1
|
Laryea ET, Nichols JH. Implementing Individualized quality control plans and managing risk at the point-of-care for molecular diagnostics. Expert Rev Mol Diagn 2024; 24:971-977. [PMID: 37897396 DOI: 10.1080/14737159.2023.2277374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION Faster turnaround times can lead to rapid patient treatment. Implementing a point-of-care (POC) molecular COVID-19 test requires careful planning. In the POC setting, there are numerous operators and regular monitoring of their activities is key to the successful implementation of a POC molecular test. Test errors can arise from samples, operators, reagents, the testing system, and even from the environment. These sources of error should be considered when implementing a new test. AREAS COVERED We outline the importance of establishing well-defined policies for staff to follow at the preanalytic, analytic and postanalytic phases of SARS-CoV-2 testing. As these factors are crucial for the accuracy and reliability of the test results. The key discussion points are from the CLSI EP23-Ed2 document on developing individualized quality control plans and medical literature search engines such as EMBASE, MEDLINE and MedlinePlus. EXPERT OPINION The risk management principles applied when implementing nucleic acid POC tests can identify specific control processes to help mitigate common sources of error when conducting molecular testing at the POC.
Collapse
Affiliation(s)
- Erving T Laryea
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James H Nichols
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Ivanova Reipold E, Shilton S, Donolato M, Fernandez Suarez M. Molecular Point-of-Care Testing for Hepatitis C: Available Technologies, Pipeline, and Promising Future Directions. J Infect Dis 2024; 229:S342-S349. [PMID: 37897429 PMCID: PMC11078314 DOI: 10.1093/infdis/jiad463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Hepatitis C virus (HCV) remains a major public health problem, despite the availability of effective treatments. In many areas, the ability to diagnose HCV infection at the point of care is key to scaling up access to care and treatment. To achieve this, an accurate, easy-to-use, and affordable diagnostic tool is required-this would enable decentralized testing and the creation of one-stop centers to eliminate gaps in the care cascade, which would help reach the millions of people with undiagnosed HCV infection in low- and middle-income countries and high-risk populations in high-income countries. In this review, we examine the current state of point-of-care molecular technologies, the advantages and limitations of currently available devices (both near- and true-point-of-care), the potential of molecular testing to transform diagnostic medicine in the future, and the challenges that need to be addressed for broader adoption of this technology in routine clinical practice.
Collapse
Affiliation(s)
| | | | - Marco Donolato
- FIND, The Global Alliance for Diagnostics, Geneva, Switzerland
| | | |
Collapse
|
3
|
Liu Y, Li Y, Hang Y, Wang L, Wang J, Bao N, Kim Y, Jang HW. Rapid assays of SARS-CoV-2 virus and noble biosensors by nanomaterials. NANO CONVERGENCE 2024; 11:2. [PMID: 38190075 PMCID: PMC10774473 DOI: 10.1186/s40580-023-00408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
The COVID-19 outbreak caused by SARS-CoV-2 in late 2019 has spread rapidly across the world to form a global epidemic of respiratory infectious diseases. Increased investigations on diagnostic tools are currently implemented to assist rapid identification of the virus because mass and rapid diagnosis might be the best way to prevent the outbreak of the virus. This critical review discusses the detection principles, fabrication techniques, and applications on the rapid detection of SARS-CoV-2 with three categories: rapid nuclear acid augmentation test, rapid immunoassay test and biosensors. Special efforts were put on enhancement of nanomaterials on biosensors for rapid, sensitive, and low-cost diagnostics of SARS-CoV-2 virus. Future developments are suggested regarding potential candidates in hospitals, clinics and laboratories for control and prevention of large-scale epidemic.
Collapse
Affiliation(s)
- Yang Liu
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yilong Li
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Yuteng Hang
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Lei Wang
- NantongEgens Biotechnology Co., LTD, Nantong, 226019, Jiangsu, People's Republic of China
| | - Jinghan Wang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, 226019, Jiangsu, People's Republic of China
| | - Youngeun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Kost GJ. The Impact of Repeating COVID-19 Rapid Antigen Tests on Prevalence Boundary Performance and Missed Diagnoses. Diagnostics (Basel) 2023; 13:3223. [PMID: 37892044 PMCID: PMC10606553 DOI: 10.3390/diagnostics13203223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
A prevalence boundary (PB) marks the point in prevalence in which the false omission rate, RFO = FN/(TN + FN), exceeds the tolerance limit for missed diagnoses. The objectives were to mathematically analyze rapid antigen test (RAgT) performance, determine why PBs are breeched, and evaluate the merits of testing three times over five days, now required by the US Food and Drug Administration for asymptomatic persons. Equations were derived to compare test performance patterns, calculate PBs, and perform recursive computations. An independent July 2023 FDA-NIH-university-commercial evaluation of RAgTs provided performance data used in theoretical calculations. Tiered sensitivity/specificity comprise the following: tier (1) 90%, 95%; tier (2) 95%, 97.5%; and tier (3) 100%, ≥99%. Repeating a T2 test improves the PB from 44.6% to 95.2% (RFO 5%). In the FDA-NIH-university-commercial evaluation, RAgTs generated a sensitivity of 34.4%, which improved to 55.3% when repeated, and then improved to 68.5% with the third test. With RFO = 5%, PBs are 7.37/10.46/14.22%, respectively. PB analysis suggests that RAgTs should achieve a clinically proven sensitivity of 91.0-91.4%. When prevalence exceeds PBs, missed diagnoses can perpetuate virus transmission. Repeating low-sensitivity RAgTs delays diagnosis. In homes, high-risk settings, and hotspots, PB breaches may prolong contagion, defeat mitigation, facilitate new variants, and transform outbreaks into endemic disease. Molecular diagnostics can help avoid these potential vicious cycles.
Collapse
Affiliation(s)
- Gerald J. Kost
- Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, CA 95616, USA;
- Point-of-Care Testing Center for Teaching and Research (POCT•CTR), Knowledge Optimization, Davis, CA 95616, USA
| |
Collapse
|
5
|
Lian Z, Wu T, Wang H, Chi J, Cheng L, Xie D, Pan X, Hu Y, Tan Z, Chen S, Yang X, Yun Y, Wu W, Li C, Su M, Song Y. At-Home COVID-19 Rapid Antigen Test Down to 0.03 pg mL -1 of Nucleocapsid Protein. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301162. [PMID: 36988021 DOI: 10.1002/smll.202301162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Rapid and ultra-sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for early screening and management of COVID-19. Currently, the real-time reverse transcription polymerase chain reaction (rRT-PCR) is the primary laboratory method for diagnosing SARS-CoV-2. It is not suitable for at-home COVID-19 diagnostic test due to the long operating time, specific equipment, and professional procedures. Here an all-printed photonic crystal (PC) microarray with portable device for at-home COVID-19 rapid antigen test is reported. The fluorescence-enhanced effect of PC amplifies the fluorescence intensity of the labeled probe, achieving detection of nucleocapsid (N-) protein down to 0.03 pg mL-1 . A portable fluorescence intensity measurement instrument gives the result (negative or positive) by the color of the indicator within 5 s after inserting the reacted PC microarray test card. The N protein in inactivated virus samples (with cycle threshold values of 26.6-40.0) can be detected. The PC microarray provides a general and easy-to-use method for the timely monitoring and eventual control of the global coronavirus pandemic.
Collapse
Affiliation(s)
- Zewei Lian
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tingqing Wu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huadong Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jimei Chi
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lijun Cheng
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Daixi Xie
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangyu Pan
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuming Hu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyu Tan
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sisi Chen
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xu Yang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Yun
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Wu
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chunbao Li
- Peoples Liberat Army Gen Hosp, Med Ctr 4 Dept Orthopaed Med, Beijing, 100853, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS)/Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Zhang Y, Li Y, Luan X, Li X, Jiang J, Fan Y, Li M, Huang C, Zhang L, Zhao Y. A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction. BIOSENSORS 2022; 13:26. [PMID: 36671861 PMCID: PMC9855807 DOI: 10.3390/bios13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Point-of-care testing (POCT) techniques based on microfluidic devices enabled rapid and accurate tests on-site, playing an increasingly important role in public health. As the critical component of capillary-driven microfluidic devices for POCT use, the capillary microfluidic valve could schedule multi-step biochemical operations, potentially being used for broader complex POCT tasks. However, owing to the reciprocal relationship between the capillary force and aperture in single-pore microchannels, it was challenging to achieve a high gating threshold and high operable liquid volume simultaneously with existing 2D capillary trigger valves. This paper proposed a 3D capillary-driven multi-microporous membrane-based trigger valve to address the issue. Taking advantage of the high gating threshold determined by micropores and the self-driven capillary channel, a 3D trigger valve composed of a microporous membrane for valving and a wedge-shaped capillary channel for flow pumping was implemented. Utilizing the capillary pinning effect of the multi-micropore membrane, the liquid above the membrane could be triggered by putting the drainage agent into the wedge-shaped capillary channel to wet the underside of the membrane, and it could also be cut off by taking away the agent. After theoretical analysis and performance characterizations, the 3D trigger valve performed a high gating threshold (above 1000 Pa) and high trigger efficiency with an operable liquid volume above 150 μL and a trigger-to-drain time below 6 s. Furthermore, the retention and trigger states of the valve could be switched for repeatable triggering for three cycles within 5 min. Finally, the microbead-based immunoreaction and live cell staining applications verified the valve's ability to perform multi-step operations. The above results showed that the proposed 3D trigger valve could be expected to play a part in wide-ranging POCT application scenarios.
Collapse
Affiliation(s)
- Yijun Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuang Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Luan
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahong Jiang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Yuanyuan Fan
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Mingxiao Li
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Chengjun Huang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqian Zhang
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Yang Zhao
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|