1
|
Cai M, Wan J, Cai K, Li S, Du X, Song H, Sun W, Hu J. The mitochondrial quality control system: a new target for exercise therapeutic intervention in the treatment of brain insulin resistance-induced neurodegeneration in obesity. Int J Obes (Lond) 2024; 48:749-763. [PMID: 38379083 DOI: 10.1038/s41366-024-01490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Obesity is a major global health concern because of its strong association with metabolic and neurodegenerative diseases such as diabetes, dementia, and Alzheimer's disease. Unfortunately, brain insulin resistance in obesity is likely to lead to neuroplasticity deficits. Since the evidence shows that insulin resistance in brain regions abundant in insulin receptors significantly alters mitochondrial efficiency and function, strategies targeting the mitochondrial quality control system may be of therapeutic and practical value in obesity-induced cognitive decline. Exercise is considered as a powerful stimulant of mitochondria that improves insulin sensitivity and enhances neuroplasticity. It has great potential as a non-pharmacological intervention against the onset and progression of obesity associated neurodegeneration. Here, we integrate the current knowledge of the mechanisms of neurodegenration in obesity and focus on brain insulin resistance to explain the relationship between the impairment of neuronal plasticity and mitochondrial dysfunction. This knowledge was synthesised to explore the exercise paradigm as a feasible intervention for obese neurodegenration in terms of improving brain insulin signals and regulating the mitochondrial quality control system.
Collapse
Affiliation(s)
- Ming Cai
- Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201599, China
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Wanju Sun
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
2
|
Mendes D, Peixoto F, Oliveira MM, Andrade PB, Videira RA. Mitochondria research and neurodegenerative diseases: on the track to understanding the biological world of high complexity. Mitochondrion 2022; 65:67-79. [PMID: 35623557 DOI: 10.1016/j.mito.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 05/22/2022] [Indexed: 12/18/2022]
Abstract
From the simple unicellular eukaryote to the highly complex multicellular organism like Human, mitochondrion emerges as a ubiquitous player to ensure the organism's functionality. It is popularly known as "the powerhouse of the cell" by its key role in ATP generation. However, our understanding of the physiological relevance of mitochondria is being challenged by data obtained in different fields. In this review, a short history of the mitochondria research field is presented, stressing the findings and questions that allowed the knowledge advances, and put mitochondrion as the main player of safeguarding organism life as well as a key to solve the puzzle of the neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniela Mendes
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto 4050-313, Portugal
| | - Francisco Peixoto
- Chemistry Center - Vila Real (CQ-VR), Biological and Environment Department, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, UTAD, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Maria M Oliveira
- Chemistry Center - Vila Real (CQ-VR), Chemistry Department, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, UTAD, P.O. Box 1013, 5001-801 Vila Real, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto 4050-313, Portugal
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto 4050-313, Portugal.
| |
Collapse
|
3
|
Sandberg AA, Manning E, Wilkins HM, Mazzarino R, Minckley T, Swerdlow RH, Patterson D, Qin Y, Linseman DA. Mitochondrial Targeting of Amyloid-β Protein Precursor Intracellular Domain Induces Hippocampal Cell Death via a Mechanism Distinct from Amyloid-β. J Alzheimers Dis 2022; 86:1727-1744. [PMID: 35253745 PMCID: PMC10084495 DOI: 10.3233/jad-215108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Amyloid-β (Aβ) is a principal cleavage product of amyloid-β protein precursor (AβPP) and is widely recognized as a key pathogenic player in Alzheimer's disease (AD). Yet, there is increasing evidence of a neurotoxic role for the AβPP intracellular domain (AICD) which has been proposed to occur through its nuclear function. Intriguingly, there is a γ-secretase resident at the mitochondria which could produce AICD locally. OBJECTIVE We examined the potential of AICD to induce neuronal apoptosis when targeted specifically to the mitochondria and compared its mechanism of neurotoxicity to that of Aβ. METHODS We utilized transient transfection of HT22 neuronal cells with bicistronic plasmids coding for DsRed and either empty vector (Ires), Aβ, AICD59, or mitochondrial-targeted AICD (mitoAICD) in combination with various inhibitors of pathways involved in apoptosis. RESULTS AICD induced significant neuronal apoptosis only when targeted to the mitochondria. Apoptosis required functional mitochondria as neither Aβ nor mitoAICD induced significant toxicity in cells devoid of mitochondrial DNA. Both glutathione and a Bax inhibitor protected HT22 cells from either peptide. However, inhibition of the mitochondrial permeability transition pore only protected from Aβ, while pan-caspase inhibitors uniquely rescued cells from mitoAICD. CONCLUSION Our results show that AICD displays a novel neurotoxic function when targeted to mitochondria. Moreover, mitoAICD induces apoptosis via a mechanism that is distinct from that of Aβ. These findings suggest that AICD produced locally at mitochondria via organelle-specific γ-secretase could act in a synergistic manner with Aβ to cause mitochondrial dysfunction and neuronal death in AD.
Collapse
Affiliation(s)
- Alexandra A. Sandberg
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Evan Manning
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Heather M. Wilkins
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, USA
| | - Randall Mazzarino
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Taylor Minckley
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Alzheimer’s Disease Center, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS, USA
| | - David Patterson
- Knoebel Institute for Healthy Aging and Eleanor Roosevelt Institute, University of Denver, 2155 E. Wesley Ave., Denver, CO, USA
| | - Yan Qin
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
| | - Daniel A. Linseman
- Department of Biological Sciences, University of Denver, 2199 S. University Blvd., Denver, CO, USA
- Knoebel Institute for Healthy Aging and Eleanor Roosevelt Institute, University of Denver, 2155 E. Wesley Ave., Denver, CO, USA
| |
Collapse
|
4
|
Carvajal FJ, Cerpa W. Regulation of Phosphorylated State of NMDA Receptor by STEP 61 Phosphatase after Mild-Traumatic Brain Injury: Role of Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101575. [PMID: 34679709 PMCID: PMC8533270 DOI: 10.3390/antiox10101575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023] Open
Abstract
Traumatic Brain Injury (TBI) mediates neuronal death through several events involving many molecular pathways, including the glutamate-mediated excitotoxicity for excessive stimulation of N-methyl-D-aspartate receptors (NMDARs), producing activation of death signaling pathways. However, the contribution of NMDARs (distribution and signaling-associated to the distribution) remains incompletely understood. We propose a critical role of STEP61 (Striatal-Enriched protein tyrosine phosphatase) in TBI; this phosphatase regulates the dephosphorylated state of the GluN2B subunit through two pathways: by direct dephosphorylation of tyrosine-1472 and indirectly via dephosphorylation and inactivation of Fyn kinase. We previously demonstrated oxidative stress’s contribution to NMDAR signaling and distribution using SOD2+/− mice such a model. We performed TBI protocol using a controlled frontal impact device using C57BL/6 mice and SOD2+/− animals. After TBI, we found alterations in cognitive performance, NMDAR-dependent synaptic function (decreased synaptic form of NMDARs and decreased synaptic current NMDAR-dependent), and increased STEP61 activity. These changes are reduced partially with the STEP61-inhibitor TC-2153 treatment in mice subjected to TBI protocol. This study contributes with evidence about the role of STEP61 in the neuropathological progression after TBI and also the alteration in their activity, such as an early biomarker of synaptic damage in traumatic lesions.
Collapse
Affiliation(s)
- Francisco J. Carvajal
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
- Correspondence: ; Tel.: +56-2-2354-2656; Fax: +56-2-2354-2660
| |
Collapse
|
5
|
Sanna PP, Fu Y, Masliah E, Lefebvre C, Repunte-Canonigo V. Central nervous system (CNS) transcriptomic correlates of human immunodeficiency virus (HIV) brain RNA load in HIV-infected individuals. Sci Rep 2021; 11:12176. [PMID: 34108514 PMCID: PMC8190104 DOI: 10.1038/s41598-021-88052-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022] Open
Abstract
To generate new mechanistic hypotheses on the pathogenesis and disease progression of neuroHIV and identify novel therapeutic targets to improve neuropsychological function in people with HIV, we investigated host genes and pathway dysregulations associated with brain HIV RNA load in gene expression profiles of the frontal cortex, basal ganglia, and white matter of HIV+ patients. Pathway analyses showed that host genes correlated with HIV expression in all three brain regions were predominantly related to inflammation, neurodegeneration, and bioenergetics. HIV RNA load directly correlated particularly with inflammation genesets representative of cytokine signaling, and this was more prominent in white matter and the basal ganglia. Increases in interferon signaling were correlated with high brain HIV RNA load in the basal ganglia and the white matter although not in the frontal cortex. Brain HIV RNA load was inversely correlated with genesets that are indicative of neuronal and synaptic genes, particularly in the cortex, indicative of synaptic injury and neurodegeneration. Brain HIV RNA load was inversely correlated with genesets that are representative of oxidative phosphorylation, electron transfer, and the tricarboxylic acid cycle in all three brain regions. Mitochondrial dysfunction has been implicated in the toxicity of some antiretrovirals, and these results indicate that mitochondrial dysfunction is also associated with productive HIV infection. Genes and pathways correlated with brain HIV RNA load suggest potential therapeutic targets to ameliorate neuropsychological functioning in people living with HIV.
Collapse
Affiliation(s)
- Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute On Aging, National Institutes of Health, Bethesda, MD, USA
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- , Paris, France
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
6
|
Adlimoghaddam A, Odero GG, Glazner G, Turner RS, Albensi BC. Nilotinib Improves Bioenergetic Profiling in Brain Astroglia in the 3xTg Mouse Model of Alzheimer's Disease. Aging Dis 2021; 12:441-465. [PMID: 33815876 PMCID: PMC7990369 DOI: 10.14336/ad.2020.0910] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
Current treatments targeting amyloid beta in Alzheimer's disease (AD) have minimal efficacy, which results in a huge unmet medical need worldwide. Accumulating data suggest that brain mitochondrial dysfunction play a critical role in AD pathogenesis. Targeting cellular mechanisms associated with mitochondrial dysfunction in AD create a novel approach for drug development. This study investigated the effects of nilotinib, as a selective tyrosine kinase inhibitor, in astroglia derived from 3xTg-AD mice versus their C57BL/6-controls. Parameters included oxygen consumption rates (OCR), ATP, cytochrome c oxidase (COX), citrate synthase (CS) activity, alterations in oxidative phosphorylation (OXPHOS), nuclear factor kappa B (NF-κB), key regulators of mitochondrial dynamics (mitofusin (Mfn1), dynamin-related protein 1 (Drp1)), and mitochondrial biogenesis (peroxisome proliferator-activated receptor gamma coactivator1-alpha (PGC-1α), calcium/calmodulin-dependent protein kinase II (CaMKII), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)). Nilotinib increased OCR, ATP, COX, Mfn1, and OXPHOS levels in 3xTg astroglia. No significant differences were detected in levels of Drp1 protein and CS activity. Nilotinib enhanced mitochondrial numbers, potentially through a CaMKII-PGC1α-Nrf2 pathway in 3xTg astroglia. Additionally, nilotinib-induced OCR increases were reduced in the presence of the NF-κB inhibitor, Bay11-7082. The data suggest that NF-κB signaling is intimately involved in nilotinib-induced changes in bioenergetics in 3xTg brain astroglia. Nilotinib increased translocation of the NF-κB p50 subunit into the nucleus of 3xTg astroglia that correlates with an increased expression and activation of NF-κB. The current findings support a role for nilotinib in improving mitochondrial function and suggest that astroglia may be a key therapeutic target in treating AD.
Collapse
Affiliation(s)
- Aida Adlimoghaddam
- 1Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada
| | - Gary G Odero
- 1Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada
| | - Gordon Glazner
- 1Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.,2Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - R Scott Turner
- 3Department of Neurology, Georgetown University, Washington, DC, USA
| | - Benedict C Albensi
- 1Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.,2Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Kudryavtseva GV, Malenkov YA, Shishkin VV, Shishkin VI, Kartunen AA. Kinetic Modeling of Mitochondrial-Reticular Network Dynamics. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Yu K, Pan J, Husamelden E, Zhang H, He Q, Wei Y, Tian M. Aggregation-induced Emission Based Fluorogens for Mitochondria-targeted Tumor Imaging and Theranostics. Chem Asian J 2020; 15:3942-3960. [PMID: 33025759 DOI: 10.1002/asia.202001100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/02/2020] [Indexed: 12/15/2022]
Abstract
Occurrence and development of cancer are multifactorial and multistep processes which involve complicated cellular signaling pathways. Mitochondria, as the energy producer in cells, play key roles in tumor cell growth and division. Since mitochondria of tumor cells have a more negative membrane potential than those of normal cells, several fluorescent imaging probes have been developed for mitochondria-targeted imaging and photodynamic therapy. Conventional fluorescent dyes suffer from aggregation-caused quenching effect, while novel aggregation-induced emission (AIE) probes are ideal candidates for biomedical applications due to their large stokes shift, strong photo-bleaching resistance, and high quantum yield. This review aims to introduce the recent advances in the design and application of mitochondria-targeted AIE probes. The comprehensive review focuses on the structure-property relationship of these imaging probes, expecting to inspire the development of more practical and versatile AIE fluorogens (AIEgens) as tumor imaging and therapy agents for preclinical and clinical use.
Collapse
Affiliation(s)
- Kaiwu Yu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, P. R. China
| | - Jiayue Pan
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, P. R. China
| | - Elkawad Husamelden
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, P. R. China
| | - Hong Zhang
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, P. R. China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, P. R. China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, P. R. China
| | - Mei Tian
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, P. R. China
| |
Collapse
|
9
|
Zagórska A, Jaromin A. Perspectives for New and More Efficient Multifunctional Ligands for Alzheimer's Disease Therapy. Molecules 2020; 25:E3337. [PMID: 32717806 PMCID: PMC7435667 DOI: 10.3390/molecules25153337] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
Despite tremendous research efforts at every level, globally, there is still a lack of effective drugs for the treatment of Alzheimer's disease (AD). The biochemical mechanisms of this devastating neurodegenerative disease are not yet clearly understood. This review analyses the relevance of multiple ligands in drug discovery for AD as a versatile toolbox for a polypharmacological approach to AD. Herein, we highlight major targets associated with AD, ranging from acetylcholine esterase (AChE), beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1), glycogen synthase kinase 3 beta (GSK-3β), N-methyl-d-aspartate (NMDA) receptor, monoamine oxidases (MAOs), metal ions in the brain, 5-hydroxytryptamine (5-HT) receptors, the third subtype of histamine receptor (H3 receptor), to phosphodiesterases (PDEs), along with a summary of their respective relationship to the disease network. In addition, a multitarget strategy for AD is presented, based on reported milestones in this area and the recent progress that has been achieved with multitargeted-directed ligands (MTDLs). Finally, the latest publications referencing the enlarged panel of new biological targets for AD related to the microglia are highlighted. However, the question of how to find meaningful combinations of targets for an MTDLs approach remains unanswered.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383 Wrocław, Poland;
| |
Collapse
|
10
|
Mira RG, Lira M, Quintanilla RA, Cerpa W. Alcohol consumption during adolescence alters the hippocampal response to traumatic brain injury. Biochem Biophys Res Commun 2020; 528:514-519. [PMID: 32505350 DOI: 10.1016/j.bbrc.2020.05.160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023]
Abstract
Binge drinking is the consumption of large volumes of alcohol in short periods and exerts its effects on the central nervous system, including the hippocampus. We have previously shown that binge drinking alters mitochondrial dynamics and induces neuroinflammation in the hippocampus of adolescent rats. Mild traumatic brain injury (mTBI), is regularly linked to alcohol consumption and share mechanisms of brain damage. In this context, we hypothesized that adolescent binge drinking could prime the development of brain damage generated by mTBI. We found that alcohol binge drinking induced by the "drinking in the dark" (DID) paradigm increases oxidative damage and astrocyte activation in the hippocampus of adolescent mice. Interestingly, adolescent animals submitted to DID showed decreased levels of mitofusin 2 that controls mitochondrial dynamics. When mTBI was evaluated as a second challenge, hippocampi from animals previously submitted to DID showed a reduction in dendritic spine number and a different spine profile. Mitochondrial performance could be compromised by alterations in mitochondrial fission in DID-mTBI animals. These data suggest that adolescent alcohol consumption can modify the progression of mTBI pathophysiology. We propose that mitochondrial impairment and oxidative damage could act as priming factors, modifying predisposition against mTBI effects.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de función y patología neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile
| | - Matías Lira
- Laboratorio de función y patología neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Laboratorio de Enfermedades Neurodegenerativas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de función y patología neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
11
|
Ma Y, Yang MW, Li XW, Yue JW, Chen JZ, Yang MW, Huang X, Zhu LL, Hong FF, Yang SL. Therapeutic Effects of Natural Drugs on Alzheimer's Disease. Front Pharmacol 2019; 10:1355. [PMID: 31866858 PMCID: PMC6904940 DOI: 10.3389/fphar.2019.01355] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/25/2019] [Indexed: 12/28/2022] Open
Abstract
Alzheimer disease (AD) is characterized as a chronic neurodegenerative disease associated with aging. The clinical manifestations of AD include latent episodes of memory and cognitive impairment, psychiatric symptoms and behavioral disorders, as well as limited activities in daily life. In developed countries, AD is now acknowledged as the third leading cause of death, following cardiovascular disease and cancer. The pathogenesis and mechanism of AD remain unclear, although some theories have been proposed to explain AD, such as the theory of β-amyloid, the theory of the abnormal metabolism of tau protein, the theory of free radical damage, the theory of the inflammatory response, the theory of cholinergic damage, etc. Effective methods to predict, prevent or reverse AD are unavailable, and thus the development of new, efficient therapeutic drugs has become a current research hot spot worldwide. The isolation and extraction of active components from natural drugs have great potential in treating AD. These drugs possess the advantages of multiple targets in multiple pathways, fewer side effects and a long duration of curative effects. This article summaries the latest research progress regarding the mechanisms of natural drugs in the treatment of AD, providing a review of the literature and a theoretical basis for improving the clinical treatment of AD.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Man-Wen Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Xin-Wei Li
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Jian-Wei Yue
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Jun-Zong Chen
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang, China
| | - Xuan Huang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Lian-Lian Zhu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Fen-Fang Hong
- Department of Experimental Teaching Center, Nanchang University, Nanchang, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Li B, Liang F, Ding X, Yan Q, Zhao Y, Zhang X, Bai Y, Huang T, Xu B. Interval and continuous exercise overcome memory deficits related to β-Amyloid accumulation through modulating mitochondrial dynamics. Behav Brain Res 2019; 376:112171. [DOI: 10.1016/j.bbr.2019.112171] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
13
|
Exenatide alleviates mitochondrial dysfunction and cognitive impairment in the 5×FAD mouse model of Alzheimer’s disease. Behav Brain Res 2019; 370:111932. [DOI: 10.1016/j.bbr.2019.111932] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 01/14/2023]
|
14
|
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer's disease. Signal Transduct Target Ther 2019; 4:29. [PMID: 31637009 PMCID: PMC6799833 DOI: 10.1038/s41392-019-0063-8] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss along with neuropsychiatric symptoms and a decline in activities of daily life. Its main pathological features are cerebral atrophy, amyloid plaques, and neurofibrillary tangles in the brains of patients. There are various descriptive hypotheses regarding the causes of AD, including the cholinergic hypothesis, amyloid hypothesis, tau propagation hypothesis, mitochondrial cascade hypothesis, calcium homeostasis hypothesis, neurovascular hypothesis, inflammatory hypothesis, metal ion hypothesis, and lymphatic system hypothesis. However, the ultimate etiology of AD remains obscure. In this review, we discuss the main hypotheses of AD and related clinical trials. Wealthy puzzles and lessons have made it possible to develop explanatory theories and identify potential strategies for therapeutic interventions for AD. The combination of hypometabolism and autophagy deficiency is likely to be a causative factor for AD. We further propose that fluoxetine, a selective serotonin reuptake inhibitor, has the potential to treat AD.
Collapse
Affiliation(s)
- Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yi Xie
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Xiao-Yan Meng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jian-Sheng Kang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
15
|
Albensi BC. What Is Nuclear Factor Kappa B (NF-κB) Doing in and to the Mitochondrion? Front Cell Dev Biol 2019; 7:154. [PMID: 31448275 PMCID: PMC6692429 DOI: 10.3389/fcell.2019.00154] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022] Open
Abstract
A large body of literature supports the idea that nuclear factor kappa B (NF-κB) signaling contributes to not only immunity, but also inflammation, cancer, and nervous system function. However, studies on NF-κB activity in mitochondrial function are much more limited and scattered throughout the literature. For example, in 2001 it was first published that NF-κB subunits were found in the mitochondria, including not only IkBα and NF-κB p65 subunits, but also NF-κB pathway proteins such as IKKα, IKKβ, and IKKγ, but not much follow-up work has been done to date. Upon further thought the lack of studies on NF-κB activity in mitochondrial function is surprising given the importance and the evolutionary history of both NF-κB and the mitochondrion. Both are ancient in their appearance in our biological record where both contribute substantially to cell survival, cell death, and the regulation of function and/or disease. Studies also show NF-κB can influence mitochondrial function from outside the mitochondria. Therefore, it is essential to understand the complexity of these roles both inside and out of this organelle. In this review, an attempt is made to understand how NF-κB activity contributes to overall mitochondrial function – both inside and out. The discussion at times is speculative and perhaps even provocative to some, since NF-κB does not yet have defined mitochondrial targeting sequences for some nuclear-encoded mitochondrial genes and mechanisms of mitochondrial import for NF-κB are not yet entirely understood. Also, the data associated with the mitochondrial localization of proteins must be yet further proved with additional experiments.
Collapse
Affiliation(s)
- Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada.,Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
16
|
Stockburger C, Eckert S, Eckert GP, Friedland K, Müller WE. Mitochondrial Function, Dynamics, and Permeability Transition: A Complex Love Triangle as A Possible Target for the Treatment of Brain Aging and Alzheimer's Disease. J Alzheimers Dis 2019; 64:S455-S467. [PMID: 29504539 DOI: 10.3233/jad-179915] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Because of the failure of all amyloid-β directed treatment strategies for Alzheimer's disease (AD), the concept of mitochondrial dysfunction as a major pathomechanism of the cognitive decline in aging and AD has received substantial support. Accordingly, improving mitochondrial function as an alternative strategy for new drug development became of increasing interest and many different compounds have been identified which improve mitochondrial function in preclinical in vitro and in vivo experiments. However, very few if any have been investigated in clinical trials, representing a major drawback of the mitochondria directed drug development. To overcome these problems, we used a top-down approach by investigating several older antidementia drugs with clinical evidence of therapeutic efficacy. These include EGb761® (standardized ginkgo biloba extract), piracetam, and Dimebon. All improve experimentally many aspects of mitochondrial dysfunction including mitochondrial dynamics and also improve cognition and impaired neuronal plasticity, the functionally most relevant consequences of mitochondrial dysfunction. All partially inhibit opening events of the mitochondrial permeability transition pore (mPTP) which previously has mainly been discussed as a mechanism relevant for the induction of apoptosis. However, as more recent work suggests the mPTP as a master regulator of many mitochondrial functions, our data suggest the mPTP as a possible relevant drug target within the love triangle between mPTP regulation, mitochondrial dynamics, and mitochondrial function including regulation of neuronal plasticity. Drugs interfering with mPTP function will improve not only mitochondrial impairment in aging and AD but also will have beneficial effects on impaired neuronal plasticity, the pathomechanism which correlates best with functional deficits (cognition, behavior) in aging and AD.
Collapse
Affiliation(s)
- Carola Stockburger
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| | - Schamim Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| | - Gunter P Eckert
- Department of Nutritional Sciences, University of Giessen, Giessen, Germany
| | - Kristina Friedland
- Department of Molecular and Clinical Pharmacy, University of Erlangen, Erlangen, Germany
| | - Walter E Müller
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| |
Collapse
|
17
|
Abstract
A growing body of evidence supports a clear association between Alzheimer's disease and diabetes and several mechanistic links have been revealed. This paper is mainly devoted to the discussion of the role of diabetes-associated mitochondrial defects in the pathogenesis of Alzheimer's disease. The research experience and views of the author on this subject will be highlighted.
Collapse
Affiliation(s)
- Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
18
|
The Role of the Antioxidant Response in Mitochondrial Dysfunction in Degenerative Diseases: Cross-Talk between Antioxidant Defense, Autophagy, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6392763. [PMID: 31057691 PMCID: PMC6476015 DOI: 10.1155/2019/6392763] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
The mitochondrion is an essential organelle important for the generation of ATP for cellular function. This is especially critical for cells with high energy demands, such as neurons for signal transmission and cardiomyocytes for the continuous mechanical work of the heart. However, deleterious reactive oxygen species are generated as a result of mitochondrial electron transport, requiring a rigorous activation of antioxidative defense in order to maintain homeostatic mitochondrial function. Indeed, recent studies have demonstrated that the dysregulation of antioxidant response leads to mitochondrial dysfunction in human degenerative diseases affecting the nervous system and the heart. In this review, we outline and discuss the mitochondrial and oxidative stress factors causing degenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and Friedreich's ataxia. In particular, the pathological involvement of mitochondrial dysfunction in relation to oxidative stress, energy metabolism, mitochondrial dynamics, and cell death will be explored. Understanding the pathology and the development of these diseases has highlighted novel regulators in the homeostatic maintenance of mitochondria. Importantly, this offers potential therapeutic targets in the development of future treatments for these degenerative diseases.
Collapse
|
19
|
Bieberich E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem Phys Lipids 2018; 216:114-131. [PMID: 30194926 PMCID: PMC6196108 DOI: 10.1016/j.chemphyslip.2018.08.003] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
About twenty years ago, the functional lipid raft model of the plasma membrane was published. It took into account decades of research showing that cellular membranes are not just homogenous mixtures of lipids and proteins. Lateral anisotropy leads to assembly of membrane domains with specific lipid and protein composition regulating vesicular traffic, cell polarity, and cell signaling pathways in a plethora of biological processes. However, what appeared to be a clearly defined entity of clustered raft lipids and proteins became increasingly fluid over the years, and many of the fundamental questions about biogenesis and structure of lipid rafts remained unanswered. Experimental obstacles in visualizing lipids and their interactions hampered progress in understanding just how big rafts are, where and when they are formed, and with which proteins raft lipids interact. In recent years, we have begun to answer some of these questions and sphingolipids may take center stage in re-defining the meaning and functional significance of lipid rafts. In addition to the archetypical cholesterol-sphingomyelin raft with liquid ordered (Lo) phase and the liquid-disordered (Ld) non-raft regions of cellular membranes, a third type of microdomains termed ceramide-rich platforms (CRPs) with gel-like structure has been identified. CRPs are "ceramide rafts" that may offer some fresh view on the membrane mesostructure and answer several critical questions for our understanding of lipid rafts.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology at the University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
20
|
Carvajal FJ, Mira RG, Rovegno M, Minniti AN, Cerpa W. Age-related NMDA signaling alterations in SOD2 deficient mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2010-2020. [PMID: 29577983 DOI: 10.1016/j.bbadis.2018.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/23/2022]
Abstract
Oxidative stress affects the survival and function of neurons. Hence, they have a complex and highly regulated machinery to handle oxidative changes. The dysregulation of this antioxidant machinery is associated with a wide range of neurodegenerative conditions. Therefore, we evaluated signaling alterations, synaptic properties and behavioral performance in 2 and 6-month-old heterozygous manganese superoxide dismutase knockout mice (SOD2+/- mice). We found that their low antioxidant capacity generated direct oxidative damage in proteins, lipids, and DNA. However, only 6-month-old heterozygous knockout mice presented behavioral impairments. On the other hand, synaptic plasticity, synaptic strength and NMDA receptor (NMDAR) dependent postsynaptic potentials were decreased in an age-dependent manner. We also analyzed the phosphorylation state of the NMDAR subunit GluN2B. We found that while the levels of GluN2B phosphorylated on tyrosine 1472 (synaptic form) remain unchanged, we detected increased levels of GluN2B phosphorylated on tyrosine 1336 (extrasynaptic form), establishing alterations in the synaptic/extrasynaptic ratio of GluN2B. Additionally, we found increased levels of two phosphatases associated with dephosphorylation of p-1472: striatal-enriched protein tyrosine phosphatase (STEP) and phosphatase and tensin homolog deleted on chromosome Ten (PTEN). Moreover, we found decreased levels of p-CREB, a master transcription factor activated by synaptic stimulation. In summary, we describe mechanisms by which glutamatergic synapses are altered under oxidative stress conditions. Our results uncovered new putative therapeutic targets for conditions where NMDAR downstream signaling is altered. This work also contributes to our understanding of processes such as synapse formation, learning, and memory in neuropathological conditions.
Collapse
Affiliation(s)
- Francisco J Carvajal
- Laboratorio de Función y Patología Neuronal, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alicia N Minniti
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Santiago, Chile; Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Santiago, Chile; Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
21
|
Gruden MA, Davydova TV, Kudrin VS, Wang C, Narkevich VB, Morozova-Roche LA, Sewell RDE. S100A9 Protein Aggregates Boost Hippocampal Glutamate Modifying Monoaminergic Neurochemistry: A Glutamate Antibody Sensitive Outcome on Alzheimer-like Memory Decline. ACS Chem Neurosci 2018; 9:568-577. [PMID: 29160692 DOI: 10.1021/acschemneuro.7b00379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) involves dementia conceivably arising from integrated inflammatory processes, amyloidogenesis, and neuronal apoptosis. Glutamate can also cause neuronal death via excitotoxicity, and this is similarly implicated in some neurological diseases. The aim was to examine treatment with in vitro generated proinflammatory protein S100A9 aggregate species alone or with glutamate antibodies (Glu-Abs) on Morris water maze (MWM) spatial learning and memory performance in 12 month old mice. Amino acid and monoamine cerebral neurotransmitter metabolic changes were concurrently monitored. Initially, S100A9 fibrils were morphologically verified by atomic force microscopy and Thioflavin T assay. They were then administered intranasally alone or with Glu-Abs for 14 days followed by a 5 day MWM protocol before hippocampal and prefrontal cortical neurochemical analysis. S100A9 aggregates evoked spatial amnesia which correlated with disrupted glutamate and dopaminergic neurochemistry. Hippocampal glutamate release, elevation of DOPAC and HVA, as well as DOPAC/DA and HVA/DA ratios were subsequently reduced by Glu-Abs which simultaneously prevented the spatial memory deficit. The present outcomes emphasized the pathogenic nature of S100A9 fibrillar aggregates in causing spatial memory amnesia associated with enhanced hippocampal glutamate release and DA-ergic disruption in the aging brain. This finding might be exploited during dementia management through a neuroprotective strategy.
Collapse
Affiliation(s)
- Marina A. Gruden
- P. K. Anokhin Research Institute of Normal Physiology, Moscow 125315 Russia
| | - Tatiana V. Davydova
- Research Institute of General Pathology and Pathophysiology, Moscow 125315 Russia
| | | | - Chao Wang
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-90187, Sweden
| | | | | | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| |
Collapse
|
22
|
de Oliveira MR. Carnosic Acid as a Promising Agent in Protecting Mitochondria of Brain Cells. Mol Neurobiol 2018; 55:6687-6699. [DOI: 10.1007/s12035-017-0842-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
|
23
|
Alvariño R, Alonso E, Tribalat MA, Gegunde S, Thomas OP, Botana LM. Evaluation of the Protective Effects of Sarains on H 2O 2-Induced Mitochondrial Dysfunction and Oxidative Stress in SH-SY5Y Neuroblastoma Cells. Neurotox Res 2017; 32:368-380. [PMID: 28478531 DOI: 10.1007/s12640-017-9748-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022]
Abstract
Sarains are diamide alkaloids isolated from the Mediterranean sponge Haliclona (Rhizoniera) sarai that have previously shown antibacterial, insecticidal and anti-fouling activities. In this study, we examined for the first time the neuroprotective effects of sarains 1, 2 and A against oxidative stress in a human neuronal model. SH-SY5Y cells were co-incubated with sarains at concentrations ranging from 0.01 to 10 μM, and the well-known oxidant hydrogen peroxide at 150 μM for 6 h and the protective effects of the compounds were evaluated. Among the sarains tested, sarain A was the most promising compound, improving mitochondrial function and decreasing reactive oxygen species levels in human neuroblastoma cells treated with the compound at 0.01, 0.1 and 1 μM. This compound was also able to increase the activity of the antioxidant enzymes superoxide dismutases by inducing the translocation of the nuclear factor E2-related factor 2 (Nrf2) to the nucleus at the lower concentrations tested (0.01 and 0.1 μM). Moreover, sarain A at 0.1 and 1 μM blocked the mitochondrial permeability transition pore (mPTP) opening through cyclophilin D inhibition. These results suggest that the protective effects produced by the treatment with sarain A are related with its ability to block the mPTP and to enhance the Nrf2 pathway, indicating that sarain A may be a candidate compound for further studies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003, Lugo, Spain
| | - Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003, Lugo, Spain
| | - Marie-Aude Tribalat
- Géoazur UMR Université Nice Sophia Antipolis, 250 Avenue Albert Einstein, 06108, Nice, France
| | - Sandra Gegunde
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003, Lugo, Spain
| | - Olivier P Thomas
- Géoazur UMR Université Nice Sophia Antipolis, 250 Avenue Albert Einstein, 06108, Nice, France.,Marine Biodiscovery, School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27003, Lugo, Spain.
| |
Collapse
|