1
|
Cheon YP, Ryou C, Svedružić ŽM. Roles of prion proteins in mammalian development. Anim Cells Syst (Seoul) 2024; 28:551-566. [PMID: 39664939 PMCID: PMC11633422 DOI: 10.1080/19768354.2024.2436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
Prion protein (PrP) is highly conserved and is expressed in most tissues in a developmental stage-specific manner. Glycosylated cellular prion protein (PrPC) is found in most cells and subcellular areas as a physiological regulating molecule. On the other hand, the amyloid form of PrPC, scrapie PrP (PrPSC), causes transmissible pathogenesis in the central nervous system and induces degeneration of the nervous system. Although many amyloids are reversible and critical in determining the fate, differentiation, and physiological functions of cells, thus far, PrPSC originating from PrPC is not. Although many studies have focused on disorders involving PrPC and the deletion mammalian models for PrPC have no severe phenotype, it has been suggested that PrPC has a role in normal development. It is conserved and expressed from gametes to adult somatic cells. In addition, severe developmental phenotypes appear in PrP null zebrafish embryos and in various mammalian cell model systems. In addition, it has been well established that PrPC is strongly involved in the stemness and differentiation of embryonic stem cells and progenitors. Thus far, many studies on PrPC have focused mostly on disease-associated conditions with physiological roles as a complex platform but not on development. The known roles of PrPC depend on the interacting molecules through its flexible tail and domains. PrPC interacts with membrane, and various intracellular and extracellular molecules. In addition, PrPC and amyloid can stimulate signaling pathways differentially. In this review, we summarize the function of prion protein and discuss its role in development.
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Department of Biotechnology, Institute for Basic Sciences, Sungshin University, Seoul, Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy, Hanyang University, ekcho Ansan, Korea
| | | |
Collapse
|
2
|
Kravenska Y, Koprowski P, Nieznanska H, Nieznanski K. Prion protein prevents the inhibition of large-conductance calcium-activated potassium channel by Tau peptide K18 oligomers. Biochem Biophys Res Commun 2024; 734:150793. [PMID: 39378784 DOI: 10.1016/j.bbrc.2024.150793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024]
Abstract
Alzheimer's disease (AD) is a tauopathy characterized by the deposition of amyloid aggregates of hyperphosphorylated Tau protein and amyloid-β peptide (Aβ) in the brain. Nevertheless, a soluble, oligomeric forms of Tau and Aβ are considered to be the most neurotoxic species responsible for neurodegenerative processes in AD. The mechanism of action of these oligomers remains largely unclear. Previously, we demonstrated the inhibition of the large-conductance calcium-activated potassium channel (BKCa) by Aβ. Therefore, in the present study we investigated the effect of Tau protein on the BKCa activity. Furthermore, since prion protein (PrP) interacts with Tau and the N-terminal fragment of PrP, called N1, can be neuroprotective in tauopathies, we checked whether N1 can also act at the level of BKCa channel. In the studies we used monomers, oligomers and amyloid fibrils of aggregation-prone Tau fragment, called K18, carrying tauopathy-associated mutation - deletion of Lys280 (K18Δ280). Additionally, to induce formation of neurotoxic oligomers, K18Δ280 was phosphorylated by protein kinase A (PKA). The activity of the plasma membrane BKCa of hippocampal neurons was recorded using single-channel patch-clamp technique in both inside-out and outside-out modes, exposing the cytosolic or extracellular surface of the membrane, respectively. In the outside-out mode - performing the extracellular application of the neurotoxic oligomers of phosphorylated K18Δ280, we observed a significant and concentration-dependent decrease in the probability of opening (Po) of BKCa. The Po of BKCa was fully recovered after washing the oligomers out. In the case of the inside-out patch-clamp configuration, we found that the Po of BKCa was not affected by the oligomers. In contrast to the oligomers, the monomers and amyloid fibrils of K18Δ280 had no effect on the channel activity, analyzed in inside-out as well as outside-out modes. Noteworthy, upon incubation with N1, the oligomers did not inhibit BKCa channel. The BKCa channel inhibition, dependent on the outside-out membrane orientation, implies specific interaction of the oligomers with the extracellular part of the channel. Moreover, our results suggest that N1 can convert the neurotoxic oligomers of Tau into a form which is not able to inhibit the channel, and indicate novel possible neuroprotective mechanism of PrP action in AD and other tauopathies.
Collapse
Affiliation(s)
- Yevheniia Kravenska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Piotr Koprowski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Hanna Nieznanska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
| | - Krzysztof Nieznanski
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
| |
Collapse
|
3
|
Song F, Kovac V, Mohammadi B, Littau JL, Scharfenberg F, Matamoros Angles A, Vanni I, Shafiq M, Orge L, Galliciotti G, Djakkani S, Linsenmeier L, Černilec M, Hartman K, Jung S, Tatzelt J, Neumann JE, Damme M, Tschirner SK, Lichtenthaler SF, Ricklefs FL, Sauvigny T, Schmitz M, Zerr I, Puig B, Tolosa E, Ferrer I, Magnus T, Rupnik MS, Sepulveda-Falla D, Matschke J, Šmid LM, Bresjanac M, Andreoletti O, Krasemann S, Foliaki ST, Nonno R, Becker-Pauly C, Monzo C, Crozet C, Haigh CL, Glatzel M, Curin Serbec V, Altmeppen HC. Cleavage site-directed antibodies reveal the prion protein in humans is shed by ADAM10 at Y226 and associates with misfolded protein deposits in neurodegenerative diseases. Acta Neuropathol 2024; 148:2. [PMID: 38980441 PMCID: PMC11233397 DOI: 10.1007/s00401-024-02763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Proteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far. In this study, cleavage site prediction and generation (plus detailed characterization) of sPrP-specific antibodies enabled us to identify PrP cleaved at tyrosin 226 as the physiological and apparently strictly ADAM10-dependent shed form in humans. Using cell lines, neural stem cells and brain organoids, we show that shedding of human PrP can be stimulated by PrP-binding ligands without targeting the protease, which may open novel therapeutic perspectives. Site-specific antibodies directed against human sPrP also detect the shed form in brains of cattle, sheep and deer, hence in all most relevant species naturally affected by fatal and transmissible prion diseases. In human and animal prion diseases, but also in patients with Alzheimer`s disease, sPrP relocalizes from a physiological diffuse tissue pattern to intimately associate with extracellular aggregated deposits of misfolded proteins characteristic for the respective pathological condition. Findings and research tools presented here will accelerate novel insight into the roles of PrP shedding (as a process) and sPrP (as a released factor) in neurodegeneration and beyond.
Collapse
Affiliation(s)
- Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Valerija Kovac
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jessica L Littau
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Andreu Matamoros Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Leonor Orge
- National Institute for Agricultural and Veterinary Research (INIAV), Oeiras, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Giovanna Galliciotti
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Salma Djakkani
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Maja Černilec
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Katrina Hartman
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia
| | - Sebastian Jung
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Ruhr University Bochum, Bochum, Germany
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), UKE, Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Sarah K Tschirner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University Munich, 81675, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University Munich, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), UKE, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| | - Tim Magnus
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), UKE, Hamburg, Germany
| | - Marjan S Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Lojze M Šmid
- LNPR, Institute of Pathophysiology and Prion Laboratory, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mara Bresjanac
- LNPR, Institute of Pathophysiology and Prion Laboratory, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Olivier Andreoletti
- UMR INRAE ENVT 1225, Interactions Hôtes-Agents Pathogènes, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Simote T Foliaki
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Romolo Nonno
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Cecile Monzo
- Institute for Regenerative Medicine and Biotherapies (IRMB), Neural Stem Cell, MSC and Neurodegenerative Diseases, INSERM, Montpellier, France
| | - Carole Crozet
- Institute for Regenerative Medicine and Biotherapies (IRMB), Neural Stem Cell, MSC and Neurodegenerative Diseases, INSERM, Montpellier, France
| | - Cathryn L Haigh
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Vladka Curin Serbec
- Centre for Immunology and Development, Blood Transfusion Centre of Slovenia (BTCS), Ljubljana, Slovenia.
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
4
|
Vanni I, Iacobone F, D’Agostino C, Giovannelli M, Pirisinu L, Altmeppen HC, Castilla J, Torres JM, Agrimi U, Nonno R. An optimized Western blot assay provides a comprehensive assessment of the physiological endoproteolytic processing of the prion protein. J Biol Chem 2022; 299:102823. [PMID: 36565989 PMCID: PMC9867980 DOI: 10.1016/j.jbc.2022.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
The prion protein (PrPC) is subjected to several conserved endoproteolytic events producing bioactive fragments that are of increasing interest for their physiological functions and their implication in the pathogenesis of prion diseases and other neurodegenerative diseases. However, systematic and comprehensive investigations on the full spectrum of PrPC proteoforms have been hampered by the lack of methods able to identify all PrPC-derived proteoforms. Building on previous knowledge of PrPC endoproteolytic processing, we thus developed an optimized Western blot assay able to obtain the maximum information about PrPC constitutive processing and the relative abundance of PrPC proteoforms in a complex biological sample. This approach led to the concurrent identification of the whole spectrum of known endoproteolytic-derived PrPC proteoforms in brain homogenates, including C-terminal, N-terminal and, most importantly, shed PrPC-derived fragments. Endoproteolytic processing of PrPC was remarkably similar in the brain of widely used wild type and transgenic rodent models, with α-cleavage-derived C1 representing the most abundant proteoform and ADAM10-mediated shedding being an unexpectedly prominent proteolytic event. Interestingly, the relative amount of shed PrPC was higher in WT mice than in most other models. Our results indicate that constitutive endoproteolytic processing of PrPC is not affected by PrPC overexpression or host factors other than PrPC but can be impacted by PrPC primary structure. Finally, this method represents a crucial step in gaining insight into pathophysiological roles, biomarker suitability, and therapeutic potential of shed PrPC and for a comprehensive appraisal of PrPC proteoforms in therapies, drug screening, or in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Floriana Iacobone
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia D’Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Giovannelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Joaquin Castilla
- Basque Research and Technology Alliance (BRTA) - CIC BioGUNE & IKERBasque, Bizkaia, Spain,Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
5
|
Mohammadi B, Song F, Matamoros-Angles A, Shafiq M, Damme M, Puig B, Glatzel M, Altmeppen HC. Anchorless risk or released benefit? An updated view on the ADAM10-mediated shedding of the prion protein. Cell Tissue Res 2022; 392:215-234. [PMID: 35084572 PMCID: PMC10113312 DOI: 10.1007/s00441-022-03582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
The prion protein (PrP) is a broadly expressed glycoprotein linked with a multitude of (suggested) biological and pathological implications. Some of these roles seem to be due to constitutively generated proteolytic fragments of the protein. Among them is a soluble PrP form, which is released from the surface of neurons and other cell types by action of the metalloprotease ADAM10 in a process termed 'shedding'. The latter aspect is the focus of this review, which aims to provide a comprehensive overview on (i) the relevance of proteolytic processing in regulating cellular PrP functions, (ii) currently described involvement of shed PrP in neurodegenerative diseases (including prion diseases and Alzheimer's disease), (iii) shed PrP's expected roles in intercellular communication in many more (patho)physiological conditions (such as stroke, cancer or immune responses), (iv) and the need for improved research tools in respective (future) studies. Deeper mechanistic insight into roles played by PrP shedding and its resulting fragment may pave the way for improved diagnostics and future therapeutic approaches in diseases of the brain and beyond.
Collapse
Affiliation(s)
- Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Working Group for Interdisciplinary Neurobiology and Immunology (INI Research), Hamburg, Germany
| | - Feizhi Song
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Andreu Matamoros-Angles
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Berta Puig
- Department of Neurology, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | |
Collapse
|
6
|
Dexter E, Kong Q. Neuroprotective effect and potential of cellular prion protein and its cleavage products for treatment of neurodegenerative disorders part II: strategies for therapeutics development. Expert Rev Neurother 2021; 21:983-991. [PMID: 34470554 DOI: 10.1080/14737175.2021.1965882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The cellular prion protein (PrPC), some of its derivatives (especially PrP N-terminal N1 peptide and shed PrP), and PrPC-containing exosomes have strong neuroprotective activities, which have been reviewed in the companion article (Part I) and are briefly summarized here.Areas covered: We propose that elevating the extracellular levels of a protective PrP form using gene therapy and other approaches is a very promising novel avenue for prophylactic and therapeutic treatments against prion disease, Alzheimer's disease, and several other neurodegenerative diseases. We will dissect the pros and cons of various potential PrP-based treatment options and propose a few strategies that are more likely to succeed. The cited references were obtained from extensive PubMed searches of recent literature, including peer-reviewed original articles and review articles.Expert opinion: Concurrent knockdown of celllular PrP expression and elevation of the extracellular levels of a neuroprotective PrP N-terminal peptide via optimized gene therapy vectors is a highly promising broad-spectrum prophylactic and therapeutic strategy against several neurodegenerative diseases, including prion diseases, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Emily Dexter
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Dexter E, Kong Q. Neuroprotective effect and potential of cellular prion protein and its cleavage products for treatment of neurodegenerative disorders part I. a literature review. Expert Rev Neurother 2021; 21:969-982. [PMID: 34470561 DOI: 10.1080/14737175.2021.1965881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The cellular prion protein (PrPC) is well known for its pathogenic roles in prion diseases, several other neurodegenerative diseases (such as Alzheimer's disease), and multiple types of cancer, but the beneficial aspects of PrPC and its cleavage products received much less attention. AREAS COVERED Here the authors will systematically review the literatures on the negative as well as protective aspects of PrPC and its derivatives (especially PrP N-terminal N1 peptide and shed PrP). The authors will dissect the current findings on N1 and shed PrP, including evidence for their neuroprotective effects, the categories of PrPC cleavage, and numerous cleavage enzymes involved. The authors will also discuss the protective effects and therapeutic potentials of PrPC-rich exosomes. The cited articles were obtained from extensive PubMed searches of recent literature, including peer-reviewed original articles and review articles. EXPERT OPINION PrP and its N-terminal fragments have strong neuroprotective activities that should be explored for therapeutics and prophylactics development against prion disease, Alzheimer's disease and a few other neurodegenerative diseases. The strategies to develop PrP-based therapeutics and prophylactics for these neurodegenerative diseases will be discussed in a companion article (Part II).
Collapse
Affiliation(s)
- Emily Dexter
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, USA.,Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, USA
| |
Collapse
|