1
|
Angeli A, Urbański LJ, Capasso C, Parkkila S, Supuran CT. Activation studies with amino acids and amines of a β-carbonic anhydrase from Mammaliicoccus (Staphylococcus) sciuri previously annotated as Staphylococcus aureus (SauBCA) carbonic anhydrase. J Enzyme Inhib Med Chem 2022; 37:2786-2792. [PMID: 36210544 PMCID: PMC9553136 DOI: 10.1080/14756366.2022.2131780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A β-carbonic anhydrase (CA, EC 4.2.1.1) previously annotated to be present in the genome of Staphylococcus aureus, SauBCA, has been shown to belong to another pathogenic bacterium, Mammaliicoccus (Staphylococcus) sciuri. This enzyme, MscCA, has been investigated for its activation with a series of natural and synthetic amino acid and amines, comparing the results with those obtained for the ortholog enzyme from Escherichia coli, EcoCAβ. The best MscCA activators were D-His, L- and D-DOPA, 4-(2-aminoethyl)-morpholine and L-Asn, which showed KAs of 0.12 - 0.89 µM. The least efficient activators were D-Tyr and L-Gln (KAs of 13.9 - 28.6 µM). The enzyme was also also inhibited by anions and sulphonamides, as described earlier. Endogenous CA activators may play a role in bacterial virulence and colonisation of the host which makes this research topic of great interest.
Collapse
Affiliation(s)
- Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Linda J Urbański
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland,CONTACT Seppo Parkkila Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy,Claudiu T. Supuran Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
2
|
An Update on Synthesis of Coumarin Sulfonamides as Enzyme Inhibitors and Anticancer Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051604. [PMID: 35268704 PMCID: PMC8911621 DOI: 10.3390/molecules27051604] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022]
Abstract
Coumarin is an important six-membered aromatic heterocyclic pharmacophore, widely distributed in natural products and synthetic molecules. The versatile and unique features of coumarin nucleus, in combination with privileged sulfonamide moiety, have enhanced the broad spectrum of biological activities. The research and development of coumarin, sulfonamide-based pharmacology, and medicinal chemistry have become active topics, and attracted the attention of medicinal chemists, pharmacists, and synthetic chemists. Coumarin sulfonamide compounds and analogs as clinical drugs have been used to cure various diseases with high therapeutic potency, which have shown their enormous development value. The diversified and wide array of biological activities such as anticancer, antibacterial, anti-fungal, antioxidant and anti-viral, etc. were displayed by diversified coumarin sulfonamides. The present systematic and comprehensive review in the current developments of synthesis and the medicinal chemistry of coumarin sulfonamide-based scaffolds give a whole range of therapeutics, especially in the field of oncology and carbonic anhydrase inhibitors. In the present review, various synthetic approaches, strategies, and methodologies involving effect of catalysts, the change of substrates, and the employment of various synthetic reaction conditions to obtain high yields is cited.
Collapse
|
3
|
Amine- and Amino Acid-Based Compounds as Carbonic Anhydrase Activators. Molecules 2021; 26:molecules26237331. [PMID: 34885917 PMCID: PMC8659172 DOI: 10.3390/molecules26237331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 02/01/2023] Open
Abstract
After being rather neglected as a research field in the past, carbonic anhydrase activators (CAAs) were undoubtedly demonstrated to be useful in diverse pharmaceutical and industrial applications. They also improved the knowledge of the requirements to selectively interact with a CA isoform over the others and confirmed the catalytic mechanism of this class of compounds. Amino acid and amine derivatives were the most explored in in vitro, in vivo and crystallographic studies as CAAs. Most of them were able to activate human or non-human CA isoforms in the nanomolar range, being proposed as therapeutic and industrial tools. Some isoforms are better activated by amino acids than amines derivatives and the stereochemistry may exert a role. Finally, non-human CAs have been very recently tested for activation studies, paving the way to innovative industrial and environmental applications.
Collapse
|
4
|
Angeli A, Urbański LJ, Hytönen VP, Parkkila S, Supuran CT. Activation of the β-carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with amines and amino acids. J Enzyme Inhib Med Chem 2021; 36:758-763. [PMID: 33715570 PMCID: PMC7952076 DOI: 10.1080/14756366.2021.1897802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We report the first activation study of the β-class carbonic anhydrase (CA, EC 4.2.1.1) encoded in the genome of the protozoan pathogen Trichomonas vaginalis, TvaCA1. Among 24 amino acid and amine activators investigated, derivatives incorporating a second carboxylic moiety, such as L-Asp, L- and D-Glu, were devoid of activating effects up to concentrations of 50 µM within the assay system, whereas the corresponding compounds with a CONH2 moiety, i.e. L-Gln and L-Asn showed modest activating effects, with activation constants in the range of 26.9 − 32.5 µM. Moderate activation was observed with L- and D-DOPA, histamine, dopamine, serotonin, (2-Aminoethyl)pyridine/piperazine and morpholine (KA‘s ranging between 8.3 and 14.5 µM), while the best activators were L-and D-Trp, L-and D-Tyr and 4-amino-Phe, which showed KA‘s ranging between 3.0 and 5.1 µM. Understanding in detail the activation mechanism of β-CAs may be relevant for the design of enzyme activity modulators with potential clinical significance.
Collapse
Affiliation(s)
- Andrea Angeli
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| | - Linda J Urbański
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
5
|
Chiaramonte N, Maach S, Biliotti C, Angeli A, Bartolucci G, Braconi L, Dei S, Teodori E, Supuran CT, Romanelli MN. Synthesis and carbonic anhydrase activating properties of a series of 2-amino-imidazolines structurally related to clonidine 1. J Enzyme Inhib Med Chem 2021; 35:1003-1010. [PMID: 32336172 PMCID: PMC7241460 DOI: 10.1080/14756366.2020.1749602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Carbonic Anhydrase (CA, EC 4.2.1.1) activating properties of histamine have been known for a long time. This compound has been extensively modified but only in few instances the imidazole ring has been replaced with other heterocycles. It was envisaged that the imidazoline ring could be a bioisoster of the imidazole moiety. Indeed, we report that clonidine, a 2-aminoimidazoline derivative, was found able to activate several human CA isoforms (hCA I, IV, VA, VII, IX, XII and XIII), with potency in the micromolar range, while it was inactive on hCA II. A series of 2-aminoimidazoline, structurally related to clonidine, was then synthesised and tested on selected hCA isoforms. The compounds were inactive on hCA II while displayed activating properties on hCA I, VA, VII and XIII, with KA values in the micromolar range. Two compounds (10 and 11) showed some preference for the hCA VA or VII isoforms.
Collapse
Affiliation(s)
- Niccolò Chiaramonte
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Soumia Maach
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Caterina Biliotti
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Andrea Angeli
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Gianluca Bartolucci
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Laura Braconi
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Silvia Dei
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| | - Maria Novella Romanelli
- Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child's Health, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Angeli A, Prete SD, Ghobril C, Hitce J, Clavaud C, Marrat X, Donald WA, Capasso C, Supuran CT. Activation studies of the β-carbonic anhydrases from Malassezia restricta with amines and amino acids. J Enzyme Inhib Med Chem 2020; 35:824-830. [PMID: 32216477 PMCID: PMC7170391 DOI: 10.1080/14756366.2020.1743284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
The β-carbonic anhydrase (CA, EC 4.2.1.1) from the genome of the opportunistic pathogen Malassezia restricta (MreCA), which was recently cloned and characterised, herein has been investigated for enzymatic activation by a panel of amines and amino acids. Of the 24 compounds tested in this study, the most effective MreCA activators were L-adrenaline (KA of 15 nM), 2-aminoethyl-piperazine/morpholine (KAs of 0.25-0.33 µM), histamine, L-4-amino-phenylalanine, D-Phe, L-/D-DOPA, and L-/D-Trp (KAs of 0.32 - 0.90 µM). The least effective activators were L-/D-Tyr, L-Asp, L-/D-Glu, and L-His, with activation constants ranging between 4.04 and 12.8 µM. As MreCA is involved in dandruff and seborrhoeic dermatitis, these results are of interest to identify modulators of the activity of enzymes involved in the metabolic processes of such fungi.
Collapse
Affiliation(s)
- Andrea Angeli
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | | | - Julien Hitce
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Cécile Clavaud
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Xavier Marrat
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Ren S, Jiang S, Yan X, Chen R, Cui H. Challenges and Opportunities: Porous Supports in Carbonic Anhydrase Immobilization. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Abstract
Metalloenzymes such as the carbonic anhydrases (CAs, EC 4.2.1.1) possess highly specialized active sites that promote fast reaction rates and high substrate selectivity for the physiologic reaction that they catalyze, hydration of CO2 to bicarbonate and a proton. Among the eight genetic CA macrofamilies, α-CAs possess rather spacious active sites and show catalytic promiscuity, being esterases with many types of esters, but also acting on diverse small molecules such as cyanamide, carbonyl sulfide (COS), CS2, etc. Although artificial CAs have been developed with the intent to efficiently catalyse non-biologically related chemical transformations with high control of stereoselectivity, the activities of these enzymes were much lower when compared to natural CAs. Here, we report an overview on the catalytic activities of α-CAs as well as of enzymes which were mutated or artificially designed by incorporation of transition metal ions. In particular, the distinct catalytic mechanisms of the reductase, oxidase and metatheses-ase such as de novo designed CAs are discussed.
Collapse
|
9
|
Akocak S, Supuran CT. Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: a review. J Enzyme Inhib Med Chem 2019; 34:1652-1659. [PMID: 31530034 PMCID: PMC6758604 DOI: 10.1080/14756366.2019.1664501] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Eight genetically distinct carbonic anhydrase (EC 4.2.1.1) enzyme families (α-, β-, γ- δ-, ζ-, η-, θ- and ι-CAs) were described to date. On the other hand, 16 mammalian α-CA isoforms are known to be involved in many diseases such as glaucoma, edema, epilepsy, obesity, hypoxic tumors, neuropathic pain, arthritis, neurodegeneration, etc. Although CA inhibitors were investigated for the management of a variety of such disorders, the activators just started to be investigated in detail for their in vivo effects. This review summarizes the activation profiles of α-, β, γ-, δ-, ζ- and η- CAs from various organisms (animals, fungi, protozoan, bacteria and archaea) with the most investigated classes of activators, the amines and the amino acids.
Collapse
Affiliation(s)
- Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| |
Collapse
|
10
|
Angeli A, Del Prete S, Pinteala M, Maier SS, Donald WA, Simionescu BC, Capasso C, Supuran CT. The first activation study of the β-carbonic anhydrases from the pathogenic bacteria Brucella suis and Francisella tularensis with amines and amino acids. J Enzyme Inhib Med Chem 2019; 34:1178-1185. [PMID: 31282230 PMCID: PMC6691884 DOI: 10.1080/14756366.2019.1630617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The activation of the β-class carbonic anhydrases (CAs, EC 4.2.1.1) from the bacteria Brucella suis and Francisella tularensis with amine and amino acids was investigated. BsuCA 1 was sensitive to activation with amino acids and amines, whereas FtuCA was not. The most effective BsuCA 1 activators were L-adrenaline and D-Tyr (KAs of 0.70–0.95 µM). L-His, L-/D-Phe, L-/D-DOPA, L-Trp, L-Tyr, 4-amino-L-Phe, dopamine, 2-pyridyl-methylamine, D-Glu and L-Gln showed activation constants in the range of 0.70–3.21 µM. FtuCA was sensitive to activation with L-Glu (KA of 9.13 µM). Most of the investigated compounds showed a weak activating effect against FtuCA (KAs of 30.5–78.3 µM). Many of the investigated amino acid and amines are present in high concentrations in many tissues in vertebrates, and their role in the pathogenicity of the two bacteria is poorly understood. Our study may bring insights in processes connected with invasion and pathogenic effects of intracellular bacteria.
Collapse
Affiliation(s)
- Andrea Angeli
- a Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Sonia Del Prete
- b Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Mariana Pinteala
- c Centre of Advanced Research in Bionanoconjugates and Biopolymers Department , "Petru Poni" Institute of Macromolecular Chemistry , Iasi , Romania
| | - Stelian S Maier
- c Centre of Advanced Research in Bionanoconjugates and Biopolymers Department , "Petru Poni" Institute of Macromolecular Chemistry , Iasi , Romania.,d Polymers Research Center, Polymeric Release Systems Research Group , "Gheorghe Asachi" Technical University of Iasi , Iasi , Romania
| | - William A Donald
- e School of Chemistry , University of New South Wales , Sydney , Australia
| | - Bogdan C Simionescu
- c Centre of Advanced Research in Bionanoconjugates and Biopolymers Department , "Petru Poni" Institute of Macromolecular Chemistry , Iasi , Romania
| | | | - Claudiu T Supuran
- a Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Italy.,e School of Chemistry , University of New South Wales , Sydney , Australia
| |
Collapse
|
11
|
Akocak S, Lolak N, Bua S, Nocentini A, Supuran CT. Activation of human α-carbonic anhydrase isoforms I, II, IV and VII with bis-histamine schiff bases and bis-spinaceamine substituted derivatives. J Enzyme Inhib Med Chem 2019; 34:1193-1198. [PMID: 31237157 PMCID: PMC6598482 DOI: 10.1080/14756366.2019.1630616] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A series of histamine bis-Schiff bases and bis-spinaceamine derivatives were synthesised and investigated as activators of four human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic hCA I, II and VII, and the membrane-associated hCA IV. All isoforms were effectively activated by the new derivatives, with activation constants in the range of 4.73–10.2 µM for hCA I, 6.15–42.1 µM for hCA II, 2.37–32.7 µM for hCA IV and 32 nM–18.7 µM for hCA VII, respectively. The nature of the spacer between the two histamine/spinaceamine units of these molecules was the main contributor to the diverse activating efficacy, with a very different fine tuning for the diverse isoforms. As CA activators recently emerged as interesting agents for enhancing cognition, in the management of CA deficiencies, or for therapy memory and artificial tissues engineering, our compounds may be considered as candidates for such applications.
Collapse
Affiliation(s)
- Suleyman Akocak
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Adiyaman University , Adiyaman , Turkey
| | - Nabih Lolak
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Adiyaman University , Adiyaman , Turkey
| | - Silvia Bua
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Alessio Nocentini
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Claudiu T Supuran
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| |
Collapse
|
12
|
Rogato A, Del Prete S, Nocentini A, Carginale V, Supuran CT, Capasso C. Phaeodactylum tricornutum as a model organism for testing the membrane penetrability of sulphonamide carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2019; 34:510-518. [PMID: 30688123 PMCID: PMC6352938 DOI: 10.1080/14756366.2018.1559840] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Carbonic anhydrases (CAs) are ubiquitous metalloenzymes, which started to be investigated in detail in pathogenic, as well as non-pathogenic species since their pivotal role is to accelerate the physiological CO2 hydration/dehydration reaction significantly. Here, we propose the marine unicellular diatom Phaeodactylum tricornutum as a model organism for testing the membrane penetrability of CA inhibitors (CAIs). Seven inhibitors belonging to the sulphonamide type and possessing a diverse scaffold have been explored for their in vitro inhibition of the whole diatom CAs and the in vivo inhibitory effect on the growth of P. tricornutum. Interesting, inhibition of growth was observed, in vivo, demonstrating that this diatom is a good model for testing the cell wall penetrability of this class of pharmacological agents. Considering that many pathogens are difficult and dangerous to grow in the laboratory, the growth inhibition of P. tricornutum with different such CAIs may be subsequently used to design inhibition studies of CAs from pathogenic organisms.
Collapse
Affiliation(s)
- Alessandra Rogato
- a Institute of Bioscience and BioResources, CNR , Naples , Italy.,b Department of Integrative Marine Ecology , Stazione Zoologica Anton Dohrn , Naples , Italy
| | - Sonia Del Prete
- a Institute of Bioscience and BioResources, CNR , Naples , Italy
| | - Alessio Nocentini
- c Neurofarba Department, University of Florence, Polo Scientifico , Sesto Fiorentino , Florence , Italy
| | | | - Claudiu T Supuran
- c Neurofarba Department, University of Florence, Polo Scientifico , Sesto Fiorentino , Florence , Italy
| | - Clemente Capasso
- a Institute of Bioscience and BioResources, CNR , Naples , Italy
| |
Collapse
|
13
|
Stefanucci A, Angeli A, Dimmito MP, Luisi G, Del Prete S, Capasso C, Donald WA, Mollica A, Supuran CT. Activation of β- and γ-carbonic anhydrases from pathogenic bacteria with tripeptides. J Enzyme Inhib Med Chem 2018; 33:945-950. [PMID: 29747543 PMCID: PMC6009936 DOI: 10.1080/14756366.2018.1468530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Six tripeptides incorporating acidic amino acid residues were prepared for investigation as activators of β- and γ-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacteria Vibrio cholerae, Mycobacterium tuberculosis, and Burkholderia pseudomallei. The primary amino acid residues that are involved in the catalytic mechanisms of these CA classes are poorly understood, although glutamic acid residues near the active site appear to be involved. The tripeptides that contain Glu or Asp residues can effectively activate VchCAβ and VchCAγ (enzymes from V. cholerae), Rv3273 CA (mtCA3, a β-CA from M. tuberculosis) and BpsCAγ (γ-CA from B. pseudomallei) at 0.21-18.1 µM levels. The position of the acidic residues in the peptide sequences can significantly affect bioactivity. For three of the enzymes, tripeptides were identified that are more effective activators than both l-Glu and l-Asp. The tripeptides are also relatively selective because they do not activate prototypical α-CAs (human carbonic anhydrases I and II). Because the role of CA activators in the pathogenicity and life cycles of these infectious bacteria are poorly understood, this study provides new molecular probes to explore such processes.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Department of Pharmacy, “Gabriele d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Andrea Angeli
- Department of Neurofarba, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Florence, Italy
| | - Marilisa Pia Dimmito
- Department of Pharmacy, “Gabriele d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Grazia Luisi
- Department of Pharmacy, “Gabriele d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Sonia Del Prete
- Department of Neurofarba, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Florence, Italy
- Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy
| | | | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Adriano Mollica
- Department of Pharmacy, “Gabriele d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Claudiu T. Supuran
- Department of Neurofarba, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Florence, Italy
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
The zinc - but not cadmium - containing ζ-carbonic from the diatom Thalassiosira weissflogii is potently activated by amines and amino acids. Bioorg Chem 2018; 80:261-265. [PMID: 29966872 DOI: 10.1016/j.bioorg.2018.05.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022]
Abstract
The activation of the ζ-class carbonic anhydrase (CAs, EC 4.2.1.1) from the diatom Thalassiosira weissflogii (TweCAζ) incorporating both Zn(II) and Cd(II) at the active site, was investigated for the first time, using a panel of natural and non-natural amino acids and amines. CdTweCAζ was completely insensitive to activation, whereas all these compounds were effective activators of the zinc-containing enzyme ZnTweCAζ, with activation constants ranging between 92 nM and 37.9 µM. The most effective ZnTweCAζ activators were l-adrenaline, 1-(2-aminoethyl)-piperazine and 4-(2-aminoethyl)-morpholine, with KAs in the range of 92-150 nM. l-His, l- and d-Tyr and some pyridyl-alkylamines, had KAs in the range of 0.62-0.98 µM, whereas l-/d-DOPA, d-Trp, histamine, serotonin and l-Asn were the next most efficient activators, with KAs in the range of 1.27-3.19 µM. The least effective activators were l-Phe (KA of 15.4 µM) and l-Asp (KA of 37.9 µM). This in vitro study may be useful for a more complete understanding of the activation processes of various CA enzyme families, of which the ζ-class was scarcely investigated.
Collapse
|
15
|
Angeli A, Alasmary FAS, Del Prete S, Osman SM, AlOthman Z, Donald WA, Capasso C, Supuran CT. The first activation study of a δ-carbonic anhydrase: TweCAδ from the diatom Thalassiosira weissflogii is effectively activated by amines and amino acids. J Enzyme Inhib Med Chem 2018. [PMID: 29536765 PMCID: PMC6009927 DOI: 10.1080/14756366.2018.1447570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The activation of the δ-class carbonic anhydrase (CAs, EC 4.2.1.1) from the diatom Thalassiosira weissflogii (TweCAδ) was investigated using a panel of natural and non-natural amino acids and amines. The most effective activator of TweCAδ was d-Tyr (KA of 51 nM), whereas several other amino acids and amines, such as L-His, L-Trp, d-Trp, dopamine and serotonin were submicromolar activators (KAs from 0.51 to 0.93 µM). The most ineffective activator of TweCAδ was 4-amino-l-Phe (18.9 µM), whereas d-His, l-/d-Phe, l-/d-DOPA, l-Tyr, histamine, some pyridyl-alkylamines, l-adrenaline and aminoethyl-piperazine/morpholine were moderately potent activators (KAs from 1.34 to 8.16 µM). For any δ-CA, there are no data on the crystal structure, homology modelling and the amino acid residues that are responsible for proton transfer to the active site are currently unknown making it challenging to provide a detailed rational for these findings. However, these data provide further evidence that this class of underexplored CA deserves more attention.
Collapse
Affiliation(s)
- Andrea Angeli
- a Department of Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy
| | - Fatmah A S Alasmary
- b Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Sonia Del Prete
- a Department of Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy.,c Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Sameh M Osman
- b Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Zeid AlOthman
- b Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - William A Donald
- d School of Chemistry , University of New South Wales , Sydney , Australia
| | | | - Claudiu T Supuran
- a Department of Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy.,d School of Chemistry , University of New South Wales , Sydney , Australia
| |
Collapse
|