1
|
An Z, Miao M, Sun F, Lan XB, Yu JQ, Guo X, Zhang J. Copper-catalyzed oxidative cyclization of 2-(1 H-pyrrol-1-yl)aniline and alkylsilyl peroxides: a route to pyrrolo[1,2- a]quinoxalines. Org Biomol Chem 2024; 22:2370-2374. [PMID: 38416487 DOI: 10.1039/d3ob01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
An efficient method was developed for the one-pot construction of pyrrolo[1,2-a]quinoxalines via a Cu(II)-catalyzed domino reaction between 2-(1H-pyrrol-1-yl)anilines and alkylsilyl peroxides. This reaction proceeds through C-C bond cleavage and new C-C and C-N bond formation. A mechanistic study suggests that alkyl radical species participate in the cascade reaction.
Collapse
Affiliation(s)
- Zhenyu An
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Man Miao
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Fengkai Sun
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Xiao-Bing Lan
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Jian-Qiang Yu
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Xiaoli Guo
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Jian Zhang
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Damai M, Guzzardi N, Lewis V, Rao ZX, Sykes D, Patel B. Crafting mono- and novel bis-methylated pyrroloquinoxaline derivatives from a shared precursor and its application in the total synthesis of marinoquinoline A. RSC Adv 2023; 13:29561-29567. [PMID: 37822662 PMCID: PMC10562898 DOI: 10.1039/d3ra05952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
The synthesis of mono- and novel bis-methylated pyrrolo[1,2-a]quinoxalines through the addition of unstable methyl radicals to aryl isocyanides is described contingent upon the reaction conditions employed. The strategy has been effectively employed in the total synthesis of the natural product marinoquinoline A.
Collapse
Affiliation(s)
- Margarita Damai
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Norman Guzzardi
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Viliyana Lewis
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Zenobia X Rao
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Daniel Sykes
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| | - Bhaven Patel
- School of Human Sciences, London Metropolitan University 166-220 Holloway Road London N7 8DB UK
| |
Collapse
|
3
|
Gorle S, V.N. CS, L. VR, K. RR, Akula R. Glucose as an eco-friendly reducing agent for a one-pot multicomponent synthesis of quinoxalines. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2176237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Simhachalam Gorle
- Technology Development Centre, APSL, Dr. Reddy’s Laboratories Ltd, Hyderabad, India
- Department of Chemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, India
| | - Chandra Sekhar V.N.
- Technology Development Centre, APSL, Dr. Reddy’s Laboratories Ltd, Hyderabad, India
- Department of Chemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, India
| | - Vaikunta Rao L.
- Department of Chemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, India
| | - Raghavendra Rao K.
- Technology Development Centre, APSL, Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| | - Raghunadh Akula
- Technology Development Centre, APSL, Dr. Reddy’s Laboratories Ltd, Hyderabad, India
| |
Collapse
|
4
|
Geng M, Huang M, Kuang J, Fang W, Miao M, Ma Y. Application of N, N-Dimethylethanolamine as a One-Carbon Synthon for the Synthesis of Pyrrolo[1,2- a]quinoxalines, Quinazolin-4-ones, and Benzo[4,5]imidazoquinazolines via [5 + 1] Annulation. J Org Chem 2022; 87:14753-14762. [PMID: 36254464 DOI: 10.1021/acs.joc.2c02079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The synthesis of N-heterocycles composes a significant part of synthetic chemistry. In this report, a Cu(II)-catalyzed green and efficient synthesis of pyrrolo[1,2-a]quinoxaline, quinazolin-4-one, and benzo[4,5]imidazoquinazoline derivatives was developed, employing N,N-dimethylethanolamine (DMEA) as a C1 synthon. Green oxidant O2 is critical in these transformations, facilitating the formation of a key intermediate─a reactive iminium ion. The method conducted under mild conditions is compatible with a diversity of functional groups, providing an appealing alternative to the previously developed protocols.
Collapse
Affiliation(s)
- Meiqi Geng
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China.,Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 310018 Zhejiang, Hangzhou, China
| | - Minzhao Huang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China
| | - Jinqiang Kuang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China
| | - Weiwei Fang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - MaoZhong Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 310018 Zhejiang, Hangzhou, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China
| |
Collapse
|
5
|
Synthesis, Crystal Structure and Anti-Leukemic Activity of 1,3-Dihydro-1-{1-[4-(4-phenylpyrrolo[1,2-a]quinoxalin-3-yl)benzyl]piperidin-4-yl}-2H-benzimidazol-2-one. MOLBANK 2022. [DOI: 10.3390/m1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
1,3-Dihydro-1-{1-[4-(4-phenylpyrrolo[1,2-a]quinoxalin-3-yl)benzyl]piperidin-4-yl}-2H-benzimidazol-2-one has been synthesized through a multi-step pathway starting from commercially available 2-nitroaniline. A structure characterization of this new substituted pyrrolo[1,2-a]quinoxaline compound was achieved by using FT-IR, 1H-NMR, 13C-NMR, X-Ray and HRMS spectral analysis. This new pyrroloquinoxaline derivative shows an interesting cytotoxic potential against several human leukemia cell lines (HL60, K562 and U937 cells).
Collapse
|
6
|
Li S, Ren J, Ding C, Wang Y, Ma C. N, N-Dimethylformamide as Carbon Synthons for the Synthesis of N-Heterocycles: Pyrrolo/Indolo[1,2- a]quinoxalines and Quinazolin-4-ones. J Org Chem 2021; 86:16848-16857. [PMID: 34807611 DOI: 10.1021/acs.joc.1c02067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
N,N-dimethylformamide (DMF) as synthetic precursors contributing especially the methyl, acyl, and amino groups has played a significant role in heterocycle syntheses and functionalization. In this protocol, a wide range of pyrrolo/indolo[1,2-a]quinoxalines and quinazolin-4-ones were obtained in moderate to good yields by using elemental iodine without any metal or peroxides. We considered that N-methyl and N-acyl of DMF participate and complete the reaction separately through different mechanisms, which displayed potential still to be explored of DMF.
Collapse
Affiliation(s)
- Shichen Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jianing Ren
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chengcheng Ding
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yishou Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
7
|
Selvendran S, Das S, Waidha K, Venkatesan S, Balamurali MM, Basu B, Rajendran S. Pyrrole‐Fused Benzoxazinones/Quinoxalinones: Molecular Dynamic Simulation, Antiproliferative and Antibacterial Activities. ChemistrySelect 2021. [DOI: 10.1002/slct.202103015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Suresh Selvendran
- Chemistry Division School of Advanced Sciences Vellore Institute of Technology Chennai Campus Chennai 600127 Tamilnadu India
| | - Souvik Das
- Department of Neuroendocrinology and Experimental Hematology Chittaranjan National Cancer Institute Kolkata 700 026 West Bengal India
| | - Kamran Waidha
- DRDO-Defence Institute of High Altitude Research (DIHAR), Leh Ladakh, UT 194101 India
| | - Swathi Venkatesan
- Chemistry Division School of Advanced Sciences Vellore Institute of Technology Chennai Campus Chennai 600127 Tamilnadu India
| | - M. M. Balamurali
- Chemistry Division School of Advanced Sciences Vellore Institute of Technology Chennai Campus Chennai 600127 Tamilnadu India
| | - Biswarup Basu
- Department of Neuroendocrinology and Experimental Hematology Chittaranjan National Cancer Institute Kolkata 700 026 West Bengal India
| | - Saravanakumar Rajendran
- Chemistry Division School of Advanced Sciences Vellore Institute of Technology Chennai Campus Chennai 600127 Tamilnadu India
| |
Collapse
|
8
|
Saini KM, Saunthwal RK, Kumar A, Verma AK. Tandem 6π-Azatriene Electrocyclization of Fused Amino-cyclopentenones: Synthesis of Functionalized Pyrrolo- and Indolo-quinoxalines. Org Lett 2021; 23:7586-7591. [PMID: 34543027 DOI: 10.1021/acs.orglett.1c02782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A tandem 6π-azacyclization approach for the synthesis of diversified pyrrolo/indolo[1,2-a]quinoxalines from amino-cyclopentenones has been developed. The reaction proceeds through a trifluoroacetic-acid-mediated 6π-electrocyclization and concomitant opening of the cyclopentenone ring. The advantageous features of the developed chemistry include transition-metal-free conditions, operational simplicity, and a broad substrate scope. Further X-ray crystallographic studies confirm the assigned structures of the fused heterocycles.
Collapse
Affiliation(s)
- Kapil Mohan Saini
- Kalindi College, Department of Chemistry, University of Delhi, Delhi 110008, India
| | - Rakesh K Saunthwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign 61801, United States
| | - Ankit Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
9
|
Ahn J, Lee SB, Song I, Chun S, Oh DC, Hong S. Synthesis of 4-Aryl Pyrrolo[1,2-α]quinoxalines via Iron-Catalyzed Oxidative Coupling from an Unactivated Methyl Arene. J Org Chem 2021; 86:7390-7402. [PMID: 34028267 DOI: 10.1021/acs.joc.1c00371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein, we describe the direct synthesis of pyrrolo[1,2-α]quinoxaline via oxidative coupling between methyl arene and 1-(2-aminophenyl) pyrroles. Oxidation of the benzylic carbon of the methyl arene was achieved by di-t-butyl peroxide in the presence of an iron catalyst, followed by conversion to an activated aldehyde in situ. Oxygen played a crucial role in the oxidation process to accelerate benzaldehyde formation. Subsequent Pictet-Spengler-type annulation completed the quinoxaline structure. The protocol tolerated various kinds of functional groups and provided 22 4-aryl pyrrolo[1,2-α]quinoxalines when various methyl arene derivatives were used. The developed method proceeded in air, and all catalysts, reagents, and solvents were easily accessible.
Collapse
Affiliation(s)
- Jiwon Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Injae Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Togiti UK, Shukla AK, Bhattacharya A. Pyrrolo[1,2-a]quinoxalines from chalcones: An alternate route. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
|
12
|
Bandopadhyay N, Joshi M, Armaković S, Armaković SJ, Das HS, Roy Choudhury A, Biswas B. Unprecedented copper( ii) coordination induced nucleophilic cleavage of a quinoxaline heterocycle: structural and computational studies. CrystEngComm 2021. [DOI: 10.1039/d1ce00569c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This research work deals with the unprecedented copper(ii) induced nucleophilic cleavage of a quinoxaline heterocycle with spectroscopic, structural and computational studies.
Collapse
Affiliation(s)
| | - Mayank Joshi
- Department of Chemical Sciences
- Indian Institute of Science Education and Research, Mohali
- Mohali
- India
| | - Stevan Armaković
- Faculty of Sciences
- Department of Physics
- University of Novi Sad
- Novi Sad
- Serbia
| | - Sanja J. Armaković
- Faculty of Sciences
- Department of Chemistry, Biochemistry and Environmental Protection
- University of Novi Sad
- Novi Sad
- Serbia
| | - Hari Sankar Das
- Department of Chemistry
- University of North Bengal
- Darjeeling-734013
- India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences
- Indian Institute of Science Education and Research, Mohali
- Mohali
- India
| | - Bhaskar Biswas
- Department of Chemistry
- University of North Bengal
- Darjeeling-734013
- India
| |
Collapse
|
13
|
Chun S, Ahn J, Putta RR, Lee SB, Oh DC, Hong S. Direct Synthesis of Pyrrolo[1,2-α]quinoxalines via Iron-Catalyzed Transfer Hydrogenation between 1-(2-Nitrophenyl)pyrroles and Alcohols. J Org Chem 2020; 85:15314-15324. [DOI: 10.1021/acs.joc.0c02145] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiwon Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ramachandra Reddy Putta
- BK 21 Plus Project, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Viji M, Vishwanath M, Sim J, Park Y, Jung C, Lee S, Lee H, Lee K, Jung JK. α-Hydroxy acid as an aldehyde surrogate: metal-free synthesis of pyrrolo[1,2- a]quinoxalines, quinazolinones, and other N-heterocycles via decarboxylative oxidative annulation reaction. RSC Adv 2020; 10:37202-37208. [PMID: 35521290 PMCID: PMC9057147 DOI: 10.1039/d0ra07093a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/04/2020] [Indexed: 01/18/2023] Open
Abstract
A metal-free and efficient procedure for the synthesis of pyrrolo[1,2-a]quinoxalines, quinazolinones, and indolo[1,2-a]quinoxaline has been developed. The key features of our method include the in situ generation of aldehyde from α-hydroxy acid in the presence of TBHP (tert-butyl hydrogen peroxide), and further condensation with various amines, followed by intramolecular cyclization and subsequent oxidation to afford the corresponding quinoxalines, quinazolinones derivatives in moderate to high yields.
Collapse
Affiliation(s)
- Mayavan Viji
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Manjunatha Vishwanath
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Jaeuk Sim
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Yunjeong Park
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Chanhyun Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Seohu Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Heesoon Lee
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| | - Kiho Lee
- College of Pharmacy, Korea University Sejong 30019 Republic of Korea
| | - Jae-Kyung Jung
- College of Pharmacy, Medicinal Research Center (MRC), Chungbuk National University Cheongju 28160 Republic of Korea +82-43-268-2732 +82-43-261-2635
| |
Collapse
|
15
|
Makane VB, Vamshi Krishna E, Karale UB, Babar DA, Kalari S, Rekha EM, Shukla M, Kaul G, Sriram D, Chopra S, Misra S, Rode HB. Synthesis of novel 4,5-dihydropyrrolo[1,2-a]quinoxalines, pyrrolo[1,2-a]quinoxalin]-2-ones and their antituberculosis and anticancer activity. Arch Pharm (Weinheim) 2020; 353:e2000192. [PMID: 32786042 DOI: 10.1002/ardp.202000192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 07/26/2020] [Indexed: 01/25/2023]
Abstract
A facile strategy was developed for the synthesis of biologically important 4,5-dihydropyrrolo[1,2-a]quinoxalines and pyrrolo[1,2-a]quinoxalin]-2-ones by treating 2-(1H-pyrrol-1-yl)anilines with imidazo[1,2-a]pyridine-3-carbaldehyde or isatin, using amidosulfonic acid (NH3 SO3 ) as a solid catalyst in water at room temperature. The protocol has been extended to electrophile ninhydrin. The catalyst could be recycled for six times without the loss of activity. The compounds were evaluated for their antituberculosis, antibacterial, and anticancer activities. It is worth noting that compounds 3d and 3e demonstrated a minimum inhibitory concentration value of 6.25 µM against Mycobacterium tuberculosis H37Rv, whereas compounds 3d, 3g, 5d, 5e, and 5i showed a remarkable inhibition of A549, DU145, HeLa, HepG2, MCF-7, and B16-F10 cell lines, respectively. Staphylococcus aureus was inhibited by compounds 5b, 5e, 5d, 5g, and 5l at 32 µg/ml.
Collapse
Affiliation(s)
- Vitthal B Makane
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Eruva Vamshi Krishna
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Uattam B Karale
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Dattatraya A Babar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Saradhi Kalari
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Estharla M Rekha
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, India
| | - Manjulika Shukla
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Grace Kaul
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, Telangana, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sunil Misra
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Haridas B Rode
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
16
|
Keivanloo A, Lashkari S, Bakherad M, Fakharian M, Abbaspour S. One-pot sequential coupling reactions as a new practical protocol for the synthesis of unsymmetrical 2,3-diethynyl quinoxalines and 4-ethynyl-substituted pyrrolo[1,2-a]quinoxalines. Mol Divers 2020; 25:981-993. [PMID: 32301033 DOI: 10.1007/s11030-020-10083-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/01/2020] [Indexed: 01/07/2023]
Abstract
One palladium-catalyzed sequential coupling reactions were successfully used as a new protocol for the synthesis of unsymmetrical 2,3-diethynyl quinoxalines and 4-ethynyl-substituted pyrrolo[1,2-a]quinoxalines. The one-pot two coupling reactions of 2,3-dichloroquinoxaline, with two different terminal alkynes, under controlled conditions produced selectively unsymmetrical 2,3-diethynyl quinoxalines with high yields. When one of the two terminal alkynes was 3-propyne-1-ol, in the presence of secondary amines, cyclization occurred and 4-ethynyl-substituted pyrrolo[1,2-a]quinoxalines were successfully formed. All synthesized compounds were tested against the two bacterial strains including Micrococcus luteus and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Ali Keivanloo
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, 36199-95161, Iran.
| | - Saeed Lashkari
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, 36199-95161, Iran
| | - Mohammad Bakherad
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, 36199-95161, Iran
| | - Mahsa Fakharian
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, 36199-95161, Iran
| | - Sima Abbaspour
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, 36199-95161, Iran
| |
Collapse
|
17
|
1-Phenyl-8-[[4-(pyrrolo[1,2-a]quinoxalin-4-yl)phenyl]methyl]-1,3,8-triazaspiro[4.5]decan-4-one: Synthesis, Crystal Structure and Anti-Leukemic Activity. MOLBANK 2020. [DOI: 10.3390/m1113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
1-Phenyl-8-[[4-(pyrrolo[1,2-a]quinoxalin-4-yl)phenyl]methyl]-1,3,8-triazaspiro[4.5]decan-4-one has been successfully synthesized via a multi-step pathway starting from 2-nitroaniline. Structure characterization of this original pyrrolo[1,2-a]quinoxaline derivative was achieved by FT-IR, 1H-NMR, 13C-NMR, X-Ray and HRMS spectral analysis. This title compound shows interesting cytotoxic potential against several human leukemia cell lines (K562, HL60, and U937 cells).
Collapse
|
18
|
Guillon J, Nim S, Moreau S, Ronga L, Savrimoutou S, Thivet E, Marchivie M, Di Pietro A, Prasad R, Le Borgne M. Synthesis of new piperazinyl-pyrrolo[1,2- a]quinoxaline derivatives as inhibitors of Candida albicans multidrug transporters by a Buchwald-Hartwig cross-coupling reaction. RSC Adv 2020; 10:2915-2931. [PMID: 35496110 PMCID: PMC9048445 DOI: 10.1039/c9ra09348f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
Two series of piperazinyl-pyrrolo[1,2-a]quinoxaline derivatives were prepared via a Buchwald–Hartwig cross-coupling reaction and then evaluated for their ability to inhibit the drug efflux activity of CaCdr1p and CaMdr1p transporters of Candida albicans overexpressed in a Saccharomyces cerevisiae strain. In the initial screening of twenty-nine piperazinyl-pyrrolo[1,2-a]quinoxaline derivatives, twenty-three compounds behaved as dual inhibitors of CaCdr1p and CaMdr1p. Only four compounds showed exclusive inhibition of CaCdr1p or CaMdr1p. Further biological investigations were developed and for example, their antifungal potential was evaluated by measuring the growth of control yeast cells (AD1-8u−) and efflux pump-overexpressing cells (AD-CDR1 and AD-MDR1) after exposition to variable concentrations of the tested compounds. The MIC80 values of nineteen compounds ranging from 100 to 901 μM for AD-CDR1 demonstrated that relative resistance index (RI) values were between 8 and 274. In comparison, only seven compounds had RI values superior to 4 in cells overexpressing Mdr1p. These results indicated substrate behavior for nineteen compounds for CaCdr1p and seven compounds for CaMdr1p, as these compounds were transported via MDR transporter overexpressing cells and not by the AD1-8u− cells. Finally, in a combination assay with fluconazole, two compounds (1d and 1f) have shown a synergistic effect (fractional inhibitory concentration index (FICI) values ≤ 0.5) at micromolar concentrations in the AD-MDR1 yeast strain overexpressing CaMdr1p-protein, indicating an excellent potency toward chemosensitization. Two series of piperazinyl-pyrrolo[1,2-a]quinoxaline derivatives were prepared via a Buchwald–Hartwig cross-coupling reaction and then evaluated for their ability to inhibit the drug efflux activity of two Candida albicans transporters.![]()
Collapse
Affiliation(s)
- Jean Guillon
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Shweta Nim
- School of Life Sciences, Jawaharlal Nehru University 110067 New Delhi India
| | - Stéphane Moreau
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Luisa Ronga
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Solène Savrimoutou
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Elisabeth Thivet
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Mathieu Marchivie
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026 F-33608 Pessac Cedex France
| | - Attilio Di Pietro
- DRMP Group, IBCP, UMR 5086 (MMSB), CNRS/Lyon I University 69367 Lyon France
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health, Amity University Education Valley Gurgaon 122413 India
| | - Marc Le Borgne
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7 Lyon France
| |
Collapse
|
19
|
Wang X, Liu H, Xie C, Zhou F, Ma C. Terminal methyl as a one-carbon synthon: synthesis of quinoxaline derivatives via radical-type transformation. NEW J CHEM 2020. [DOI: 10.1039/c9nj04910j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An iron-promoted method for the construction of pyrrolo[1,2-a]quinoxaline derivatives has been developed. Various solvents with terminal methyl group, including ethers, amines and dimethyl sulfoxide, were utilized as carbon sources for the synthesis.
Collapse
Affiliation(s)
- Xinfeng Wang
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Huanhuan Liu
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Caixia Xie
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Feiyu Zhou
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| | - Chen Ma
- Key Laboratory of Special Functional Aggregated Materials
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
| |
Collapse
|
20
|
A highly divergent Pictet-Spengler approach for pyrrolo[1,2-a]quinoxalines from aryl amine using 1,2-dinitrobenzene as an oxidant. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Patil BN, Lade JJ, Pardeshi SD, Patil P, Chaskar AC. Polyethylene‐Glycol‐ (PEG‐400) Mediated Environmentally Benign Protocol for the Synthesis of Pyrrolo[1,2‐a]quinoxalines from Benzyl Amines at Room Temperature. ChemistrySelect 2019. [DOI: 10.1002/slct.201902656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bhausaheb N. Patil
- National Centre for Nanosciences and NanotechnologyUniversity of Mumbai, VidyanagariKalina Campus, Santacruz (East) Mumbai- 400098, Maharashtra India
| | - Jatin J. Lade
- National Centre for Nanosciences and NanotechnologyUniversity of Mumbai, VidyanagariKalina Campus, Santacruz (East) Mumbai- 400098, Maharashtra India
| | - Sachin D. Pardeshi
- National Centre for Nanosciences and NanotechnologyUniversity of Mumbai, VidyanagariKalina Campus, Santacruz (East) Mumbai- 400098, Maharashtra India
| | - Prashant Patil
- VERT Chemmie, Naupada, Thane (W) 400602 Maharashtra India
| | - Atul C. Chaskar
- National Centre for Nanosciences and NanotechnologyUniversity of Mumbai, VidyanagariKalina Campus, Santacruz (East) Mumbai- 400098, Maharashtra India
| |
Collapse
|
22
|
|
23
|
Mandal S, Hazra S, Sarkar S, Bodhak C, Pramanik A. Expeditious synthesis of diverse spiro fused quinoxaline derivatives using magnetically separable core-shell CoFe2
O4
@SiO2
-SO3
H nanocatalyst under ultrasonication. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Subhro Mandal
- Department of Chemistry; University of Calcutta; 92 A. P. C. Road Kolkata 700009 India
| | - Subhenjit Hazra
- Department of Chemistry; University of Calcutta; 92 A. P. C. Road Kolkata 700009 India
| | - Soumen Sarkar
- Department of Chemistry; University of Calcutta; 92 A. P. C. Road Kolkata 700009 India
- Department of Chemistry; Balurghat College; Dakshin Dinajpur 733103 India
| | - Chandan Bodhak
- Department of Chemistry; University of Calcutta; 92 A. P. C. Road Kolkata 700009 India
| | - Animesh Pramanik
- Department of Chemistry; University of Calcutta; 92 A. P. C. Road Kolkata 700009 India
| |
Collapse
|
24
|
Krishna T, Reddy TN, Laxminarayana E, Kalita D. Copper-Catalyzed One-Pot Synthesis of Pyrrolo[1,2-a
]quinoxaline Derivatives from 1-(2-Aminophenyl)-pyrroles and Aldehydes. ChemistrySelect 2019. [DOI: 10.1002/slct.201803538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Thalishetti Krishna
- Technology Development Centre; Custom Pharmaceutical Services, Dr. Reddy's Laboratories Ltd; Hyderabad 500049 India
- Department of Chemistry; Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad -; 500 085 Telangana India
| | - Thatikonda Narendar Reddy
- Crop Protection Chemicals Division; CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Telangana; Hyderabad-500007 India
| | - Eppakayala Laxminarayana
- Department of Chemistry, Sreenidhi Institute of Science and Technology (Autonomous), Ghatkesar; Hyderabad- 501301, Telangana India
| | - Dipak Kalita
- Technology Development Centre; Custom Pharmaceutical Services, Dr. Reddy's Laboratories Ltd; Hyderabad 500049 India
| |
Collapse
|
25
|
Novel one-pot synthesis of 1-alkyl-2-(aryloxy)methyl-1H-pyrrolo[2,3-b]quinoxalines via copper-free Sonogashira coupling reaction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1492-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Fakharian M, Keivanloo A, Nabid MR. Rapid Synthesis of 2-Alkanol-substituted Pyrrolo[2,3- b
]quinoxalines from Propargylic Alcohols via
Copper-free Sonogashira Coupling Reaction at Room Temperature. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mahsa Fakharian
- Faculty of Chemistry; Shahrood University of Technology; Shahrood 36199-95161 Iran
| | - Ali Keivanloo
- Faculty of Chemistry; Shahrood University of Technology; Shahrood 36199-95161 Iran
| | - Mohammad Reza Nabid
- Department of Chemistry and Petroleum Faculty of Sciences; Shahid Beheshti University; Tehran Iran
| |
Collapse
|
27
|
An Z, Jiang Y, Guan X, Yan R. Copper-catalyzed tandem aerobic oxidative cyclization for the synthesis of 4-cyanoalkylpyrrolo[1,2-a]quinoxalines from 1-(2-aminophenyl)pyrroles and cyclobutanone oxime esters. Chem Commun (Camb) 2018; 54:10738-10741. [DOI: 10.1039/c8cc06256k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A copper-catalyzed tandem ring-opening/cyclization reaction for the synthesis of 4-cyanoalkylpyrrolo[1,2-a]quinoxalines from 1-(2-aminophenyl)pyrroles and cyclobutanone oxime esters has been developed.
Collapse
Affiliation(s)
- Zhenyu An
- State Key Laboratory of Applied Organic Chemistry
- Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Yong Jiang
- School of Chemistry and Chemical Engineering
- Yangtze Normal University
- Chongqing
- China
| | - Xin Guan
- State Key Laboratory of Applied Organic Chemistry
- Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry
- Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| |
Collapse
|
28
|
Mani GS, Rao AVS, Tangella Y, Sunkari S, Sultana F, Namballa HK, Shankaraiah N, Kamal A. Molecular iodine-catalysed oxidative CO–C(alkyl) bond cleavage of aryl/heteroaryl alkyl ketones: an efficient strategy to access fused polyheterocycles. NEW J CHEM 2018. [DOI: 10.1039/c8nj03417f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An efficient molecular iodine-catalysed one-pot strategy has been accomplished for the construction of various fused heterocycles under metal and oxidant free conditions.
Collapse
Affiliation(s)
- Geeta Sai Mani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research
- Hyderabad-500037
- India
| | - Ayanampudi Venkata Subba Rao
- Division of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Yellaiah Tangella
- Division of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Satish Sunkari
- Division of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Faria Sultana
- Division of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Hari Krishna Namballa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research
- Hyderabad-500037
- India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research
- Hyderabad-500037
- India
| | - Ahmed Kamal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research
- Hyderabad-500037
- India
- Division of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
| |
Collapse
|
29
|
Chu X, Zhang Z, Wang C, Chen X, Wang B, Ma C. CH3CO2H-prompted three components tandem reaction: An efficient and practical approach to trisubstituted pyrrolo[1,2-a]pyrazines. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.10.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Lade JJ, Patil BN, Vhatkar MV, Vadagaonkar KS, Chaskar AC. An Efficient Synthesis of Pyrrolo[1,2-a
]quinoxalines by Copper-Catalyzed C−H Activation of Arylacetic Acids. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700239] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jatin J. Lade
- National Centre for Nanosciences and Nanotechnology; University of Mumbai, Vidyanagari, Kalina Campus, Santacruz (East); Mumbai- 400098 India
| | - Bhausaheb N. Patil
- National Centre for Nanosciences and Nanotechnology; University of Mumbai, Vidyanagari, Kalina Campus, Santacruz (East); Mumbai- 400098 India
| | - Mahendra V. Vhatkar
- National Centre for Nanosciences and Nanotechnology; University of Mumbai, Vidyanagari, Kalina Campus, Santacruz (East); Mumbai- 400098 India
| | - Kamlesh S. Vadagaonkar
- Department of Dyestuff Technology; Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East); Mumbai- 400019 India
| | - Atul C. Chaskar
- National Centre for Nanosciences and Nanotechnology; University of Mumbai, Vidyanagari, Kalina Campus, Santacruz (East); Mumbai- 400098 India
- Department of Dyestuff Technology; Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East); Mumbai- 400019 India
| |
Collapse
|
31
|
Lade JJ, Patil BN, Sathe PA, Vadagaonkar KS, Chetti P, Chaskar AC. Iron Catalyzed Cascade Protocol for the Synthesis of Pyrrolo[1, 2-a
]quinoxalines: A Powerful Tool to Access Solid State Emissive Organic Luminophores. ChemistrySelect 2017. [DOI: 10.1002/slct.201701383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jatin J. Lade
- National Centre for Nanosciences and Nanotechnology; University of Mumbai-; 400 098 India
| | - Bhausaheb N. Patil
- National Centre for Nanosciences and Nanotechnology; University of Mumbai-; 400 098 India
| | - Pratima A. Sathe
- National Centre for Nanosciences and Nanotechnology; University of Mumbai-; 400 098 India
| | - Kamlesh S. Vadagaonkar
- Department of Dyestuff Technology; Institute of Chemical Technology; Mumbai- 400019 India
| | - Prabhakar Chetti
- Department of Chemistry; National Institute of Technology; Kurukshetra 136119, Haryana India
| | - Atul C. Chaskar
- National Centre for Nanosciences and Nanotechnology; University of Mumbai-; 400 098 India
| |
Collapse
|
32
|
Desplat V, Vincenzi M, Lucas R, Moreau S, Savrimoutou S, Rubio S, Pinaud N, Bigat D, Enriquez E, Marchivie M, Routier S, Sonnet P, Rossi F, Ronga L, Guillon J. Synthesis and Antiproliferative Effect of Ethyl 4-[4-(4-Substituted Piperidin-1-yl)]benzylpyrrolo[1,2-a
]quinoxalinecarboxylate Derivatives on Human Leukemia Cells. ChemMedChem 2017; 12:940-953. [DOI: 10.1002/cmdc.201700049] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/17/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Vanessa Desplat
- UFR des Sciences Pharmaceutiques; Univ. Bordeaux; 33076 Bordeaux cedex France
- INSERM U1035, Cellules souches hématopoïétiques normales et leucémiques; 33000 Bordeaux France
| | - Marian Vincenzi
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
- Department of Pharmacy and CIRPeB; University of Naples “Federico II”; Via Mezzocannone 16 80134 Naples Italy
| | - Romain Lucas
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| | - Stéphane Moreau
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| | - Solène Savrimoutou
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| | - Sandra Rubio
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| | - Noël Pinaud
- ISM-CNRS UMR 5255; Univ. Bordeaux; 351 cours de la Libération 33405 Talence cedex France
| | - David Bigat
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| | - Elodie Enriquez
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| | - Mathieu Marchivie
- ICMCB CNRS-UPR 9048; Univ. Bordeaux; 87 Avenue du Docteur Schweitzer 33608 Pessac cedex France
| | - Sylvain Routier
- Institut de Chimie Organique et analytique; Univ. Orleans, CNRS UMR 7311, ICOA; BP 6759, rue de Chartres 45067 Orléans cedex 2 France
| | - Pascal Sonnet
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressouces, UMR CNRS 7378, UFR de Pharmacie; Université de Picardie Jules Verne; 1 rue des Louvels 80037 Amiens cedex 01 France
| | - Filomena Rossi
- Department of Pharmacy and CIRPeB; University of Naples “Federico II”; Via Mezzocannone 16 80134 Naples Italy
| | - Luisa Ronga
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| | - Jean Guillon
- UFR des Sciences Pharmaceutiques, Univ. Bordeaux; ARNA Laboratory; 33076 Bordeaux cedex France
- INSERM U1212, UMR CNRS 5320; ARNA Laboratory; 33000 Bordeaux France
| |
Collapse
|
33
|
Development of an unexpected reaction pathway for the synthesis of 1,2,4-trisubstituted pyrrolo[1,2-a]quinoxalines through palladium-catalyzed cascade reactions. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.02.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Guillon J, Cohen A, Gueddouda NM, Das RN, Moreau S, Ronga L, Savrimoutou S, Basmaciyan L, Monnier A, Monget M, Rubio S, Garnerin T, Azas N, Mergny JL, Mullié C, Sonnet P. Design, synthesis and antimalarial activity of novel bis{N-[(pyrrolo[1,2-a]quinoxalin-4-yl)benzyl]-3-aminopropyl}amine derivatives. J Enzyme Inhib Med Chem 2017; 32:547-563. [PMID: 28114821 PMCID: PMC6445168 DOI: 10.1080/14756366.2016.1268608] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Novel series of bis- and tris-pyrrolo[1,2-a]quinoxaline derivatives 1 were synthesized and tested for in vitro activity upon the intraerythrocytic stage of W2 and 3D7 Plasmodium falciparum strains. Biological results showed good antimalarial activity with IC50 in the μM range. In attempting to investigate the large broad-spectrum antiprotozoal activities of these new derivatives, their properties toward Leishmania donovani were also investigated and revealed their selective antiplasmodial profile. In parallel, the in vitro cytotoxicity of these molecules was assessed on the human HepG2 cell line. Structure–activity relationships of these new synthetic compounds are discussed here. The bis-pyrrolo[1,2-a]quinoxalines 1n and 1p were identified as the most potent antimalarial candidates with selectivity index (SI) of 40.6 on W2 strain, and 39.25 on 3D7 strain, respectively. As the telomeres of the parasite could constitute an attractive target, we investigated the possibility of targeting Plasmodium telomeres by stabilizing the Plasmodium telomeric G-quadruplexes through a FRET melting assay by our new compounds.
Collapse
Affiliation(s)
- Jean Guillon
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Anita Cohen
- c UMR-MD3, Faculty of Pharmacy , Aix-Marseille University, Laboratory of Parasitology , Marseille , France
| | - Nassima Meriem Gueddouda
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Rabindra Nath Das
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Stéphane Moreau
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Luisa Ronga
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Solène Savrimoutou
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Louise Basmaciyan
- c UMR-MD3, Faculty of Pharmacy , Aix-Marseille University, Laboratory of Parasitology , Marseille , France
| | - Alix Monnier
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Myriam Monget
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Sandra Rubio
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Timothée Garnerin
- d Université de Picardie Jules Verne, Laboratoire de Glycochimie , des Antimicrobiens et des Agroressouces, UMR CNRS 7378, UFR de Pharmacie , Amiens , France
| | - Nadine Azas
- c UMR-MD3, Faculty of Pharmacy , Aix-Marseille University, Laboratory of Parasitology , Marseille , France
| | - Jean-Louis Mergny
- a ARNA Laboratory , University Bordeaux, UFR des Sciences Pharmaceutiques , Bordeaux , France.,b INSERM U1212, UMR CNRS 5320, ARNA Laboratory , Bordeaux , France
| | - Catherine Mullié
- d Université de Picardie Jules Verne, Laboratoire de Glycochimie , des Antimicrobiens et des Agroressouces, UMR CNRS 7378, UFR de Pharmacie , Amiens , France
| | - Pascal Sonnet
- d Université de Picardie Jules Verne, Laboratoire de Glycochimie , des Antimicrobiens et des Agroressouces, UMR CNRS 7378, UFR de Pharmacie , Amiens , France
| |
Collapse
|
35
|
Sunke R, Nallapati SB, Kumar JS, Shiva Kumar K, Pal M. Use of AlCl3 in Friedel Crafts arylation type reactions and beyond: an overview on the development of unique methodologies leading to N-heteroarenes. Org Biomol Chem 2017; 15:4042-4057. [DOI: 10.1039/c7ob00468k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An overview on the development of unique methodologies that highlight the use of AlCl3 in reactions leading to new N-heteroarenes of biological significance is presented.
Collapse
Affiliation(s)
- Rajnikanth Sunke
- Dr Reddy's Institute of Life Sciences
- Hyderabad Central University
- Hyderabad-500 046
- India
| | - Suresh Babu Nallapati
- Dr Reddy's Institute of Life Sciences
- Hyderabad Central University
- Hyderabad-500 046
- India
| | - Jetta Sandeep Kumar
- Dr Reddy's Institute of Life Sciences
- Hyderabad Central University
- Hyderabad-500 046
- India
| | - K. Shiva Kumar
- Department of Chemistry
- Osmania University
- Hyderabad-500 007
- India
| | - Manojit Pal
- Dr Reddy's Institute of Life Sciences
- Hyderabad Central University
- Hyderabad-500 046
- India
| |
Collapse
|
36
|
Li J, Zhang J, Yang H, Gao Z, Jiang G. A Green Aerobic Oxidative Synthesis of Pyrrolo[1,2-a]quinoxalines from Simple Alcohols without Metals and Additives. J Org Chem 2016; 82:765-769. [DOI: 10.1021/acs.joc.6b02501] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jixing Li
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinlong Zhang
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Huameng Yang
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Zeng Gao
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gaoxi Jiang
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
37
|
Expedient synthesis of pyrrolo[1,2-a]quinoxalines through one-pot three-component reactions of o-phenylenediamines, 2-alkoxy-2,3-dihydrofurans and ketones. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Desplat V, Vincenzi M, Lucas R, Moreau S, Savrimoutou S, Pinaud N, Lesbordes J, Peyrilles E, Marchivie M, Routier S, Sonnet P, Rossi F, Ronga L, Guillon J. Synthesis and evaluation of the cytotoxic activity of novel ethyl 4-[4-(4-substitutedpiperidin-1-yl)]benzyl-phenylpyrrolo[1,2-a]quinoxaline-carboxylate derivatives in myeloid and lymphoid leukemia cell lines. Eur J Med Chem 2016; 113:214-27. [DOI: 10.1016/j.ejmech.2016.02.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/17/2022]
|
39
|
Kamal A, Babu KS, Kovvuri J, Manasa V, Ravikumar A, Alarifi A. Amberlite IR-120H: an efficient and recyclable heterogeneous catalyst for the synthesis of pyrrolo[1,2-a]quinoxalines and 5′H-spiro[indoline-3,4′-pyrrolo[1,2-a]quinoxalin]-2-ones. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Kamal A, Babu KS, Hussaini SA, Srikanth P, Balakrishna M, Alarifi A. Sulfamic acid: an efficient and recyclable solid acid catalyst for the synthesis of 4,5-dihydropyrrolo[1,2-a]quinoxalines. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Zhang Z, Li J, Zhang G, Ma N, Liu Q, Liu T. Iron-Catalyzed Intramolecular C(sp2)–N Cyclization of 1-(N-Arylpyrrol-2-yl)ethanone O-Acetyl Oximes toward Pyrrolo[1,2-a]quinoxaline Derivatives. J Org Chem 2015; 80:6875-84. [DOI: 10.1021/acs.joc.5b00915] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhiguo Zhang
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Junlong Li
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Nana Ma
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Qingfeng Liu
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tongxin Liu
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
42
|
Liu H, Duan T, Zhang Z, Xie C, Ma C. One-Pot Synthesis of Pyrrolo[1,2-a]quinoxaline Derivatives via a Copper-Catalyzed Aerobic Oxidative Domino Reaction. Org Lett 2015; 17:2932-5. [DOI: 10.1021/acs.orglett.5b01167] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huanhuan Liu
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Tiantian Duan
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zeyuan Zhang
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Caixia Xie
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Chen Ma
- School
of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China
| |
Collapse
|
43
|
Preetam A, Nath M. An eco-friendly Pictet–Spengler approach to pyrrolo- and indolo[1,2-a]quinoxalines using p-dodecylbenzenesulfonic acid as an efficient Brønsted acid catalyst. RSC Adv 2015. [DOI: 10.1039/c4ra16651e] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Environmentally benign synthesis of pyrrolo- and indolo[1,2-a]quinoxalines has been achieved at 25 °C by usingp-dodecylbenzenesulfonic acid as a Brønsted acid catalyst.
Collapse
Affiliation(s)
| | - Mahendra Nath
- Department of Chemistry
- University of Delhi
- Delhi-110007
- India
| |
Collapse
|
44
|
Georgescu E, Nicolescu A, Georgescu F, Teodorescu F, Marinescu D, Macsim AM, Deleanu C. New highlights of the syntheses of pyrrolo[1,2-a]quinoxalin-4-ones. Beilstein J Org Chem 2014; 10:2377-87. [PMID: 25383108 PMCID: PMC4222434 DOI: 10.3762/bjoc.10.248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/18/2014] [Indexed: 11/23/2022] Open
Abstract
The one-pot three-component reactions of 1-substituted benzimidazoles with ethyl bromoacetate and electron-deficient alkynes, in 1,2-epoxybutane, gave a variety of pyrrolo[1,2-a]quinoxalin-4-ones and pyrrolo[1,2-a]benzimidazoles. The influence of experimental conditions on the course of reaction was investigated. A novel synthetic pathway starting from benzimidazoles unsubstituted at the five membered ring, alkyl bromoacetates and non-symmetrical electron-deficient alkynes in the molar ratio of 1:2:1, in 1,2-epoxybutane at reflux temperature, led directly to pyrrolo[1,2-a]quinoxalin-4-ones in fair yield by an one-pot three-component reaction.
Collapse
Affiliation(s)
- Emilian Georgescu
- Research Center Oltchim, Str. Uzinei 1, RO-240050, Ramnicu Valcea, Romania
| | - Alina Nicolescu
- C. D. Nenitzescu Centre of Organic Chemistry, Romanian Academy, Spl. Independentei 202-B, RO-060023 Bucharest, Romania
- Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41-A, RO-700487 Iasi, Romania
| | - Florentina Georgescu
- Research Dept., Teso Spec SRL, Str. Muncii 53, RO-915200 Fundulea, Calarasi, Romania
| | - Florina Teodorescu
- C. D. Nenitzescu Centre of Organic Chemistry, Romanian Academy, Spl. Independentei 202-B, RO-060023 Bucharest, Romania
| | - Daniela Marinescu
- Research Center Oltchim, Str. Uzinei 1, RO-240050, Ramnicu Valcea, Romania
| | - Ana-Maria Macsim
- Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41-A, RO-700487 Iasi, Romania
| | - Calin Deleanu
- C. D. Nenitzescu Centre of Organic Chemistry, Romanian Academy, Spl. Independentei 202-B, RO-060023 Bucharest, Romania
- Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41-A, RO-700487 Iasi, Romania
| |
Collapse
|
45
|
Ronga L, Del Favero M, Cohen A, Soum C, Le Pape P, Savrimoutou S, Pinaud N, Mullié C, Daulouede S, Vincendeau P, Farvacques N, Agnamey P, Pagniez F, Hutter S, Azas N, Sonnet P, Guillon J. Design, synthesis and biological evaluation of novel 4-alkapolyenylpyrrolo[1,2-a]quinoxalines as antileishmanial agents--part III. Eur J Med Chem 2014; 81:378-93. [PMID: 24858543 DOI: 10.1016/j.ejmech.2014.05.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 10/27/2022]
Abstract
A series of new 4-alkapolyenylpyrrolo[1,2-a]quinoxaline derivatives, original and structural analogues of alkaloid chimanine B and of previously described 4-alkenylpyrrolo[1,2-a]quinoxalines, was synthesized in good yields using efficient palladium-catalyzed Suzuki-Miyaura cross-coupling reactions. These new compounds were tested for in vitro antiparasitic activity upon three Leishmania spp. strains. Biological results showed activity against the promastigote forms of L. major, L. mexicana and L. donovani with IC50 ranging from 1.2 to 14.7 μM. In attempting to investigate if our pyrrolo[1,2-a]quinoxaline derivatives are broad-spectrum antiprotozoal compounds activities toward one Trypanosoma brucei brucei strain and the W2 and 3D7 Plasmodium falciparum strains were also investigated. In parallel, the in vitro cytotoxicity of these molecules was assessed on the murine J774 and human HepG2 cell lines. Structure-activity relationships of these new synthetic compounds are here discussed.
Collapse
Affiliation(s)
- Luisa Ronga
- Univ. Bordeaux, UFR des Sciences Pharmaceutiques, ARNA Laboratory, F-33076 Bordeaux Cedex, France; INSERM U869, ARNA Laboratory, F-33000 Bordeaux, France
| | - Marco Del Favero
- Univ. Bordeaux, UFR des Sciences Pharmaceutiques, ARNA Laboratory, F-33076 Bordeaux Cedex, France; INSERM U869, ARNA Laboratory, F-33000 Bordeaux, France
| | - Anita Cohen
- Aix-Marseille Univ., Laboratory of Parasitology, UMR-MD3, Faculty of Pharmacy, 27 Bd Jean Moulin, CS30064, F-13385 Marseille Cedex 5, France
| | - Claire Soum
- Univ. Bordeaux, UFR des Sciences Pharmaceutiques, ARNA Laboratory, F-33076 Bordeaux Cedex, France; INSERM U869, ARNA Laboratory, F-33000 Bordeaux, France
| | - Patrice Le Pape
- Université de Nantes, Département de Parasitologie et Mycologie Médicale, IICiMed, EA1155, UFR des Sciences Pharmaceutiques, F-44000 Nantes, France
| | - Solène Savrimoutou
- Univ. Bordeaux, UFR des Sciences Pharmaceutiques, ARNA Laboratory, F-33076 Bordeaux Cedex, France; INSERM U869, ARNA Laboratory, F-33000 Bordeaux, France
| | - Noël Pinaud
- Univ. Bordeaux, ISM - CNRS UMR 5255, 351 cours de la Libération, F-33405 Talence Cedex, France
| | - Catherine Mullié
- Université de Picardie Jules Verne, Laboratoire de Glycochimie, des Antimicrobiens et des Agroressouces, CNRS FRE 3517, UFR de Pharmacie, 1 Rue des Louvels, F-80037 Amiens Cedex 01, France
| | - Sylvie Daulouede
- UMR 177 IRD CIRAD, Université de Bordeaux, Laboratoire de Parasitologie, F-33076 Bordeaux Cedex, France
| | - Philippe Vincendeau
- UMR 177 IRD CIRAD, Université de Bordeaux, Laboratoire de Parasitologie, F-33076 Bordeaux Cedex, France
| | - Natacha Farvacques
- Université de Picardie Jules Verne, Laboratoire de Glycochimie, des Antimicrobiens et des Agroressouces, CNRS FRE 3517, UFR de Pharmacie, 1 Rue des Louvels, F-80037 Amiens Cedex 01, France
| | - Patrice Agnamey
- Université de Picardie Jules Verne, Laboratoire de Glycochimie, des Antimicrobiens et des Agroressouces, CNRS FRE 3517, UFR de Pharmacie, 1 Rue des Louvels, F-80037 Amiens Cedex 01, France; CHU Amiens, Laboratoire de Parasitologie-Mycologie, Avenue Laënnec, 80054 Amiens, France
| | - Fabrice Pagniez
- Université de Nantes, Département de Parasitologie et Mycologie Médicale, IICiMed, EA1155, UFR des Sciences Pharmaceutiques, F-44000 Nantes, France
| | - Sébastien Hutter
- Aix-Marseille Univ., Laboratory of Parasitology, UMR-MD3, Faculty of Pharmacy, 27 Bd Jean Moulin, CS30064, F-13385 Marseille Cedex 5, France
| | - Nadine Azas
- Aix-Marseille Univ., Laboratory of Parasitology, UMR-MD3, Faculty of Pharmacy, 27 Bd Jean Moulin, CS30064, F-13385 Marseille Cedex 5, France
| | - Pascal Sonnet
- Université de Picardie Jules Verne, Laboratoire de Glycochimie, des Antimicrobiens et des Agroressouces, CNRS FRE 3517, UFR de Pharmacie, 1 Rue des Louvels, F-80037 Amiens Cedex 01, France
| | - Jean Guillon
- Univ. Bordeaux, UFR des Sciences Pharmaceutiques, ARNA Laboratory, F-33076 Bordeaux Cedex, France; INSERM U869, ARNA Laboratory, F-33000 Bordeaux, France.
| |
Collapse
|
46
|
Medda F, Hulme C. Exploiting the Divalent Nature of Isonitriles: a novel Pictet-Spengler Amidination process. Tetrahedron Lett 2014; 55:3328-3331. [PMID: 24954960 PMCID: PMC4062309 DOI: 10.1016/j.tetlet.2014.04.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An isocyanide-based multicomponent reaction (IMCR) utilized for the rapid assembly of novel, biologically relevant dihydropyrrolo[1,2-a]quinoxalines-amidines is herein presented. Starting from 1-(2-aminophenyl)pyrroles, aldehydes, and isonitriles, the target heterocyclic scaffold is assembled in a one-pot, operationally friendly process. With three points of diversity and formation of three chemical bonds in one step, this strategy proves to be very general. Novel, mild methodology for the generation of amidines from secondary amine anilines and isonitriles is also introduced.
Collapse
Affiliation(s)
- Federico Medda
- University of Arizona, College of Pharmacy, 1703 E. Mabel St., Tucson, AZ 85721, USA
- BIO5 Oro Valley, 1580 E. Hanley Blvd., Oro Valley, AZ 85737, USA
| | - Christopher Hulme
- University of Arizona, College of Pharmacy, 1703 E. Mabel St., Tucson, AZ 85721, USA
- BIO5 Oro Valley, 1580 E. Hanley Blvd., Oro Valley, AZ 85737, USA
- University of Arizona, Department of Chemistry and Biochemistry, Tucson, AZ 85721, USA
| |
Collapse
|
47
|
Manta S, Gkaragkouni DN, Kaffesaki E, Gkizis P, Hadjipavlou-Litina D, Pontiki E, Balzarini J, Dehaen W, Komiotis D. A novel and easy two-step, microwave-assisted method for the synthesis of halophenyl pyrrolo[2,3-b]quinoxalines via their pyrrolo precursors. Evaluation of their bioactivity. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Allen JE, Krigsfeld G, Mayes PA, Patel L, Dicker DT, Patel AS, Dolloff NG, Messaris E, Scata KA, Wang W, Zhou JY, Wu GS, El-Deiry WS. Dual inactivation of Akt and ERK by TIC10 signals Foxo3a nuclear translocation, TRAIL gene induction, and potent antitumor effects. Sci Transl Med 2014; 5:171ra17. [PMID: 23390247 DOI: 10.1126/scitranslmed.3004828] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an antitumor protein that is in clinical trials as a potential anticancer therapy but suffers from drug properties that may limit efficacy such as short serum half-life, stability, cost, and biodistribution, particularly with respect to the brain. To overcome such limitations, we identified TRAIL-inducing compound 10 (TIC10), a potent, orally active, and stable small molecule that transcriptionally induces TRAIL in a p53-independent manner and crosses the blood-brain barrier. TIC10 induces a sustained up-regulation of TRAIL in tumors and normal cells that may contribute to the demonstrable antitumor activity of TIC10. TIC10 inactivates kinases Akt and extracellular signal-regulated kinase (ERK), leading to the translocation of Foxo3a into the nucleus, where it binds to the TRAIL promoter to up-regulate gene transcription. TIC10 is an efficacious antitumor therapeutic agent that acts on tumor cells and their microenvironment to enhance the concentrations of the endogenous tumor suppressor TRAIL.
Collapse
Affiliation(s)
- Joshua E Allen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medicine-Hematology/Oncology, Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Alizadeh A, Mokhtari J. Synthesis of spiro[indoline-3,4′-pyrrolo[1,2-a]quinoxalin]-2-one catalyzed by molecular iodine. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.03.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Synthesis and biological evaluation of novel substituted pyrrolo[1,2-a]quinoxaline derivatives as inhibitors of the human protein kinase CK2. Eur J Med Chem 2013; 65:205-22. [PMID: 23711832 DOI: 10.1016/j.ejmech.2013.04.051] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
Herein we describe the synthesis and properties of substituted phenylaminopyrrolo[1,2-a]quinoxaline-carboxylic acid derivatives as a novel class of potent inhibitors of the human protein kinase CK2. A set of 15 compounds was designed and synthesized using convenient and straightforward synthesis protocols. The compounds were tested for inhibition of human protein kinase CK2, which is a potential drug target for many diseases including inflammatory disorders and cancer. New inhibitors with IC50 in the micro- and sub-micromolar range were identified. The most promising compound, the 4-[(3-chlorophenyl)amino]pyrrolo[1,2-a]quinoxaline-3-carboxylic acid 1c inhibited human CK2 with an IC50 of 49 nM. Our findings indicate that pyrrolo[1,2-a]quinoxalines are a promising starting scaffold for further development and optimization of human protein kinase CK2 inhibitors.
Collapse
|