1
|
Moreno-Vargas AD, Andrade-Cetto A, Espinoza-Hernández FA, Mata-Torres G. Proposed mechanisms of action participating in the hypoglycemic effect of the traditionally used Croton guatemalensis Lotsy and junceic acid, its main compound. Front Pharmacol 2024; 15:1436927. [PMID: 39478960 PMCID: PMC11521914 DOI: 10.3389/fphar.2024.1436927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Croton guatemalensis Lotsy (Euphorbiaceae) is an important traditional medicine that is used by the Cakchiquels of Guatemala to control hyperglycemia in patients with type 2 diabetes. Previous studies have shown that administration of this plant induces an acute hypoglycemic effect during fasting and that the main compound is junceic acid, a diterpenoid with a clerodane skeleton; however, junceic acid has not been reported to have hypoglycemic activity in the literature. As the mechanisms involved in the hypoglycemic effect of C. guatemalensis remain unknown, the objective of the present investigation was to elucidate the hypoglycemic mechanisms of this species, as well as its major compound, junceic acid. The results indicated that, similar to complete extract, junceic acid exhibited a hypoglycemic effect in hyperglycemic rats. Both C. guatemalensis extract and junceic acid inhibited the activity of two rate-limiting enzymes involved in hepatic glucose production; however, compared with chlorogenic acid, junceic acid had a more potent effect on glucose-6-phosphatase levels than chlorogenic acid, which was used as a positive control. Furthermore, both fasting and postprandial insulin levels decreased in healthy and hyperglycemic rats despite reduced blood glucose levels in both metabolic states, suggesting a potential insulin-sensitizing effect. However, neither of these compounds potentiated the effect of insulin in insulin tolerance tests nor inhibited the enzyme activity of protein tyrosine phosphatase 1B, a negative regulator of the insulin pathway. Therefore, the insulin-sensitizing effect is thought to be independent of insulin and mediated by potential activation of the AMP-activated protein kinase pathway. The specific activation of this master regulator in β-cells results in the inhibition of insulin secretion in a healthy state and the restoration of the insulin response under conditions of glucotoxicity; these effects were observed after the administration of the extract and junceic acid in healthy and hyperglycemic rats. Overall, the main findings of this study establish a basis of the mechanisms of action of C. guatemalensis and its main compound, junceic acid, in terms of their hypoglycemic effect.
Collapse
Affiliation(s)
- Angelina Daniela Moreno-Vargas
- Laboratorio de Etnofarmacología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Coyoacán, Mexico
| | - Adolfo Andrade-Cetto
- Laboratorio de Etnofarmacología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico
| | | | - Gerardo Mata-Torres
- Laboratorio de Etnofarmacología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico
| |
Collapse
|
2
|
Yang L, Dong GH, Ma QY, Xie QY, Guo JC, Lu JJ, Wu YG, Dai HF, Zhao YX. Lanostane triterpenoids from the fruiting bodies of Ganoderma amboinense. PHYTOCHEMISTRY 2024; 218:113952. [PMID: 38096963 DOI: 10.1016/j.phytochem.2023.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Lanostane-type triterpenoids are the main characteristic constituents in Ganoderma mushrooms. Phytochemical analysis on the ethanol extract of the fruiting bodies of Ganoderma amboinense led to isolation and identification of twelve previously undescribed lanostane triterpenoids (1-12). Their chemical structures were determined by HR-ESI-MS, IR, and NMR spectroscopic analysis, NMR calculation, as well as X-ray crystallography. All isolates were evaluated for the α-glucosidase inhibitory and anti-inflammatory activities. Compounds 1, 5, 6, and 11 showed significant α-glucosidase inhibitory activity with IC50 values ranging from 33.5 μM to 96.0 μM. Moreover, compound 12 showed anti-inflammatory activity with IC50 value of 21.7 ± 2.1 μM.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Guan-Hai Dong
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qing-Yun Ma
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Qing-Yi Xie
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jiao-Cen Guo
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jia-Ju Lu
- Guizhou Institute of Subtropical Crops, Xingyi, Guizhou, 562400, China
| | - You-Gen Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China.
| | - Hao-Fu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - You-Xing Zhao
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province & National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
3
|
Díaz-Rojas M, González-Andrade M, Aguayo-Ortiz R, Rodríguez-Sotres R, Pérez-Vásquez A, Madariaga-Mazón A, Mata R. Discovery of inhibitors of protein tyrosine phosphatase 1B contained in a natural products library from Mexican medicinal plants and fungi using a combination of enzymatic and in silico methods*. Front Pharmacol 2023; 14:1281045. [PMID: 38027024 PMCID: PMC10644722 DOI: 10.3389/fphar.2023.1281045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
This work aimed to discover protein tyrosine phosphatase 1B (PTP1B) inhibitors from a small molecule library of natural products (NPs) derived from selected Mexican medicinal plants and fungi to find new hits for developing antidiabetic drugs. The products showing similar IC50 values to ursolic acid (UA) (positive control, IC50 = 26.5) were considered hits. These compounds were canophyllol (1), 5-O-(β-D-glucopyranosyl)-7-methoxy-3',4'-dihydroxy-4-phenylcoumarin (2), 3,4-dimethoxy-2,5-phenanthrenediol (3), masticadienonic acid (4), 4',5,6-trihydroxy-3',7-dimethoxyflavone (5), E/Z vermelhotin (6), tajixanthone hydrate (7), quercetin-3-O-(6″-benzoyl)-β-D-galactoside (8), lichexanthone (9), melianodiol (10), and confusarin (11). According to the double-reciprocal plots, 1 was a non-competitive inhibitor, 3 a mixed-type, and 6 competitive. The chemical space analysis of the hits (IC50 < 100 μM) and compounds possessing activity (IC50 in the range of 100-1,000 μM) with the BIOFACQUIM library indicated that the active molecules are chemically diverse, covering most of the known Mexican NPs' chemical space. Finally, a structure-activity similarity (SAS) map was built using the Tanimoto similarity index and PTP1B absolute inhibitory activity, which allows the identification of seven scaffold hops, namely, compounds 3, 5, 6, 7, 8, 9, and 11. Canophyllol (1), on the other hand, is a true analog of UA since it is an SAR continuous zone of the SAS map.
Collapse
Affiliation(s)
- Miriam Díaz-Rojas
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rodrigo Aguayo-Ortiz
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Abraham Madariaga-Mazón
- Instituto de Química Unidad Mérida and Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Unidad Mérida, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Discovery of Novel Thiazolidinedione-Derivatives with Multi-Modal Antidiabetic Activities In Vitro and In Silico. Int J Mol Sci 2023; 24:ijms24033024. [PMID: 36769344 PMCID: PMC9917550 DOI: 10.3390/ijms24033024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Diabetes mellitus (DM) and related complications continue to exert a significant burden on health care systems globally. Although conventional pharmacological therapies are beneficial in the management of this metabolic condition, it is still necessary to seek novel potential molecules for its management. On this basis, we have synthesised and evaluated the anti-diabetic properties of four novel thiazolidinedione (TZD)-derivatives. The TZD derivatives were synthesised through the pharmacophore hybridisation strategy based on N-arylpyrrole and TZD. The resultant derivatives at different concentrations were screened against key enzymes of glucose metabolism and glucose utilisation in the liver (HEP-G2) cell line. Additionally, peroxisome proliferator-activated receptor-γ activation was performed through docking studies. Docking of these molecules against PPAR-γ predicted strong binding, similar to that of rosiglitazone. Hence, TZDD2 was able to increase glucose uptake in the liver cells as compared to the control. The enzymatic inhibition assays showed a relative inhibition activity; with all four derivatives exhibiting ≥ 50% inhibition activity in the α-amylase inhibition assay and a concentration dependent activity in the α-glucosidase inhibition assay. All four derivatives exhibited ≥30% inhibition in the aldose reductase inhibition assay, except TZDD1 at 10 µg/mL. Interestingly, TZDD3 showed a decreasing inhibition activity. In the dipeptidyl peptidase-4 inhibition assay, TZDD2 and TZDD4 exhibited ≥20% inhibition activity.
Collapse
|
5
|
Sławińska N, Zając J, Olas B. Paulownia Organs as Interesting New Sources of Bioactive Compounds. Int J Mol Sci 2023; 24:ijms24021676. [PMID: 36675191 PMCID: PMC9860774 DOI: 10.3390/ijms24021676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Paulownia spp. is a genus of trees in the Paulowniaceae family. It is native to southeastern Asia (especially China), where it has been cultivated for decorative, cultural, and medicinal purposes for over 2000 years. Depending on taxonomic classification, there are 6 to 17 species of Paulownia; P. tomentosa, P. elongata, P. fortunei, and P. catalpifolia are considered the most popular. Nowadays, Paulownia trees are planted in Asia, Europe, North America, and Australia for commercial, medical, and decorative purposes. Lately, growing interest in Paulownia has led to the development of various hybrids, the best-known being Clone in vitro 112, Shan Tong, Sundsu 11, and Cotevisa 2. Paulownia Clone in vitro 112 is an artificially created hybrid of two species of Paulownia: P. elongata and P. fortunei. The present review of selected papers from electronic databases including PubMed, ScienceDirect, and SCOPUS before 15 November 2022 describes the phytochemical characteristics, biological properties, and economic significance of various organs from different Paulownia species and hybrids, including P. tomentosa, P. elongata, P. fortunei, and Paulownia Clone in vitro 112. Many compounds from Paulownia demonstrate various biological activities and are promising candidates for natural preparations; for example, the leaves of Clone in vitro 112 have anti-radical and anticoagulant potential. However, further in vivo studies are needed to clarify the exact mechanism of action of the active substances and their long-term effects.
Collapse
|
6
|
Synthesis, characterization, biomolecular interaction and in vitro glucose metabolism studies of dioxidovanadium(V) benzimidazole compounds. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Cai J, Zhang BD, Li YQ, Zhu WF, Akihisa T, Kikuchi T, Xu J, Liu WY, Feng F, Zhang J. Cardiac glycosides from the roots of Streblus asper Lour. with activity against Epstein-Barr virus lytic replication. Bioorg Chem 2022; 127:106004. [PMID: 35843015 DOI: 10.1016/j.bioorg.2022.106004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
Abstract
Cardiac glycosides (CGs) show potential broad-spectrum antiviral activity by targeting cellular host proteins. Herein are reported the isolation of five new (1-5) and eight known (7-13) CGs from the roots of Streblus asper Lour. Of these compounds 1 and 7 exhibited inhibitory action against EBV early antigen (EA) expression, with half-maximal effective concentration values (EC50) being less than 60 nM, and they also showed selectivity, with selectivity index (SI) values being 56.80 and 103.17, respectively. Preliminary structure activity relationships indicated that the C-10 substituent, C-5 hydroxy groups, and C-3 sugar unit play essential roles in the mediation of the inhibitory activity of CGs against EBV. Further enzyme experiments demonstrated that these compounds might inhibit ion pump function and thereby change the intracellular signal transduction pathway by binding to Na+/K+-ATPase, as validated by simulated molecular docking. This study is the first report that CGs can effectively limit EBV lytic replication, and the observations made in this study may be of value for lead compound development.
Collapse
Affiliation(s)
- Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Bo-Dou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yu-Qi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wan-Fang Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Jian Xu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wen-Yuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China; Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China.
| |
Collapse
|
8
|
Rath P, Ranjan A, Ghosh A, Chauhan A, Gurnani M, Tuli HS, Habeeballah H, Alkhanani MF, Haque S, Dhama K, Verma NK, Jindal T. Potential Therapeutic Target Protein Tyrosine Phosphatase-1B for Modulation of Insulin Resistance with Polyphenols and Its Quantitative Structure–Activity Relationship. Molecules 2022; 27:molecules27072212. [PMID: 35408611 PMCID: PMC9000704 DOI: 10.3390/molecules27072212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
The increase in the number of cases of type 2 diabetes mellitus (T2DM) and the complications associated with the side effects of chemical/synthetic drugs have raised concerns about the safety of the drugs. Hence, there is an urgent need to explore and identify natural bioactive compounds as alternative drugs. Protein tyrosine phosphatase 1B (PTP1B) functions as a negative regulator and is therefore considered as one of the key protein targets modulating insulin signaling and insulin resistance. This article deals with the screening of a database of polyphenols against PTP1B activity for the identification of a potential inhibitor. The research plan had two clear objectives. Under first objective, we conducted a quantitative structure–activity relationship analysis of flavonoids with PTP1B that revealed the strongest correlation (R2 = 93.25%) between the number of aromatic bonds (naro) and inhibitory concentrations (IC50) of PTP1B. The second objective emphasized the binding potential of the selected polyphenols against the activity of PTP1B using molecular docking, molecular dynamic (MD) simulation and free energy estimation. Among all the polyphenols, silydianin, a flavonolignan, was identified as a lead compound that possesses drug-likeness properties, has a higher negative binding energy of −7.235 kcal/mol and a pKd value of 5.2. The free energy-based binding affinity (ΔG) was estimated to be −7.02 kcal/mol. MD simulation revealed the stability of interacting residues (Gly183, Arg221, Thr263 and Asp265). The results demonstrated that the identified polyphenol, silydianin, could act as a promising natural PTP1B inhibitor that can modulate the insulin resistance.
Collapse
Affiliation(s)
- Prangya Rath
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India; (P.R.); (M.G.)
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
- Correspondence: (A.R.); (A.G.); Tel.: +91-999-090-7571 (A.R.); +91-967-862-9146 (A.G.)
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati 781014, India
- Correspondence: (A.R.); (A.G.); Tel.: +91-999-090-7571 (A.R.); +91-967-862-9146 (A.G.)
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida 201303, India; (A.C.); (T.J.)
| | - Manisha Gurnani
- Amity Institute of Environmental Sciences, Amity University, Noida 201303, India; (P.R.); (M.G.)
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Hamza Habeeballah
- Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh Branch, Rabigh 25732, Saudi Arabia;
| | - Mustfa F. Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia;
- Faculty of Medicine, Bursa Uludağ University Görükle Campus, Nilüfer 16059, Turkey
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| | - Naval Kumar Verma
- Homeopathy, Ministry of Ayush, Ayush Bhawan, B Block, GPO Complex INA, New Delhi 110023, India;
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida 201303, India; (A.C.); (T.J.)
| |
Collapse
|
9
|
Pekacar S, Deliorman Orhan D. Investigation of Antidiabetic Effect of Pistacia atlantica Leaves by Activity-Guided Fractionation and Phytochemical Content Analysis by LC-QTOF-MS. Front Pharmacol 2022; 13:826261. [PMID: 35281888 PMCID: PMC8913898 DOI: 10.3389/fphar.2022.826261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, the antidiabetic, antiobesity, antioxidant, and antihyperlipidemic effects potential of Pistacia atlantica Desf. leaves were evaluated by in vitro methods. The effects of the leaves of the plant on pancreatic lipase, pancreatic cholesterol esterase, and PTP1B enzymes were investigated for the first time and it was observed that leaf methanol extract (IC50: 123.67 ± 0.40 μg/ml) and n-hexane sub-extract (IC50: 61.03 ± 0.11 μg/ml) had much stronger effects on pancreatic cholesterol esterase enzyme than simvastatin (IC50: 142.30 ± 5.67 μg/ml). The methanolic extract of P. atlantica leaves exerted strong inhibitory effect on the enzymes (α-amylase and α-glucosidase) effective on carbohydrate digestion. It was thought that the methanol extract could provide significant benefits against oxidative stress in diabetes mellitus since it showed antioxidant activities (DPPH radical scavenging activity and reducing power) as strong as reference compounds (ascorbic acid and quercetin). Qualitative and quantitative analyzes of rutin (0.328 ± 0.000 g/100 g dry extract), methyl gallate (5.245 ± 0.014 g/100 g dry extract), quercetin-3-O-glucoside (0.231 ± 0.000 g/100 g dry extract), and gallic acid (0.528 ± 0.127 g/100 g dry extract) in methanol extract were performed by RP-HPLC. The phytochemical content of the active sub-fraction obtained from the leaf methanol extract by activity-guided fractionation and column chromatography studies was characterized by LC-QTOF-MS. The presence of trigalloylglucose, digalloylglucose, and methyl gallate in the G6 coded sub-fraction obtained by chromatographic techniques from the ethyl acetate sub-extract, which has the highest inhibitory effect on α-amylase and α-glucosidase enzymes, was determined by LC-QTOF-MS. In addition to the G5 coded subfraction, a strong α-glucosidase enzyme inhibitory activity was also observed in the G6 coded sub-fraction, and methyl gallate, methyl digallate, 2″-O-galloyl-quercetin-3-O-hexoside, and myricetin-3-O-hexoside were identified in this sub-fraction. This study displayed that the methanol extract of P. atlantica leaves could be a potential source for bioactive compounds with antidiabetic effects by showing inhibitory effects on enzymes involved in carbohydrate digestion.
Collapse
|
10
|
Terminalin from African Mango (Irvingia gabonensis) Stimulates Glucose Uptake through Inhibition of Protein Tyrosine Phosphatases. Biomolecules 2022; 12:biom12020321. [PMID: 35204821 PMCID: PMC8869479 DOI: 10.3390/biom12020321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs), along with protein tyrosine kinases, control signaling pathways involved in cell growth, metabolism, differentiation, proliferation, and survival. Several PTPs, such as PTPN1, PTPN2, PTPN9, PTPN11, PTPRS, and DUSP9, disrupt insulin signaling and trigger type 2 diabetes, indicating that PTPs are promising drug targets for the treatment or prevention of type 2 diabetes. As part of an ongoing study on the discovery of pharmacologically active bioactive natural products, we conducted a phytochemical investigation of African mango (Irvingia gabonensis) using liquid chromatography–mass spectrometry (LC/MS)-based analysis, which led to the isolation of terminalin as a major component from the extract of the seeds of I. gabonensis. The structure of terminalin was characterized by spectroscopic methods, including one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) and high-resolution (HR) electrospray ionization (ESI) mass spectroscopy. Moreover, terminalin was evaluated for its antidiabetic property; terminalin inhibited the catalytic activity of PTPN1, PTPN9, PTPN11, and PTPRS in vitro and led to a significant increase in glucose uptake in differentiated C2C12 muscle cells, indicating that terminalin exhibits antidiabetic effect through the PTP inhibitory mechanism. These findings suggest that terminalin derived from African mango could be used as a functional food ingredient or pharmaceutical supplement for the prevention of type 2 diabetes.
Collapse
|
11
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
12
|
Rampadarath A, Balogun FO, Pillay C, Sabiu S. Identification of Flavonoid C-Glycosides as Promising Antidiabetics Targeting Protein Tyrosine Phosphatase 1B. J Diabetes Res 2022; 2022:6233217. [PMID: 35782627 PMCID: PMC9249544 DOI: 10.1155/2022/6233217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B), a negative regulator of the insulin signaling pathway, has gained attention as a validated druggable target in the management of type 2 diabetes mellitus (T2DM). The lack of clinically approved PTP1B inhibitors has continued to prompt research in plant-derived therapeutics possibly due to their relatively lesser toxicity profiles. Flavonoid C-glycosides are one of the plant-derived metabolites gaining increased relevance as antidiabetic agents, but their possible mechanism of action remains largely unknown. This study investigates the antidiabetic potential of flavonoid C-glycosides against PTP1B in silico and in vitro. Of the seven flavonoid C-glycosides docked against the enzyme, three compounds (apigenin, vitexin, and orientin) had the best affinity for the enzyme with a binding score of -7.3 kcal/mol each, relative to -7.4 kcal/mol for the reference standard, ursolic acid. A further probe (in terms of stability, flexibility, and compactness) of the complexes over a molecular dynamics time study of 100 ns for the three compounds suggested orientin as the most outstanding inhibitor of PTP1B owing to its overall -34.47 kcal/mol binding energy score compared to ursolic acid (-19.24 kcal/mol). This observation was in accordance with the in vitro evaluation result, where orientin had a half maximal inhibitory concentration (IC50) of 0.18 mg/ml relative to 0.13 mg/ml for the reference standard. The kinetics of inhibition of PTP1B by orientin was mixed-type with V max and K m values of 0.004 μM/s and 0.515 μM. Put together, the results suggest orientin as a potential PTP1B inhibitor and could therefore be further explored in the management T2DM as a promising therapeutic agent.
Collapse
Affiliation(s)
- Athika Rampadarath
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Fatai Oladunni Balogun
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Charlene Pillay
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
13
|
Hypoglycemic Effects of Plant Flavonoids: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2057333. [PMID: 34925525 PMCID: PMC8674047 DOI: 10.1155/2021/2057333] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is a metabolic disorder with chronic high blood glucose levels, and it is associated with defects in insulin secretion, insulin resistance, or both. It is also a major public issue, affecting the world's population. This disease contributes to long-term health complications such as dysfunction and failure of multiple organs, including nerves, heart, blood vessels, kidneys, and eyes. Flavonoids are phenolic compounds found in nature and usually present as secondary metabolites in plants, vegetables, and fungi. Flavonoids possess many health benefits such as anti-inflammatory and antioxidant activities, and naturally occurring flavonoids contribute to antidiabetic effects.Many studies conducted in vivo and in vitro have proven the hypoglycemic effect of plant flavonoids. A large number of studies showed that flavonoids hold positive results in controlling the blood glucose level in streptozotocin (STZ)-induced diabetic rats and further prevent the complications of diabetes. The future development of flavonoid-based drugs is believed to provide significant effects on diabetes mellitus and diabetes complication diseases. This review aims at summarizing the various types of flavonoids that function as hyperglycemia regulators such as inhibitors of α-glucosidase and glucose cotransporters in the body. This review article discusses the hypoglycemic effects of selected plant flavonoids namely quercetin, kaempferol, rutin, naringenin, fisetin, and morin. Four search engines, PubMed, Google Scholar, Scopus, and SciFinder, are used to collect the data.
Collapse
|
14
|
Yoon SY, Ahn D, Kim JK, Seo SO, Chung SJ. Nepetin Acts as a Multi-Targeting Inhibitor of Protein Tyrosine Phosphatases Relevant to Insulin Resistance. Chem Biodivers 2021; 19:e202100600. [PMID: 34725898 DOI: 10.1002/cbdv.202100600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/01/2021] [Indexed: 11/11/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are essential modulators of signal transduction pathways and has been implicated in many human diseases such as cancer, diabetes, obesity, autoimmune disorders, and neurological diseases, indicating that PTPs are next-generation drug targets. Since PTPN1, PTPN2, and PTPN11 have been reported to be negative regulators of insulin action, the identification of PTP inhibitors may be an effective strategy to develop therapeutic agents for the treatment of type 2 diabetes. In this study, we observed for the first time that nepetin inhibits the catalytic activity of PTPN1, PTPN2, and PTPN11 in vitro, indicating that nepetin acts as a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11. Furthermore, treatment of mature 3T3-L1 adipocytes with 20 μM nepetin stimulates glucose uptake through AMPK activation. Taken together, our findings provide evidence that nepetin, a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11, could be a promising therapeutic candidate for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Sun-Young Yoon
- Department of Cosmetic Science, Kwangju Women's University, Gwangju, 62396, Republic of Korea
| | - Dohee Ahn
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Kwan Kim
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Oh Seo
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang J Chung
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
15
|
Characteristics of Food Protein-Derived Antidiabetic Bioactive Peptides: A Literature Update. Int J Mol Sci 2021; 22:ijms22179508. [PMID: 34502417 PMCID: PMC8431147 DOI: 10.3390/ijms22179508] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes, a glucose metabolic disorder, is considered one of the biggest challenges associated with a complex complication of health crises in the modern lifestyle. Inhibition or reduction of the dipeptidyl peptidase IV (DPP-IV), alpha-glucosidase, and protein-tyrosine phosphatase 1B (PTP-1B) enzyme activities or expressions are notably considered as the promising therapeutic strategies for the management of type 2 diabetes (T2D). Various food protein-derived antidiabetic bioactive peptides have been isolated and verified. This review provides an overview of the DPP-IV, PTP-1B, and α-glucosidase inhibitors, and updates on the methods for the discovery of DPP-IV inhibitory peptides released from food-protein hydrolysate. The finding of novel bioactive peptides involves studies about the strategy of separation fractionation, the identification of peptide sequences, and the evaluation of peptide characteristics in vitro, in silico, in situ, and in vivo. The potential of bioactive peptides suggests useful applications in the prevention and management of diabetes. Furthermore, evidence of clinical studies is necessary for the validation of these peptides’ efficiencies before commercial applications.
Collapse
|
16
|
Natural α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitors: A Source of Scaffold Molecules for Synthesis of New Multitarget Antidiabetic Drugs. Molecules 2021; 26:molecules26164818. [PMID: 34443409 PMCID: PMC8400511 DOI: 10.3390/molecules26164818] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) represents a group of metabolic disorders that leads to acute and long-term serious complications and is considered a worldwide sanitary emergence. Type 2 diabetes (T2D) represents about 90% of all cases of diabetes, and even if several drugs are actually available for its treatment, in the long term, they show limited effectiveness. Most traditional drugs are designed to act on a specific biological target, but the complexity of the current pathologies has demonstrated that molecules hitting more than one target may be safer and more effective. The purpose of this review is to shed light on the natural compounds known as α-glucosidase and Protein Tyrosine Phosphatase 1B (PTP1B) dual-inhibitors that could be used as lead compounds to generate new multitarget antidiabetic drugs for treatment of T2D.
Collapse
|
17
|
Begum N, Nasir A, Parveen Z, Muhammad T, Ahmed A, Farman S, Jamila N, Shah M, Bibi NS, Khurshid A, Huma Z, Khalil AAK, Albrakati A, Batiha GES. Evaluation of the Hypoglycemic Activity of Morchella conica by Targeting Protein Tyrosine Phosphatase 1B. Front Pharmacol 2021; 12:661803. [PMID: 34093192 PMCID: PMC8173442 DOI: 10.3389/fphar.2021.661803] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Morchella conica (M. conica) Pers. is one of six wild edible mushrooms that are widely used by Asian and European countries for their nutritional value. The present study assessed the anti-diabetic potential of M. conica methanolic extract (100 mg/kg body weight) on streptozotocin (STZ)-induced diabetic mice. STZ was used in a single dose of 65 mg/kg to establish diabetic models. Body weights, water/food intake and fasting blood glucose levels were measured. Histopathological analysis of the pancreas and liver were performed to evaluate STZ-induced tissue injuries. In addition, in vitro assays such as α-amylase and protein tyrosine phosphatase 1B (PTP1B) inhibitory, antiglycation, antioxidant and cytotoxicity were performed. The in vitro study indicated potent PTP1B inhibitory potential of M. conica with an IC50 value of 26.5 μg/ml as compared to the positive control, oleanolic acid (IC50 36.2 μg/ml). In vivo investigation showed a gradual decrease in blood sugar level in M. conica-treated mice (132 mg/dl) at a concentration of 100 mg/kg as compared to diabetic mice (346 mg/dl). The extract positively improved liver and kidney damages as were shown by their serum glutamic pyruvic transaminase, serum glutamic oxaloacetate, alkaline phosphatase, serum creatinine and urea levels. Histopathological analysis revealed slight liver and pancreas improvement of mice treated with extract. Cytotoxicity assays displayed lower IC50 values. Based on the present results of the study, it may be inferred that M. conica are rich in bioactive compounds responsible for antidiabetic activity and this mushroom may be a potential source of antidiabetic drug. However, further studies are required in terms of isolation of bioactive compounds to validate the observed results.
Collapse
Affiliation(s)
- Naeema Begum
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Abdul Nasir
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan.,Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Zahida Parveen
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Taj Muhammad
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Asma Ahmed
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahor, Lahor, Pakistan
| | - Saira Farman
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Nargis Jamila
- Department of Chemistry, Shaheed Benazir Women University of Science and Technology Peshawar, Peshawar, Pakistan
| | - Mohib Shah
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Noor Shad Bibi
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Akif Khurshid
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Zille Huma
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
18
|
Proença C, Ribeiro D, Freitas M, Carvalho F, Fernandes E. A comprehensive review on the antidiabetic activity of flavonoids targeting PTP1B and DPP-4: a structure-activity relationship analysis. Crit Rev Food Sci Nutr 2021; 62:4095-4151. [PMID: 33554619 DOI: 10.1080/10408398.2021.1872483] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Type 2 diabetes (T2D) is an expanding global health problem, resulting from defects in insulin secretion and/or insulin resistance. In the past few years, both protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl peptidase-4 (DPP-4), as well as their role in T2D, have attracted the attention of the scientific community. PTP1B plays an important role in insulin resistance and is currently one of the most promising targets for the treatment of T2D, since no available PTP1B inhibitors were still approved. DPP-4 inhibitors are among the most recent agents used in the treatment of T2D (although its use has been associated with possible cardiovascular adverse events). The antidiabetic properties of flavonoids are well-recognized, and include inhibitory effects on the above enzymes, although hitherto not therapeutically explored. In the present study, a comprehensive review of the literature of both synthetic and natural isolated flavonoids as inhibitors of PTP1B and DPP-4 activities is made, including their type of inhibition and experimental conditions, and structure-activity relationship, covering a total of 351 compounds. We intend to provide the most favorable chemical features of flavonoids for the inhibition of PTP1B and DPP-4, gathering information for the future development of compounds with improved potential as T2D therapeutic agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Proença C, Ribeiro D, Freitas M, Fernandes E. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: a review. Crit Rev Food Sci Nutr 2021; 62:3137-3207. [PMID: 33427491 DOI: 10.1080/10408398.2020.1862755] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes (T2D) is one of the most prevalent metabolic diseases worldwide and is characterized by increased postprandial hyperglycemia (PPHG). α-Amylase and α-glucosidase inhibitors have been shown to slow the release of glucose from starch and oligosaccharides, resulting in a delay of glucose absorption and a reduction in postprandial blood glucose levels. Since current α-glucosidase inhibitors used in the management of T2D, such as acarbose, have been associated to strong gastrointestinal side effects, the search for novel and safer drugs is considered a hot topic of research. Flavonoids are phenolic compounds widely distributed in the Plant Kingdom and important components of the human diet. These compounds have shown promising antidiabetic activities, including the inhibition of α-amylase and α-glucosidase. The aim of this review is to provide an overview on the scientific literature concerning the structure-activity relationship of flavonoids in inhibiting α-amylase and α-glucosidase, including their type of inhibition and experimental procedures applied. For this purpose, a total of 500 compounds is covered in this review. Available data may be considered of high value for the design and development of novel flavonoid derivatives with effective and potent inhibitory activity against those carbohydrate-hydrolyzing enzymes, to be possibly used as safer alternatives for the regulation of PPHG in T2D.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Hossain U, Das AK, Ghosh S, Sil PC. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem Toxicol 2020; 145:111738. [PMID: 32916220 PMCID: PMC7480666 DOI: 10.1016/j.fct.2020.111738] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 01/02/2023]
Abstract
Recently the use of bioactive α-glucosidase inhibitors for the treatment of diabetes have been proven to be the most efficient remedy for controlling postprandial hyperglycemia and its detrimental physiological complications, especially in type 2 diabetes. The carbohydrate hydrolysing enzyme, α-glucosidase, is generally competitively inhibited by the α-glucosidase inhibitors and results in the delayed glucose absorption in small intestine, ultimately controlling the postprandial hyperglycemia. Here we have reviewed the most recent updates in the bioactive α-glucosidase inhibitors category. This review provides an overview of the α-glucosidase inhibitory potentials and efficiency of controlling postprandial hyperglycemia of various bioactive compounds such as flavonoids, phenolic compound, polysaccharide, betulinic acid, tannins, anthocyanins, steroids, polyol, polyphenols, galangin, procyanidins, hydroxyl-α-sanshool, hydroxyl-β-sanshool, erythritol, ganomycin, caffeoylquinic acid, resin glycosides, saponins, avicularin, oleanolic acids, urasolic acid, ethanolic extracts etc., from various dietary and non-dietary naturally occurring sources.
Collapse
Affiliation(s)
| | | | | | - Parames C. Sil
- Corresponding author. Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta, 700054, West Bengal, India
| |
Collapse
|
21
|
Kousaxidis A, Petrou A, Lavrentaki V, Fesatidou M, Nicolaou I, Geronikaki A. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem 2020; 207:112742. [PMID: 32871344 DOI: 10.1016/j.ejmech.2020.112742] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a metabolic disease characterized by high blood glucose levels and usually associated with several chronic pathologies. Aldose reductase and protein tyrosine phosphatase 1B enzymes have identified as two novel molecular targets associated with the onset and progression of type II diabetes and related comorbidities. Although many inhibitors against these enzymes have already found in the field of diabetic mellitus, the research for discovering more effective and selective agents with optimal pharmacokinetic properties continues. In addition, dual inhibition of these target proteins has proved as a promising therapeutic approach. A variety of diverse scaffolds are presented in this review for the future design of potent and selective inhibitors of aldose reductase and protein tyrosine phosphatase 1B based on the most important structural features of both enzymes. The discovery of novel dual aldose reductase and protein tyrosine phosphatase 1B inhibitors could be effective therapeutic molecules for the treatment of insulin-resistant type II diabetes mellitus. The methods used comprise a literature survey and X-ray crystal structures derived from Protein Databank (PDB). Despite the available therapeutic options for type II diabetes mellitus, the inhibitors of aldose reductase and protein tyrosine phosphatase 1B could be two promising approaches for the effective treatment of hyperglycemia and diabetes-associated pathologies. Due to the poor pharmacokinetic profile and low in vivo efficacy of existing inhibitors of both targets, the research turned to more selective and cell-permeable agents as well as multi-target molecules.
Collapse
Affiliation(s)
- Antonios Kousaxidis
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Vasiliki Lavrentaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Maria Fesatidou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Ioannis Nicolaou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Athina Geronikaki
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece.
| |
Collapse
|
22
|
Potential anti-diabetic isoprenoids and a long-chain δ-lactone from frangipani (Plumeria rubra). Fitoterapia 2020; 146:104684. [PMID: 32634455 DOI: 10.1016/j.fitote.2020.104684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 11/20/2022]
Abstract
A decoction of Plumeria rubra flowers has been used traditionally for the treatment of diabetes in China and Mexico. Chemical investigations on the bioactive constituents of these flowers led to the isolation of 30 compounds, including the four new compounds, one iridoiod (1), two triterpenoids (4, 5), and a long-chain δ-lactone (16). In addition, 26 known compounds (2, 3, 6-15, 17-30) are also reported. All of these compounds were identified on the basis of spectroscopic data interpretation and the absolute configurations of compound 4, 5, 16 were determined by Mosher's method. Compounds 1-4, 7, 8 and 16 showed moderate to significant inhibitory activities against α-glucosidase and protein tyrosine phosphatase 1B, with 4 having IC50 values of 19.45 μM and 0.21 μM, respectively.
Collapse
|
23
|
Tatipamula VB, Annam SSP, Nguyen HT, Polimati H, Yejella RP. Sekikaic acid modulates pancreatic β-cells in streptozotocin-induced type 2 diabetic rats by inhibiting digestive enzymes. Nat Prod Res 2020; 35:5420-5424. [PMID: 32498563 DOI: 10.1080/14786419.2020.1775226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The antioxidant and antidiabetic effects of sekikaic acid (SA) were investigated using in vitro and in vivo study models. SA possessed good antioxidant activity as assessed through hydroxyl radicals (IC50 value = 41.5 µg/mL) and ferric ions assay (IC50 value = 42.0 µg/mL). SA exhibited stronger α-glucosidase and α-amylase inhibition than that of aldose-reductase and protein tyrosine phosphatase 1B. The hypoglycemic activity of SA caused significant reduction of plasma glucose levels in normal and glucose loaded rats. The anti-hyperglycemic activity of SA (2 mg/Kg body weight) was indicated by the reduction of blood glucose by 44.17 ± 3.78% in the third week in streptozotocin-induced diabetic rats. The hypolipidaemic action of SA was evident by the significant decrease in the levels of low-density lipoprotein, total cholesterol, and total glycerides. Histologically, the pancreas of the treated groups showed significant regeneration of the pancreatic β-cells compared to diabetic control, possibly due to the inhibition of digestive enzymes.
Collapse
Affiliation(s)
- Vinay Bharadwaj Tatipamula
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Satya Sowbhagya Priya Annam
- Pharmaceutical Sciences Department, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - Ha Thi Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Haritha Polimati
- Pharmaceutical Sciences Department, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - Rajendra Prasad Yejella
- Pharmaceutical Sciences Department, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| |
Collapse
|
24
|
Olomola TO, Mphahlele MJ, Gildenhuys S. Benzofuran-selenadiazole hybrids as novel α-glucosidase and cyclooxygenase-2 inhibitors with antioxidant and cytotoxic properties. Bioorg Chem 2020; 100:103945. [PMID: 32450390 DOI: 10.1016/j.bioorg.2020.103945] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022]
Abstract
Series of 2-arylbenzofuran-1,2,3-selenodiazole hybrids were prepared via multiple reactions and then evaluated in vitro through enzymatic assay for inhibitory effect against α-glucosidase and cyclooxygenase-2 (COX-2) activities including antioxidant activity. The presence of 1,2,3-selenodiazole moiety resulted in increased inhibitory effect for compounds 4a-f against α-glucosidase and COX-2 activities, and increased free radical scavenging activity. 6-Acetoxy-2-phenyl-5-(1,2,3-selenadiazol-4-yl)benzofuran (4a) and its 2-(4-methoxyphenyl) substituted derivative (4f) were, in turn, screened for antiproliferation against the breast MCF-7 cancer cell line and for cytotoxicity on the human embryonic kidney derived Hek293-T cells. A cell-based antioxidant activity assay involving lipopolysaccharide induced reactive oxygen species production in these cells was performed. Molecular docking has also been performed on these two compounds to predict protein-ligand interactions against α-glucosidase and COX-2.
Collapse
Affiliation(s)
- Temitope O Olomola
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Malose J Mphahlele
- Department of Chemistry, College of Science, Engineering and Technology, University of South Africa, Private Bag X06, Florida 1710, South Africa.
| | - Samantha Gildenhuys
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa
| |
Collapse
|
25
|
Mphahlele MJ, Choong YS, Maluleka MM, Gildenhuys S. Synthesis, In Vitro Evaluation and Molecular Docking of the 5-Acetyl-2-aryl-6-hydroxybenzo[ b]furans against Multiple Targets Linked to Type 2 Diabetes. Biomolecules 2020; 10:E418. [PMID: 32156083 PMCID: PMC7175131 DOI: 10.3390/biom10030418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
The 5-acetyl-2-aryl-6-hydroxybenzo[b]furans 2a-h have been evaluated through in vitro enzymatic assay against targets which are linked to type 2 diabetes (T2D), namely, α-glucosidase, protein tyrosine phosphatase 1B (PTP1B) and β-secretase. These compounds have also been evaluated for antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging method. The most active compounds against α-glucosidase and/or PTP1B, namely, 4-fluorophenyl 2c, 4-methoxyphenyl 2g and 3,5-dimethoxyphenyl substituted 2h derivatives were also evaluated for potential anti-inflammatory properties against cyclooxygenase-2 activity. The Lineweaver-Burk and Dixon plots were used to determine the type of inhibition on compounds 2c and 2h against α-glucosidase and PTP1B receptors. The interactions were investigated in modelled complexes against α-glucosidase and PTP1B via molecular docking.
Collapse
Affiliation(s)
- Malose J. Mphahlele
- Department of Chemistry, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Marole M. Maluleka
- Department of Chemistry, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Samantha Gildenhuys
- Department of Life & Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa;
| |
Collapse
|
26
|
Choi JH, Lee HJ, Kim YS, Yeo SH, Kim S. Effects of Maclura tricuspidata (Carr.) Bur fruits and its phytophenolics on obesity-related enzymes. J Food Biochem 2019; 44:e13110. [PMID: 31792999 DOI: 10.1111/jfbc.13110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/22/2019] [Accepted: 11/11/2019] [Indexed: 11/30/2022]
Abstract
The purpose of the present study was to investigate whether several phytophenolic ingredients isolated from Maclura tricuspidata (Carr.) Bur fruits inhibit the activity of obesity-related enzymes including pancreatic lipase, α-amylase, β-glucosidase, phosphodiesterase IV, alkaline phosphatase, and citrate synthase, and the compounds play as an inhibitor against the target enzymes in kinetic studies. The enzyme assays indicated that the fruit extract and its phytophenolic compounds inhibited significantly the enzymatic activity of the five target enzymes. The kinetic studies demonstrated that the inhibitory properties of p-hydroxybenzoic acid (4-HA), protocatechuic acid (PA), and isovanillic acid (IA) against pancreatic lipase, β-glucosidase, citrate synthase, or alkaline phosphatase. Our results suggested that the compounds detected from Maclura tricuspidata (Carr.) Bur fruit extract may regulate carbohydrate/lipid/energy metabolism by obesity-related enzymes' inhibition. PRACTICAL APPLICATIONS: The obesity-related metabolizing enzymes affect (in)directly the metabolites absorption on carbohydrate/lipid/energy metabolism. Accordingly, it is an important strategy to treat obesity through target pathways and enzymes which include the reduction in energy intake and consumption. In our results, Maclura tricuspidata (Carr.) Bur fruit extract and its phytophenolic compounds inhibited significantly the enzymatic activity of the five target enzymes, in particular, 4-HA, PA, and IA have each specific inhibition type on pancreatic lipase, β-glucosidase, citrate synthase, and alkaline phosphatase. Therefore, M. tricuspidata (Carr.) Bur fruit may be a strong candidate as a food material or therapeutic agent for obesity improvement.
Collapse
Affiliation(s)
- Jun-Hui Choi
- Department of Food Science and Biotechnology, Gwangju University, Gwangju, Republic of Korea
| | - Hyo-Jeong Lee
- Department of Food Science and Biotechnology, Gwangju University, Gwangju, Republic of Korea
| | - Yoon-Sik Kim
- Department of Department of Clinical Laboratory Science, Dongkang College, Gwangju, Republic of Korea
| | - Soo-Hwan Yeo
- Department of Agro-Food Resource, National Academy of Agricultural Science, RDA, Suwon, Republic of Korea
| | - Seung Kim
- Department of Food Science and Biotechnology, Gwangju University, Gwangju, Republic of Korea
| |
Collapse
|
27
|
Eggers C, Fujitani M, Kato R, Smid S. Novel cannabis flavonoid, cannflavin A displays both a hormetic and neuroprotective profile against amyloid β-mediated neurotoxicity in PC12 cells: Comparison with geranylated flavonoids, mimulone and diplacone. Biochem Pharmacol 2019; 169:113609. [DOI: 10.1016/j.bcp.2019.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
|
28
|
Calebin-A, a Curcuminoid Analog Inhibits α-MSH-Induced Melanogenesis in B16F10 Mouse Melanoma Cells. COSMETICS 2019. [DOI: 10.3390/cosmetics6030051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hyperpigmentation skin disorders comprise melasma, age spots, and post-inflammatory hyperpigmentation. They are characterized by an aberrant upregulation of melanin pigment and pose a significant burden aesthetically. Calebin-A (CBA) is a natural curcuminoid analog derived from turmeric root (Curcuma longa) but, unlike curcumin, it has not been explored yet for anti-melanogenic activity. Hence, in the current study, we studied CBA for its effects on α-melanocyte stimulating hormone (αMSH)-stimulated melanogenesis in B16F10 mouse melanoma cells. Our results showed that CBA (20 μM) significantly suppressed αMSH-stimulated melanogenesis after 48 h treatment. The underlying mechanisms of CBA’s anti-melanogenic activity were studied, and it was shown that CBA did not affect either intracellular tyrosinase activity or the direct activity of tyrosinase enzyme. Additionally, CBA did not affect intracellular α-glucosidase activity but significantly inhibited direct α-glucosidase activity. CBA also directly scavenged 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radicals, consistent with potent antioxidant activity but did not inhibit intracellular reactive oxygen species (ROS). CBA increased acidification of cellular organelles and inhibited maturation of melanosomes by significantly reducing the number of mature melanosomes. Our results indicate that CBA may hold promise as a pigmentation inhibitor for hyperpigmentation disorders for cosmetic use by targeting pathways other than tyrosinase inhibition. Further studies to delineate the molecular signaling mechanism of melanogenesis inhibition and test anti-melanogenesis efficacy of CBA in human skin melanocytes and skin equivalents are warranted.
Collapse
|
29
|
Han RY, Ge Y, Zhang L, Wang QM. Design and Biological Evaluation of Novel Imidazolyl Flavonoids as Potent and Selective Protein Tyrosine Phosphatase Inhibitors. Med Chem 2019; 16:563-574. [PMID: 31208312 DOI: 10.2174/1573406415666190430125547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Protein tyrosine phosphatases 1B are considered to be a desirable validated target for therapeutic development of type II diabetes and obesity. METHODS A new series of imidazolyl flavonoids as potential protein tyrosine phosphatase inhibitors were synthesized and evaluated. RESULTS Bioactive results indicated that some synthesized compounds exhibited potent protein phosphatase 1B (PTP1B) inhibitory activities at the micromolar range. Especially, compound 8b showed the best inhibitory activity (IC50=1.0 µM) with 15-fold selectivity for PTP1B over the closely related T-cell protein tyrosine phosphatase (TCPTP). Cell viability assays indicated that 8b is cell permeable with lower cytotoxicity. Molecular modeling and dynamics studies revealed the reason for selectivity of PTP1B over TCPTP. Quantum chemical studies were carried out on these compounds to understand the structural features essential for activity. CONCLUSION Compound 8b should be a potential selective PTP1B inhibitor.
Collapse
Affiliation(s)
- Rong Y Han
- School of Pharmacy, Yancheng Teacher's University, Yancheng, Jiangsu 224051, China
| | - Yu Ge
- School of Pharmacy, Yancheng Teacher's University, Yancheng, Jiangsu 224051, China
| | - Ling Zhang
- School of Pharmacy, Yancheng Teacher's University, Yancheng, Jiangsu 224051, China
| | - Qing M Wang
- School of Pharmacy, Yancheng Teacher's University, Yancheng, Jiangsu 224051, China
| |
Collapse
|
30
|
Cheng CL, Jia XH, Xiao CM, Tang WZ. Paulownia C-geranylated flavonoids: their structural variety, biological activity and application prospects. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2019; 18:549-570. [PMID: 32214921 PMCID: PMC7088933 DOI: 10.1007/s11101-019-09614-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
Paulownia species, especially their flowers and fruits, are traditionally used in Chinese herbal medicines for the treatment of infectious diseases. C-geranylated flavonoids were found to be the major special metabolites in Paulownia flowers and fruits, and 76 C-geranylated flavonoids had been isolated and characterized thus far. Structural variations in Paulownia C-geranylated flavonoids are mainly due to the complicated structural modifications in their geranyl substituents. These natural compounds have attracted much attention because of their various biological activities, including antioxidation, anti-inflammation, cytotoxic activity and various enzymatic inhibitions, etc. Among them, diplacone, a major Paulownia component, was considered to have promise for applications in medicine. This paper summarizes the information from current publications on Paulownia C-geranylated flavonoids, with a focus on their structural variety, key spectroscopic characteristics, biological activity with structure-activity relationships and application prospects. We hope that this paper will stimulate further investigations of Paulownia species and this kind of natural product.
Collapse
Affiliation(s)
- Chun-lei Cheng
- Shandong Institute for Food and Drug Control, Jinan, 250101 Shandong People’s Republic of China
| | - Xian-hui Jia
- Institute of Materia Medica, Shandong Academy of Medical Sciences, No. 18877, Jingshi Road, Jinan, 250062 Shandong People’s Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, 250062 Shandong People’s Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan, 250062 Shandong People’s Republic of China
| | - Cheng-mei Xiao
- Institute of Materia Medica, Shandong Academy of Medical Sciences, No. 18877, Jingshi Road, Jinan, 250062 Shandong People’s Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, 250062 Shandong People’s Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan, 250062 Shandong People’s Republic of China
| | - Wen-zhao Tang
- Institute of Materia Medica, Shandong Academy of Medical Sciences, No. 18877, Jingshi Road, Jinan, 250062 Shandong People’s Republic of China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, 250062 Shandong People’s Republic of China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan, 250062 Shandong People’s Republic of China
| |
Collapse
|
31
|
Dan WJ, Zhang Q, Zhang F, Wang WW, Gao JM. Benzonate derivatives of acetophenone as potent α-glucosidase inhibitors: synthesis, structure-activity relationship and mechanism. J Enzyme Inhib Med Chem 2019; 34:937-945. [PMID: 31072245 PMCID: PMC6522914 DOI: 10.1080/14756366.2019.1604519] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this article, 23 compounds (6 and 7a–7v) were prepared and evaluated for their in vitro α-glucosidase inhibitory activity. The compounds 7d, 7f, 7i, 7n, 7o, 7r, 7s, 7u, and 7v displayed the α-glucosidase inhibition activity with IC50 values ranging from 1.68 to 7.88 µM. Among all tested compounds, 7u was found to be the most efficient, being 32-fold more active than the standard drug acarbose, which significantly attenuated postprandial blood glucose in mice. In addition, the compound 7u also induced the fluorescence quenching and conformational changes of enzyme, by forming α-glucosidase–7u complex in a mixed inhibition type. The thermodynamic constants recognised the interaction between 7u and α-glucosidase and was an enthalpy-driven spontaneous exothermic reaction. The synchronous fluorescence and CD spectra also indicate that the compound 7u changed the enzyme conformation. The findings identify the binding interactions between new ligands and α-glucosidase and reveal the compound 7u as a potent α-glucosidase inhibitor.
Collapse
Affiliation(s)
- Wen-Jia Dan
- a Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi , China
| | - Qiang Zhang
- a Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi , China
| | - Fan Zhang
- a Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi , China
| | - Wei-Wei Wang
- a Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi , China
| | - Jin-Ming Gao
- a Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi , China
| |
Collapse
|
32
|
Affiliation(s)
- Chengyun He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaoling Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Junliang Sun
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
33
|
Characterization, quantitation, similarity evaluation and combination with Na+,K+-ATPase of cardiac glycosides from Streblus asper. Bioorg Chem 2019; 87:265-275. [DOI: 10.1016/j.bioorg.2019.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 12/15/2022]
|
34
|
Seong SH, Nguyen DH, Wagle A, Woo MH, Jung HA, Choi JS. Experimental and Computational Study to Reveal the Potential of Non-Polar Constituents from Hizikia fusiformis as Dual Protein Tyrosine Phosphatase 1B and α-Glucosidase Inhibitors. Mar Drugs 2019; 17:E302. [PMID: 31121891 PMCID: PMC6562952 DOI: 10.3390/md17050302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022] Open
Abstract
Hizikia fusiformis (Harvey) Okamura is an edible marine alga that has been widely used in Korea, China, and Japan as a rich source of dietary fiber and essential minerals. In our previous study, we observed that the methanol extract of H. fusiformis and its non-polar fractions showed potent protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase inhibition. Therefore, the aim of the present study was to identify the active ingredient in the methanol extract of H. fusiformis. We isolated a new glycerol fatty acid (13) and 20 known compounds including 9 fatty acids (1-3, 7-12), mixture of 24R and 24S-saringosterol (4), fucosterol (5), mixture of 24R,28R and 24S,28R-epoxy-24-ethylcholesterol (6), cedrusin (14), 1-(4-hydroxy-3-methoxyphenyl)-2-[2-hydroxy -4-(3-hydroxypropyl)phenoxy]-1,3-propanediol (15), benzyl alcohol alloside (16), madhusic acid A (17), glycyrrhizin (18), glycyrrhizin-6'-methyl ester (19), apo-9'-fucoxanthinone (20) and tyramine (21) from the non-polar fraction of H. fusiformis. New glycerol fatty acid 13 was identified as 2-(7'- (2″-hydroxy-3″-((5Z,8Z,11Z)-icosatrienoyloxy)propoxy)-7'-oxoheptanoyl)oxymethylpropenoic acid by spectroscopic analysis using NMR, IR, and HR-ESI-MS. We investigated the effect of the 21 isolated compounds and metabolites (22 and 23) of 18 against the inhibition of PTP1B and α-glucosidase enzymes. All fatty acids showed potent PTP1B inhibition at low concentrations. In particular, new compound 13 and fucosterol epoxide (6) showed noncompetitive inhibitory activity against PTP1B. Metabolites of glycyrrhizin, 22 and 23, exhibited competitive inhibition against PTP1B. These findings suggest that H. fusiformis, a widely consumed seafood, may be effective as a dietary supplement for the management of diabetes through the inhibition of PTP1B.
Collapse
Affiliation(s)
- Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Duc Hung Nguyen
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongsan 38430, Korea.
| | - Aditi Wagle
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Mi Hee Woo
- College of Pharmacy, Drug Research and Development Center, Catholic University of Daegu, Gyeongsan 38430, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
35
|
The enhanced immunological activity of Paulownia tomentosa flower polysaccharide on Newcastle disease vaccine in chicken. Biosci Rep 2019; 39:BSR20190224. [PMID: 30971500 PMCID: PMC6500895 DOI: 10.1042/bsr20190224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022] Open
Abstract
The extracts of Paulownia tomentosa (P. tomentosa) exhibit multiple pharmacological activities. In the present study, P. tomentosa flower polysaccharides (PTFP) were extracted by water decoction and ethanol precipitation, and the immunologic modulations of PTFP against Newcastle disease (ND) vaccine was investigated in chickens. The results showed that in a certain range of concentrations, PTFP treatment can dose-dependently enhance lymphocyte proliferation. Then, 280 14-days-old chickens were randomly divided into seven groups, and vaccinated with ND vaccine except blank control (BC) group. At the first vaccination, chickens were orally administrated with PTFP at concentration ranging from 0 to 50 mg/kg once a day for 3 successive days, and the BC group was treated with physiological saline. The lymphocyte proliferation rate, serum antibody titer, and levels of interferon-γ (IFN-γ) were respectively measured on 7, 14, 21, and 28 days after the first vaccination. The results showed that PTFP at the suitable doses could significantly promote lymphocyte proliferation, enhance serum antibody titer, and improve serum IFN-γ concentrations. Taken together, these data indicated that PTFP could improve the immune efficacy against ND vaccine in chickens, and could be as the candidate of a new-type immune adjuvant.
Collapse
|
36
|
Yang L, Yang YL, Dong WH, Li W, Wang P, Cao X, Yuan JZ, Chen HQ, Mei WL, Dai HF. Sesquiterpenoids and 2-(2-phenylethyl)chromones respectively acting as α-glucosidase and tyrosinase inhibitors from agarwood of an Aquilaria plant. J Enzyme Inhib Med Chem 2019; 34:853-862. [PMID: 31010356 PMCID: PMC6495113 DOI: 10.1080/14756366.2019.1576657] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ethyl ether extract of agarwood from an Aquilaria plant afforded six new sesquiterpenoids, Agarozizanol A − F (1−6), together with four known sesquiterpenoids and six known 2-(2-phenylethyl)chromones. Their structures were elucidated via detailed spectroscopic analysis, X-ray diffraction, and comparisons with the published data. All the isolates were evaluated for the α-glucosidase and tyrosinase inhibitory activities in vitro. Compounds 5, 7, 8, and 10 showed significant inhibition of α-glucosidase with IC50 values ranging between 112.3 ± 4.5 and 524.5 ± 2.7 µM (acarbose, 743. 4 ± 3.3 µM). Compounds 13 and 14 exhibited tyrosinase inhibitory effect with IC50 values of 89.0 ± 1.7 and 51.5 ± 0.6 µM, respectively (kojic acid, 46.1 ± 1.3). In the kinetic studies, compounds 5 and 14 were found to be uncompetitive inhibitors for α-glucosidase and mixed type inhibitors for tyrosinase, respectively. Furthermore, molecular docking simulations revealed the binding sites and interactions of the most active compounds with α-glucosidase and tyrosinase.
Collapse
Affiliation(s)
- Li Yang
- a Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture , Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Haikou , People's Republic of China.,b Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine , Haikou , People's Republic of China
| | - Yi-Ling Yang
- a Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture , Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Haikou , People's Republic of China.,b Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine , Haikou , People's Republic of China
| | - Wen-Hua Dong
- a Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture , Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Haikou , People's Republic of China.,b Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine , Haikou , People's Republic of China.,c Hainan Engineering Research Center of Agarwood , Haikou , People's Republic of China
| | - Wei Li
- a Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture , Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Haikou , People's Republic of China.,b Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine , Haikou , People's Republic of China.,c Hainan Engineering Research Center of Agarwood , Haikou , People's Republic of China
| | - Pei Wang
- a Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture , Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Haikou , People's Republic of China.,b Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine , Haikou , People's Republic of China.,c Hainan Engineering Research Center of Agarwood , Haikou , People's Republic of China
| | - Xue Cao
- a Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture , Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Haikou , People's Republic of China.,b Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine , Haikou , People's Republic of China
| | - Jing-Zhe Yuan
- a Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture , Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Haikou , People's Republic of China.,b Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine , Haikou , People's Republic of China.,c Hainan Engineering Research Center of Agarwood , Haikou , People's Republic of China
| | - Hui-Qin Chen
- a Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture , Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Haikou , People's Republic of China.,b Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine , Haikou , People's Republic of China.,c Hainan Engineering Research Center of Agarwood , Haikou , People's Republic of China
| | - Wen-Li Mei
- a Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture , Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Haikou , People's Republic of China.,b Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine , Haikou , People's Republic of China.,c Hainan Engineering Research Center of Agarwood , Haikou , People's Republic of China
| | - Hao-Fu Dai
- a Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture , Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences , Haikou , People's Republic of China.,b Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine , Haikou , People's Republic of China.,c Hainan Engineering Research Center of Agarwood , Haikou , People's Republic of China
| |
Collapse
|
37
|
Identification of novel imidazole flavonoids as potent and selective inhibitors of protein tyrosine phosphatase. Bioorg Chem 2019; 88:102900. [PMID: 30991192 DOI: 10.1016/j.bioorg.2019.03.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/18/2019] [Accepted: 03/30/2019] [Indexed: 01/12/2023]
Abstract
A series of imidazole flavonoids as new type of protein tyrosine phosphatase inhibitors were synthesized and characterized. Most of them gave potent protein phosphatase 1B (PTP1B) inhibitory activities. Especially, compound 11a could effectively inhibit PTP1B with an IC50 value of 0.63 μM accompanied with high selectivity ratio (9.5-fold) over T-cell protein tyrosine phosphatase (TCPTP). This compound is cell permeable with relatively low cytotoxicity. The high binding affinity and selectivity was disclosed by molecular modeling and dynamics studies. The structural features essential for activity were confirmed by quantum chemical studies.
Collapse
|
38
|
Ferhati X, Matassini C, Fabbrini MG, Goti A, Morrone A, Cardona F, Moreno-Vargas AJ, Paoli P. Dual targeting of PTP1B and glucosidases with new bifunctional iminosugar inhibitors to address type 2 diabetes. Bioorg Chem 2019; 87:534-549. [PMID: 30928876 DOI: 10.1016/j.bioorg.2019.03.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
Abstract
The diffusion of type 2 diabetes (T2D) throughout the world represents one of the most important health problems of this century. Patients suffering from this disease can currently be treated with numerous oral anti-hyperglycaemic drugs, but none is capable of reproducing the physiological action of insulin and, in several cases, they induce severe side effects. Developing new anti-diabetic drugs remains one of the most urgent challenges of the pharmaceutical industry. Multi-target drugs could offer new therapeutic opportunities for the treatment of T2D, and the reported data on type 2 diabetic mice models indicate that these drugs could be more effective and have fewer side effects than mono-target drugs. α-Glucosidases and Protein Tyrosine Phosphatase 1B (PTP1B) are considered important targets for the treatment of T2D: the first digest oligo- and disaccharides in the gut, while the latter regulates the insulin-signaling pathway. With the aim of generating new drugs able to target both enzymes, we synthesized a series of bifunctional compounds bearing both a nitro aromatic group and an iminosugar moiety. The results of tests carried out both in vitro and in a cell-based model, show that these bifunctional compounds maintain activity on both target enzymes and, more importantly, show a good insulin-mimetic activity, increasing phosphorylation levels of Akt in the absence of insulin stimulation. These compounds could be used to develop a new generation of anti-hyperglycemic drugs useful for the treatment of patients affected by T2D.
Collapse
Affiliation(s)
- Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, Sesto Fiorentino, (FI), Italy
| | - Camilla Matassini
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, Sesto Fiorentino, (FI), Italy
| | - Maria Giulia Fabbrini
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, Sesto Fiorentino, (FI), Italy
| | - Andrea Goti
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, Sesto Fiorentino, (FI), Italy; Associated with Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS), Italy
| | - Amelia Morrone
- Paediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, and Department of Neurosciences, Pharmacology and Child Health. University of Florence, Viale Pieraccini n. 24, 50139 Firenze, Italy
| | - Francesca Cardona
- Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, Sesto Fiorentino, (FI), Italy; Associated with Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (CINMPIS), Italy.
| | - Antonio J Moreno-Vargas
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, n/Prof. García González 1, E-41012 Sevilla, Spain
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
39
|
Ha MT, Seong SH, Nguyen TD, Cho WK, Ah KJ, Ma JY, Woo MH, Choi JS, Min BS. Chalcone derivatives from the root bark of Morus alba L. act as inhibitors of PTP1B and α-glucosidase. PHYTOCHEMISTRY 2018; 155:114-125. [PMID: 30103164 DOI: 10.1016/j.phytochem.2018.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/24/2018] [Accepted: 08/04/2018] [Indexed: 05/18/2023]
Abstract
As part of our continuing research to obtain pharmacologically active compounds from Morus alba L. (Moraceae), four Diels-Alder type adducts (DAs) [morusalbins A-D], one isoprenylated flavonoid [albanin T], together with twenty-one known phenolic compounds were isolated from its root bark. The chemical structures were established using NMR, MS, and ECD spectra. The DAs including morusalbins A-D, albasin B, macrourin G, yunanensin A, mulberrofuran G and K, and albanol B exhibited strong inhibitory activities against both protein tyrosine phosphatase 1B (PTP1B) (IC50, 1.90-9.67 μM) and α-glucosidase (IC50, 2.29-5.91 μM). In the kinetic study, morusalbin D, albasin B, and macrourin G showed noncompetitive PTP1B inhibition, with Ki values of 0.33, 1.00, and 1.09 μM, respectively. In contrast, these DAs together with yunanensin A produced competitive inhibition of α-glucosidase, with Ki values of 0.64, 0.42, 2.42, and 1.19 μM, respectively. Furthermore, molecular docking studies revealed that these active DAs have high affinity and tight binding capacity towards the active site of PTP1B and α-glucosidase.
Collapse
Affiliation(s)
- Manh Tuan Ha
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea; Laboratory of Research and Applied Biochemistry, Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Tien Dat Nguyen
- Laboratory of Research and Applied Biochemistry, Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Won-Kyung Cho
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Kim Jeong Ah
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin Yeul Ma
- Korean Medicine Application Center, Korea Institute of Oriental Medicine (KIOM), 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea.
| | - Mi Hee Woo
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University, Gyeongbuk 38430, Republic of Korea.
| |
Collapse
|
40
|
Choi J, Yeo S, Kim M, Lee H, Kim S. p
‐Hydroxybenzyl alcohol inhibits four obesity‐related enzymes in vitro. J Biochem Mol Toxicol 2018; 32:e22223. [DOI: 10.1002/jbt.22223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Jun‐Hui Choi
- Department of Food Science and BiotechnologyGwangju UniversityGwangju Republic of Korea
| | - Soo‐Hwan Yeo
- Department of Agro‐Food ResourceNational Academy of Agricultural Science, RDASuwon Republic of Korea
| | - Myung‐Kon Kim
- Department of Food Science and TechnologyChonbuk National UniversityIksan Republic of Korea
| | - Hyo‐Jeong Lee
- Department of Food Science and BiotechnologyGwangju UniversityGwangju Republic of Korea
| | - Seung Kim
- Department of Food Science and BiotechnologyGwangju UniversityGwangju Republic of Korea
| |
Collapse
|
41
|
Uddin Z, Song YH, Ullah M, Li Z, Kim JY, Park KH. Isolation and Characterization of Protein Tyrosine Phosphatase 1B (PTP1B) Inhibitory Polyphenolic Compounds From Dodonaea viscosa and Their Kinetic Analysis. Front Chem 2018; 6:40. [PMID: 29546042 PMCID: PMC5839231 DOI: 10.3389/fchem.2018.00040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/14/2018] [Indexed: 12/28/2022] Open
Abstract
Diabetes mellitus is one of a major worldwide concerns, regulated by either defects in secretion or action of insulin, or both. Insulin signaling down-regulation has been related with over activity of protein tyrosine phosphatase 1B (PTP1B) enzyme, which has been a promising target for the treatment of diabetes mellitus. Herein, activity guided separation of methanol extract (95%) of Dodonaea viscosa aerial parts afforded nine (1-9) polyphenolic compounds, all of them were identified through spectroscopic data including 2D NMR and HREIMS. Subsequently, their PTP1B inhibitory potentials were evaluated, in which all of the isolates exhibited significant dose-dependent inhibition with IC50 13.5–57.9 μM. Among them, viscosol (4) was found to be the most potent compound having IC50 13.5 μM. In order to unveil the mechanistic behavior, detailed kinetic study was carried out, in which compound 4 was observed as a reversible, and mixed type I inhibitor of PTP1B with inhibitory constant (Ki) value of 4.6 μM. Furthermore, we annotated the major metabolites through HPLC-DAD-ESI/MS analysis, in which compounds 3, 6, 7, and 9 were found to be the most abundant metabolites in D. viscosa extract.
Collapse
Affiliation(s)
- Zia Uddin
- Division of Applied Life Science (BK21 Plus), IALS, Gyeongsang National University, Jinju, South Korea
| | - Yeong Hun Song
- Division of Applied Life Science (BK21 Plus), IALS, Gyeongsang National University, Jinju, South Korea
| | - Mahboob Ullah
- Division of Applied Life Science (BK21 Plus), IALS, Gyeongsang National University, Jinju, South Korea
| | - Zuopeng Li
- Division of Applied Life Science (BK21 Plus), IALS, Gyeongsang National University, Jinju, South Korea
| | - Jeong Yoon Kim
- Division of Applied Life Science (BK21 Plus), IALS, Gyeongsang National University, Jinju, South Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21 Plus), IALS, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
42
|
Inhibition of protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase by xanthones from Cratoxylum cochinchinense, and their kinetic characterization. Bioorg Med Chem 2018; 26:737-746. [DOI: 10.1016/j.bmc.2017.12.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/17/2017] [Accepted: 12/24/2017] [Indexed: 11/18/2022]
|
43
|
Wang K, Wang H, Liu Y, Shui W, Wang J, Cao P, Wang H, You R, Zhang Y. Dendrobium officinale polysaccharide attenuates type 2 diabetes mellitus via the regulation of PI3K/Akt-mediated glycogen synthesis and glucose metabolism. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|