1
|
Prakash P, Gorfe AA. Determinants of Membrane Orientation Dynamics in Lipid-Modified Small GTPases. JACS AU 2022; 2:128-135. [PMID: 35098229 PMCID: PMC8790735 DOI: 10.1021/jacsau.1c00426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 05/30/2023]
Abstract
The transient membrane engagement and reorientation of the soluble catalytic domain of Ras proteins has emerged as an important modulator of their functions. However, there has been limited information on whether this phenomenon is applicable to other members of the Ras superfamily. To address this issue, we conducted long-time-scale atomistic molecular dynamics simulations (55 μs aggregate simulation time) on representatives of the Ras, Rho, and Arf family proteins that differ in sequence, lipid modification, and the rigidity of the linker between the lipid anchor and the catalytic G-domain. The results show that the concept of membrane reorientation is generalizable to most but not all members of the Ras superfamily. Specifically, C-terminally prenylated small GTPases that are anchored to membranes via a single flexible linker adopt multiple orientations, whereas those that are N-terminally myristoylated and harbor a rigid linker experience limited orientational dynamics. Combined with published reports on Ras proteins, these observations provide insights into the common principles and determinants of the orientational dynamics of lipidated small GTPases on membrane surfaces and offer new ways of thinking about the regulation and druggability of the Ras superfamily proteins.
Collapse
|
2
|
Jung J, Baek J, Tae K, Shin D, Han S, Yang W, Yu W, Jung SM, Park SH, Choi CY, Lee S. Structural mechanism for regulation of Rab7 by site-specific monoubiquitination. Int J Biol Macromol 2022; 194:347-357. [PMID: 34801583 DOI: 10.1016/j.ijbiomac.2021.11.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/30/2022]
Abstract
Site-specific ubiquitination can regulate the functions of Rab proteins in membrane trafficking. Previously we showed that site-specific monoubiquitination on Rab5 downregulates its function. Rab7 acts in the downstream of Rab5. Although site-specific ubiquitination of Rab7 can affect its function, it remains elusive how the ubiquitination is involved in modulation of the function of Rab7 at molecular level. Here, we report molecular basis for the regulation of Rab7 by site-specific monoubiquitination. Rab7 was predominantly monoubiquitinated at multiple sites in the membrane fraction of cultured cells. Two major ubiquitination sites (K191 and K194), identified by mutational analysis with single K mutants, were responsible for membrane localization of monoubiquitinated Rab7. Using small-angle X-ray scattering, we derived structural models of site-specifically monoubiquitinated Rab7 in solution. Structural analysis combined with molecular dynamics simulation corroborated that the ubiquitin moieties on K191 and K194 are key determinants for exclusion of Rab7 from the endosomal membrane. Ubiquitination on the two major sites apparently mitigated colocalization of Rab7 with ORF3a of SARS-CoV-2, potentially deterring the egression of SARS-CoV-2. Our results establish that the regulatory effects of a Rab protein through site-specific monoubiquitination are commonly observed among Rab GTPases while the ubiquitination sites differ in each Rab protein.
Collapse
Affiliation(s)
- Jaeeun Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiseok Baek
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kun Tae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghyuk Shin
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seungsu Han
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wonjin Yang
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Wookyung Yu
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Su Myung Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Sigismund S, Lanzetti L, Scita G, Di Fiore PP. Endocytosis in the context-dependent regulation of individual and collective cell properties. Nat Rev Mol Cell Biol 2021; 22:625-643. [PMID: 34075221 DOI: 10.1038/s41580-021-00375-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Endocytosis allows cells to transport particles and molecules across the plasma membrane. In addition, it is involved in the termination of signalling through receptor downmodulation and degradation. This traditional outlook has been substantially modified in recent years by discoveries that endocytosis and subsequent trafficking routes have a profound impact on the positive regulation and propagation of signals, being key for the spatiotemporal regulation of signal transmission in cells. Accordingly, endocytosis and membrane trafficking regulate virtually every aspect of cell physiology and are frequently subverted in pathological conditions. Two key aspects of endocytic control over signalling are coming into focus: context-dependency and long-range effects. First, endocytic-regulated outputs are not stereotyped but heavily dependent on the cell-specific regulation of endocytic networks. Second, endocytic regulation has an impact not only on individual cells but also on the behaviour of cellular collectives. Herein, we will discuss recent advancements in these areas, highlighting how endocytic trafficking impacts complex cell properties, including cell polarity and collective cell migration, and the relevance of these mechanisms to disease, in particular cancer.
Collapse
Affiliation(s)
- Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Giorgio Scita
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy. .,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
4
|
Germann UA, Alam JJ. P38α MAPK Signaling-A Robust Therapeutic Target for Rab5-Mediated Neurodegenerative Disease. Int J Mol Sci 2020; 21:E5485. [PMID: 32751991 PMCID: PMC7432772 DOI: 10.3390/ijms21155485] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Multifactorial pathologies, involving one or more aggregated protein(s) and neuroinflammation are common in major neurodegenerative diseases, such as Alzheimer's disease and dementia with Lewy bodies. This complexity of multiple pathogenic drivers is one potential explanation for the lack of success or, at best, the partial therapeutic effects, respectively, with approaches that have targeted one specific driver, e.g., amyloid-beta, in Alzheimer's disease. Since the endosome-associated protein Rab5 appears to be a convergence point for many, if not all the most prominent pathogenic drivers, it has emerged as a major therapeutic target for neurodegenerative disease. Further, since the alpha isoform of p38 mitogen-activated protein kinase (p38α) is a major regulator of Rab5 activity and its effectors, a biology that is distinct from the classical nuclear targets of p38 signaling, brain-penetrant selective p38α kinase inhibitors provide the opportunity for significant therapeutic advances in neurogenerative disease through normalizing dysregulated Rab5 activity. In this review, we provide a brief summary of the role of Rab5 in the cell and its association with neurodegenerative disease pathogenesis. We then discuss the connection between Rab5 and p38α and summarize the evidence that through modulating Rab5 activity there are therapeutic opportunities in neurodegenerative diseases for p38α kinase inhibitors.
Collapse
|
5
|
Cezanne A, Lauer J, Solomatina A, Sbalzarini IF, Zerial M. A non-linear system patterns Rab5 GTPase on the membrane. eLife 2020; 9:e54434. [PMID: 32510320 PMCID: PMC7279886 DOI: 10.7554/elife.54434] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Proteins can self-organize into spatial patterns via non-linear dynamic interactions on cellular membranes. Modelling and simulations have shown that small GTPases can generate patterns by coupling guanine nucleotide exchange factors (GEF) to effectors, generating a positive feedback of GTPase activation and membrane recruitment. Here, we reconstituted the patterning of the small GTPase Rab5 and its GEF/effector complex Rabex5/Rabaptin5 on supported lipid bilayers. We demonstrate a 'handover' of Rab5 from Rabex5 to Rabaptin5 upon nucleotide exchange. A minimal system consisting of Rab5, RabGDI and a complex of full length Rabex5/Rabaptin5 was necessary to pattern Rab5 into membrane domains. Rab5 patterning required a lipid membrane composition mimicking that of early endosomes, with PI(3)P enhancing membrane recruitment of Rab5 and acyl chain packing being critical for domain formation. The prevalence of GEF/effector coupling in nature suggests a possible universal system for small GTPase patterning involving both protein and lipid interactions.
Collapse
Affiliation(s)
- Alice Cezanne
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Janelle Lauer
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Anastasia Solomatina
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Chair of Scientific Computing for Systems Biology, Faculty of Computer ScienceDresdenGermany
- MOSAIC Group, Center for Systems Biology DresdenDresdenGermany
| | - Ivo F Sbalzarini
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Chair of Scientific Computing for Systems Biology, Faculty of Computer ScienceDresdenGermany
- MOSAIC Group, Center for Systems Biology DresdenDresdenGermany
| | - Marino Zerial
- Max-Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| |
Collapse
|
6
|
Münzberg E, Stein M. Structure and Dynamics of Mono- vs. Doubly Lipidated Rab5 in Membranes. Int J Mol Sci 2019; 20:ijms20194773. [PMID: 31561436 PMCID: PMC6801778 DOI: 10.3390/ijms20194773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/13/2023] Open
Abstract
The Rab5 small GTPase is a regulator of endosomal trafficking and vesicle fusion. It possesses two adjacent cysteine residues for post-translational geranylgeranylation at its C-terminus for the protein to associate with the early endosome membrane. We compare the effect of mono-lipidification of only one cysteine residue with the doubly modified, fully functional Rab protein in both guanosine diphosphate (GDP)- and guanosine triphosphate (GTP)-bound states and in different membranes (one, three, and six-component membranes). Molecular simulations show that the mono-geranylgeranylated protein is less strongly associated with the membranes and diffuses faster than the doubly lipidated protein. The geranylgeranyl anchor membrane insertion depth is smaller and the protein–membrane distance distribution is broad and uncharacteristic for the membrane composition. The mono-geranylgeranylated protein reveals an unspecific association with the membrane and an orientation at the membrane that does not allow a nucleotide-specific recruitment of further effector proteins. This work shows that double-lipidification is critical for Rab5 to perform its physiological function and mono-geranylgeranylation renders it membrane-associated but non-functional.
Collapse
Affiliation(s)
- Eileen Münzberg
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | - Matthias Stein
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| |
Collapse
|
7
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Edler E, Stein M. Recognition and stabilization of geranylgeranylated human Rab5 by the GDP Dissociation Inhibitor (GDI). Small GTPases 2019; 10:227-242. [PMID: 29065764 PMCID: PMC6548291 DOI: 10.1080/21541248.2017.1371268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 01/13/2023] Open
Abstract
The small GTPase Rab5 is the key regulator of early endosomal fusion. It is post-translationally modified by covalent attachment of two geranylgeranyl (GG) chains to adjacent cysteine residues of the C-terminal hypervariable region (HVR). The GDP dissociation inhibitor (GDI) recognizes membrane-associated Rab5(GDP) and serves to release it into the cytoplasm where it is kept in a soluble state. A detailed new structural and dynamic model for human Rab5(GDP) recognition and binding with human GDI at the early endosome membrane and in its dissociated state is presented. In the cytoplasm, the GDI protein accommodates the GG chains in a transient hydrophobic binding pocket. In solution, two different binding modes of the isoprenoid chains inserted into the hydrophobic pocket of the Rab5(GDP):GDI complex can be identified. This equilibrium between the two states helps to stabilize the protein-protein complex in solution. Interprotein contacts between the Rab5 switch regions and characteristic patches of GDI residues from the Rab binding platform (RBP) and the C-terminus coordinating region (CCR) reveal insight on the formation of such a stable complex. GDI binding to membrane-anchored Rab5(GDP) is initially mediated by the solvent accessible switch regions of the Rab-specific RBP. Formation of the membrane-associated Rab5(GDP):GDI complex induces a GDI reorientation to establish additional interactions with the Rab5 HVR. These results allow to devise a detailed structural model for the process of extraction of GG-Rab5(GDP) by GDI from the membrane and the dissociation from targeting factors and effector proteins prior to GDI binding.
Collapse
Affiliation(s)
- Eileen Edler
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
9
|
Maheshwari D, Yadav R, Rastogi R, Jain A, Tripathi S, Mukhopadhyay A, Arora A. Structural and Biophysical Characterization of Rab5a from Leishmania Donovani. Biophys J 2018; 115:1217-1230. [PMID: 30241678 PMCID: PMC6170798 DOI: 10.1016/j.bpj.2018.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022] Open
Abstract
Leishmania donovani possess two isoforms of Rab5 (Rab5a and Rab5b), which are involved in fluid phase and receptor-mediated endocytosis, respectively. We have characterized the solution structure and dynamics of a stabilized truncated LdRab5a mutant. For the purpose of NMR structure determination, protein stability was enhanced by systematically introducing various deletions and mutations. Deletion of hypervariable C-terminal and the 20 residues LdRab5a specific insert slightly enhanced the stability, which was further improved by C107S mutation. The final construct, truncated LdRab5a with C107S mutation, was found to be stable for longer durations at higher concentration, with an increase in melting temperature by 10°C. Solution structure of truncated LdRab5a shows the characteristic GTPase fold having nucleotide and effector binding sites. Orientation of switch I and switch II regions match well with that of guanosine 5'-(β, γ-imido)triphosphate (GppNHp)-bound human Rab5a, indicating that the truncated LdRab5a attains the canonical GTP bound state. However, the backbone dynamics of the P-loop, switch I, and switch II regions were slower than that observed for guanosine 5'-(β, γ-imido)triphosphate (GMPPNP)-bound H-Ras. This dynamic profile may further complement the residue-specific complementarity in determining the specificity of interaction with the effectors. In parallel, biophysical investigations revealed the urea induced unfolding of truncated LdRab5a to be a four-state process that involved two intermediates, I1 and I2. The maximal 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (Bis-ANS) binding was observed for I2 state, which was inferred to have molten globule like characteristics. Overall, the strategy presented would have significant impact for studying other Rab and small GTPase proteins by NMR spectroscopy.
Collapse
Affiliation(s)
- Diva Maheshwari
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rahul Yadav
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ruchir Rastogi
- Cell Biology Lab, National Institute of Immunology, New Delhi, India
| | - Anupam Jain
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sarita Tripathi
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Ashish Arora
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
10
|
Mima J. Reconstitution of membrane tethering mediated by Rab-family small GTPases. Biophys Rev 2017; 10:543-549. [PMID: 29204879 DOI: 10.1007/s12551-017-0358-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 12/18/2022] Open
Abstract
Membrane tethering is one of the most critical steps to determine the spatiotemporal specificity of membrane trafficking, which is the process to selectively transport proteins, lipids, and other biological molecules to the appropriate locations in eukaryotic cells, such as subcellular organelles, the plasma membrane, and the extracellular space. Based on genetic, cell biological, biochemical, and structural studies, Rab-family small GTPases and a number of Rab-interacting proteins (termed Rab effectors), including coiled-coil tethering proteins and multisubunit tethering complexes, have been proposed to be key protein components for membrane tethering. Nevertheless, indeed whether and how Rab GTPases and their specific Rab effectors directly act upon and catalyze membrane tethering still remains enigmatic. By chemically defined reconstitution of membrane tethering from purified Rab-family GTPase proteins and synthetic liposomal membranes, recent studies have revealed the intrinsic potency of Rab-family GTPases to physically and specifically tether two distinct lipid bilayers of liposomal membranes. Experimental evidence from these reconstitution studies support the novel working model in which Rab-family small GTPases act as a bona fide membrane tether for mediating membrane tethering events in eukaryotic membrane trafficking.
Collapse
Affiliation(s)
- Joji Mima
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
11
|
Edler E, Schulze E, Stein M. Membrane localization and dynamics of geranylgeranylated Rab5 hypervariable region. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1335-1349. [PMID: 28455099 DOI: 10.1016/j.bbamem.2017.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Abstract
The small GTPase Rab5 is a key regulator of endosomal trafficking processes and a marker for the early endosome. The C-terminal hypervariable region (HVR) of Rab5 is post-translationally modified at residues Cys212 and Cys213 to accommodate two geranylgeranyl anchors (C20 carbon chain length) in order to associate Rab5 with the membrane. The structural role of the HVR regarding protein-early endosome membrane recruitment is not resolved due to its high degree of flexibility and lack of crystallographic information. Here, full-atomistic and coarse-grained molecular dynamics simulations of the truncated Rab5 HVR206-215 in three model membranes of increasing complexity (pure phospholipid bilayer, ternary membrane with cholesterol, six-component early endosome) were performed. Specific electrostatic interactions between the HVR206-215 Arg209 residue and the phosphate group of the inositol ring of PI(3)P were detected. This shows that PI(3)P acts as a first contact site of protein recruitment to the early endosome. The free energy change of HVR206-215 extraction from the bilayer was largest for the physiological negatively charged membrane. 5μs coarse-grained simulations revealed an active recruitment of PI(3)P to the HVR206-215 supporting the formation of Rab5- and PI(3)P enriched signaling platforms.
Collapse
Affiliation(s)
- Eileen Edler
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Eric Schulze
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; International Max Planck Research School (IMPRS) for Advanced Methods in Process and Systems Engineering, Magdeburg, Germany
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| |
Collapse
|