs in cervical cancer.
Collapse
Affiliation(s)
- Shalu Ranga
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Ravindresh Chhabra
- Assistant Professor, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India.
| | - Meenakshi B Chauhan
- Department of Obstetrics and Gynaecology, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, 124001, India
| | - Mukesh Tanwar
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Chetna Yadav
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Lokesh Kadian
- School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Parul Ahuja
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
13
|
Das S, Babu A, Medha T, Ramanathan G, Mukherjee AG, Wanjari UR, Murali R, Kannampuzha S, Gopalakrishnan AV, Renu K, Sinha D, George Priya Doss C. Molecular mechanisms augmenting resistance to current therapies in clinics among cervical cancer patients. Med Oncol 2023; 40:149. [PMID: 37060468 PMCID: PMC10105157 DOI: 10.1007/s12032-023-01997-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/16/2023]
Abstract
Cervical cancer (CC) is the fourth leading cause of cancer death (~ 324,000 deaths annually) among women internationally, with 85% of these deaths reported in developing regions, particularly sub-Saharan Africa and Southeast Asia. Human papillomavirus (HPV) is considered the major driver of CC, and with the availability of the prophylactic vaccine, HPV-associated CC is expected to be eliminated soon. However, female patients with advanced-stage cervical cancer demonstrated a high recurrence rate (50-70%) within two years of completing radiochemotherapy. Currently, 90% of failures in chemotherapy are during the invasion and metastasis of cancers related to drug resistance. Although molecular target therapies have shown promising results in the lab, they have had little success in patients due to the tumor heterogeneity fueling resistance to these therapies and bypass the targeted signaling pathway. The last two decades have seen the emergence of immunotherapy, especially immune checkpoint blockade (ICB) therapies, as an effective treatment against metastatic tumors. Unfortunately, only a small subgroup of patients (< 20%) have benefited from this approach, reflecting disease heterogeneity and manifestation with primary or acquired resistance over time. Thus, understanding the mechanisms driving drug resistance in CC could significantly improve the quality of medical care for cancer patients and steer them to accurate, individualized treatment. The rise of artificial intelligence and machine learning has also been a pivotal factor in cancer drug discovery. With the advancement in such technology, cervical cancer screening and diagnosis are expected to become easier. This review will systematically discuss the different tumor-intrinsic and extrinsic mechanisms CC cells to adapt to resist current treatments and scheme novel strategies to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Achsha Babu
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Tamma Medha
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Gnanasambandan Ramanathan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anirban Goutam Mukherjee
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Reshma Murali
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sandra Kannampuzha
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | | | - Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Debottam Sinha
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
14
|
Zhang L, Song Y, Dai X, Xu W, Li M, Zhu Y. Inhibition of IDH3α Enhanced the Efficacy of Chemoimmunotherapy by Regulating Acidic Tumor Microenvironments. Cancers (Basel) 2023; 15:cancers15061802. [PMID: 36980689 PMCID: PMC10046804 DOI: 10.3390/cancers15061802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
In recent years, chemoimmunotherapy has become effective in some advanced cancers, but its effect is still limited. Transcriptional upregulation of isocitrate dehydrogenase 3α (IDH3α) can promote tumor initiation and progression. However, it is not clear whether the aberrant expression of IDH3α is related to the efficacy of chemoimmunotherapy in cancers. Here, we found that IDH3α was elevated in uterine cervical cancer (UCC) and lung adenocarcinoma (LUAD) samples by using public databases. High expression of IDH3α could promote the epithelial–mesenchymal transition (EMT), alter the intracellular redox status, promote glycolysis, and induce an acidic microenvironments in cancer cells. Furthermore, we found that inhibition of IDH3α combined with chemoimmunotherapy (cisplatin and programmed cell death ligand 1 (PD-L1) antibodies) activated the cGAS–STING pathway, promoted CD8+ T cell infiltration, and decreased tumor growth in mouse models of cervical cancer. In conclusion, our data indicate that silencing IDH3α sensitizes tumors to chemoimmunotherapy by modulating the acidic microenvironment and activating the cGAS–STING pathway.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yang Song
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyan Dai
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wenwen Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mengxia Li
- Cancer Center, Daping Hospital, Army Medical University, Chongqing 400042, China
- Correspondence: (M.L.); (Y.Z.)
| | - Yuxi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Oncology, Jinshan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Correspondence: (M.L.); (Y.Z.)
| |
Collapse
|