1
|
Adekunle YA, Samuel BB, Oluyemi WM, Adewumi AT, Mosebi S, Nahar L, Fatokun AA, Sarker SD. Oleanolic acid purified from the stem bark of Olax subscorpioidea Oliv. inhibits the function and catalysis of human 17 β-hydroxysteroid dehydrogenase 1. J Biomol Struct Dyn 2024:1-14. [PMID: 39485270 DOI: 10.1080/07391102.2024.2423173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/04/2024] [Indexed: 11/03/2024]
Abstract
Cancer is a leading cause of global death. Medicinal plants have gained increasing attention in cancer drug discovery. In this study, the stem bark extract of Olax subscorpioidea, which is used in ethnomedicine to treat cancer, was subjected to phytochemical investigation leading to the isolation of oleanolic acid (OA). The structure was elucidated by 1-dimensional and 2-dimensional nuclear magnetic resonance spectroscopic (NMR) data, and by comparing its data with previously reported data. Molecular docking was used to investigate the interactions of OA with nine selected cancer-related protein targets. OA docked well with human 17β-hydroxysteroid dehydrogenase type-1 (17βHSD1), caspase-3, and epidermal growth factor receptor tyrosine kinase (binding affinities: -9.8, -9.3, and -9.1 kcal/mol, respectively). OA is a triterpenoid compound with structural similarity to steroids. This similarity with the substrates of 17βHSD1 gives the inhibitor candidate an excellent opportunity to bind to 17βHSD1. The structural and functional dynamics of OA-17βHSD1 were investigated by molecular dynamics simulations at 240 ns. Molecular mechanics/Poisson-Boltzmann surface area (MMPBSA) studies showed that OA had a binding free energy that is comparable with that of vincristine (-52.76, and -63.56 kcal/mol, respectively). The average C-α root mean square of deviation (RMSD) value of OA (1.69 Å) compared with the unbound protein (2.01 Å) indicated its high stability at the protein's active site. The binding energy and stability at the active site of 17βHSD1 recorded in this study indicate that OA exhibited profound inhibitory potential. OA could be a good scaffold for developing new anti-breast cancer drugs.
Collapse
Affiliation(s)
- Yemi A Adekunle
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Babatunde B Samuel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Wande M Oluyemi
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Adeniyi T Adewumi
- Department of Life and Consumer Sciences, University of South Africa, Florida, South Africa
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, University of South Africa, Florida, South Africa
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Amos A Fatokun
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
2
|
Sallomy C, Awolade P, Rahnasto-Rilla M, Hämäläinen M, Nousiainen LP, Johansson NG, Hiltunen S, Turhanen P, Moilanen E, Lahtela-Kakkonen M, Timonen JM. TRPA1 Inhibition Effects by 3-Phenylcoumarin Derivatives. ACS Med Chem Lett 2024; 15:1221-1226. [PMID: 39140042 PMCID: PMC11318103 DOI: 10.1021/acsmedchemlett.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 08/15/2024] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) protein plays an important role in the inflammatory response, and it has been associated with different pain conditions and pain-related diseases, making TRPA1 a valid target for painkillers. In this study, we identified potential TRPA1 inhibitors and located their binding sites utilizing computer-aided drug design (CADD) techniques. The designed 3-phenylcoumarin-based TRPA1 inhibitors were successfully synthesized using a microwave assisted synthetic strategy. 3-(3-Bromophenyl)-7-acetoxycoumarin (5), 7-hydroxy-3-(3-hydroxyphenyl)coumarin (12) and 3-(3-hydroxyphenyl)coumarin (23) all showed inhibitory activity toward TRPA1 in vitro. Compound 5 also decreased the size and formation of breast cancer cells. Hence, targeting TRPA1 may represent a promising alternative for the treatment of pain and inflammation.
Collapse
Affiliation(s)
- Carita Sallomy
- School
of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
| | - Paul Awolade
- School
of Chemistry and Physics, University of
KwaZulu-Natal, P/Bag X54001, Westville, Durban 4041, South Africa
| | | | - Mari Hämäläinen
- Faculty
of Medicine and Health Technology, Tampere
University and Tampere University Hospital, Tampere 33520, Finland
| | - Liisa P. Nousiainen
- Institute
of Biomedicine, Faculty of Health Sciences,
University of Eastern Finland, Kuopio 70211, Finland
| | - Niklas G. Johansson
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Sanna Hiltunen
- School
of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
| | - Petri Turhanen
- School
of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
| | - Eeva Moilanen
- Faculty
of Medicine and Health Technology, Tampere
University and Tampere University Hospital, Tampere 33520, Finland
| | | | - Juri M. Timonen
- School
of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
3
|
Kok AM, Juvonen R, Pasanen M, Mandiwana V, Kalombo ML, Ray SS, Rikhotso-Mbungela R, Lall N. Evaluation of Lippia scaberrima Sond. and Aspalathus linearis (Burm.f.) R. Dahlgren extracts on human CYP enzymes and gold nanoparticle synthesis: implications for drug metabolism and cytotoxicity. BMC Complement Med Ther 2024; 24:152. [PMID: 38580936 PMCID: PMC10996199 DOI: 10.1186/s12906-024-04439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/15/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Metabolism is an important component of the kinetic characteristics of herbal constituents, and it often determines the internal dose and concentration of these effective constituents at the target site. The metabolic profile of plant extracts and pure compounds need to be determined for any possible herb-drug metabolic interactions that might occur. METHODS Various concentrations of the essential oil of Lippia scaberrima, the ethanolic extract of Lippia scaberrima alone and their combinations with fermented and unfermented Aspalathus linearis extract were used to determine the inhibitory potential on placental, microsomal and recombinant human hepatic Cytochrome P450 enzymes. Furthermore, the study investigated the synthesis and characterization of gold nanoparticles from the ethanolic extract of Lippia scaberrima as a lead sample. Confirmation and characterization of the synthesized gold nanoparticles were conducted through various methods. Additionally, the cytotoxic properties of the ethanolic extract of Lippia scaberrima were compared with the gold nanoparticles synthesized from Lippia scaberrima using gum arabic as a capping agent. RESULTS All the samples showed varying levels of CYP inhibition. The most potent inhibition took place for CYP2C19 and CYP1B1 with 50% inhibitory concentration (IC50) values of less than 0.05 µg/L for the essential oil tested and IC50-values between 0.05 µg/L-1 µg/L for all the other combinations and extracts tested, respectively. For both CYP1A2 and CYP2D6 the IC50-values for the essential oil, the extracts and combinations were found in the range of 1 - 10 µg/L. The majority of the IC50 values found were higher than 10 µg/L and, therefore, were found to have no inhibition against the CYP enzymes tested. CONCLUSION Therefore, the essential oil of Lippia scaberrima, the ethanolic extract of Lippia scaberrima alone and their combinations with Aspalathus linearis do not possess any clinically significant CYP interaction potential and may be further investigated for their adjuvant potential for use in the tuberculosis treatment regimen. Furthermore, it was shown that the cytotoxic potential of the Lippia scaberrima gold nanoparticles was reduced by twofold when compared to the ethanolic extract of Lippia scaberrima.
Collapse
Affiliation(s)
- Anna-Mari Kok
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa
- Research Fellow, South African International Maritime Institute (SAIMI), Nelson Mandela University, Gqeberha, 6019, South Africa
| | - Risto Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Markku Pasanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Vusani Mandiwana
- Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre. Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Michel Lonji Kalombo
- Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre. Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0002, South Africa
| | - Rirhandzu Rikhotso-Mbungela
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0002, South Africa
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa.
- School of Natural Resources, University of Missouri, Columbia, MO, USA.
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India.
- Senior Research Fellow, Bio-Tech R&D Institute, University of the West Indies, Kingston, Jamaica.
| |
Collapse
|
4
|
Rižner TL, Romano A. Targeting the formation of estrogens for treatment of hormone dependent diseases-current status. Front Pharmacol 2023; 14:1155558. [PMID: 37188267 PMCID: PMC10175629 DOI: 10.3389/fphar.2023.1155558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Local formation and action of estrogens have crucial roles in hormone dependent cancers and benign diseases like endometriosis. Drugs that are currently used for the treatment of these diseases act at the receptor and at the pre-receptor levels, targeting the local formation of estrogens. Since 1980s the local formation of estrogens has been targeted by inhibitors of aromatase that catalyses their formation from androgens. Steroidal and non-steroidal inhibitors have successfully been used to treat postmenopausal breast cancer and have also been evaluated in clinical studies in patients with endometrial, ovarian cancers and endometriosis. Over the past decade also inhibitors of sulfatase that catalyses the hydrolysis of inactive estrogen-sulfates entered clinical trials for treatment of breast, endometrial cancers and endometriosis, with clinical effects observed primarily in breast cancer. More recently, inhibitors of 17beta-hydroxysteroid dehydrogenase 1, an enzyme responsible for formation of the most potent estrogen, estradiol, have shown promising results in preclinical studies and have already entered clinical evaluation for endometriosis. This review aims to provide an overview of the current status of the use of hormonal drugs for the major hormone-dependent diseases. Further, it aims to explain the mechanisms behind the -sometimes- observed weak effects and low therapeutic efficacy of these drugs and the possibilities and the advantages of combined treatments targeting several enzymes in the local estrogen formation, or drugs acting with different therapeutic mechanisms.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Laboratory for Molecular Basis of Hormone-Dependent Diseases and Biomarkers, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrea Romano
- GROW Department of Gynaecology, Faculty of Health, Medicine and Life Sciences (FHML)/GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
6
|
Koponen M, Rysä J, Ruotsalainen AK, Kärkkäinen O, Juvonen RO. Western Diet Decreases Hepatic Drug Metabolism in Male LDLr−/−ApoB100/100 Mice. J Nutr Metab 2023; 2023:5599789. [PMID: 37034183 PMCID: PMC10081903 DOI: 10.1155/2023/5599789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 04/03/2023] Open
Abstract
Consumption of a Western diet is an important risk factor for several chronic diseases including nonalcoholic fatty liver disease (NAFLD), but its effect on the xenobiotic metabolizing enzyme activities in the liver has been studied incompletely. In this study, male LDLr−/−ApoB100/100 mice were fed with Western diet (WD) or a standard diet for five months to reveal the effects on drug metabolism such as cytochrome P450 (CYP) oxidation and conjugation activities in the liver. Hepatic steatosis, lobular inflammation, and early fibrosis were observed in WD fed mice, but not in chow diet control mice. When compared to the controls, the WD-fed mice had significantly decreased protein-normalized CYP probe activities of 7-ethoxyresorufinO-deethylation (52%), coumarin 7-hydroxylation (26%), 7-hydroxylation of 3-(3-fluoro-4-hydroxyphenyl)-6-methoxycoumarin (70%), 7-hydroxylation of 3-(4-trifluoromethoxyphenyl)-6-methoxycoumarin (78%), 7-hydroxylation of 3-(3-methoxyphenyl)coumarin (81%), and pentoxyresorufin O-depentylation (66%). Increased activity was seen significantly in sulfonation of 3-(4-methylphenyl)-7-hydroxycoumarin (289%) and cytosol catechol O-methyltranferase (COMT, 148%) in the WD group when compared to the controls. In conclusion, the WD-induced steatosis in male LDLr−/−ApoB100/100 mice was associated with decreased CYP oxidation reactions but had no clear effects on conjugation reactions of glucuronidation, sulfonation, and cytosolic catechol O-methylation. Consequently, the WD may decrease the metabolic elimination of drugs compared to healthier low-fat diets.
Collapse
|
7
|
He L, Chen C, Duan S, Li Y, Li C, Yao X, Gonzalez FJ, Qin Z, Yao Z. Inhibition of estrogen sulfation by Xian-Ling-Gu-Bao capsule. J Steroid Biochem Mol Biol 2023; 225:106182. [PMID: 36152789 DOI: 10.1016/j.jsbmb.2022.106182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 02/01/2023]
Abstract
Xian-Ling-Gu-Bao capsule (XLGB) is a widely prescribed traditional Chinese medicine used for the treatment of osteoporosis. However, it significantly elevates levels of serum estrogens. Here we aimed to assess the dominant contributors of sulfotransferase (SULT) enzymes to the sulfation of estrogens and identify the effective inhibitors of this pathway in XLGB. First, estrone, 17β-estradiol, and estriol underwent sulfation in human liver S9 extracts. Phenotyping reactions and enzyme kinetics assays revealed that SULT1A1, 1A2, 1A3, 1C4, 1E1, and 2A1 all participated in estrogen sulfation, with SULT1E1 and 1A1 as the most important contributors. The incubation system for these two active enzymes were optimized with Tris-HCl buffer, DL-Dithiothreitol (DTT), MgCl2, adenosine 3'-phosphate 5'-phosphosulfate (PAPS), protein concentration, and incubation time. Then, 29 compounds in XLGB were selected to investigate their inhibitory effects and mechanisms against SULT1E1 and 1A1 through kinetic modelling. Moreover, in silico molecular docking was used to validate the obtained results. And finally, the prenylated flavonoids (isobavachin, neobavaisoflavone, etc.) from Psoralea corylifolia L., prenylated flavanols (icariside II) from Epimedium brevicornu Maxim., tanshinones (dihydrotanshinone, tanshinone II-A,) from Salvia miltiorrhiza Bge., and others (corylifol A, corylin) were identified as the most potent inhibitors of estrogen sulfation. Taken together, these findings provide insights into the understanding regioselectivity of estrogen sulfation and identify the effective components of XLGB responsible for the promotion of estrogen levels.
Collapse
Affiliation(s)
- Liangliang He
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chanjuan Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shuyi Duan
- Department of Pharmacology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chuan Li
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinsheng Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of PR China, Jinan University, Guangzhou 510632, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zifei Qin
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Zhihong Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, China; State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development Ministry of PR China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
8
|
Zhang Q, Miao YH, Liu T, Yun YL, Sun XY, Yang T, Sun J. Natural source, bioactivity and synthesis of 3-Arylcoumarin derivatives. J Enzyme Inhib Med Chem 2022; 37:1023-1042. [PMID: 35438580 PMCID: PMC9037183 DOI: 10.1080/14756366.2022.2058499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
3-arylcoumarins with different pharmacological properties widely exist in a variety of natural plants. The extensive research on 3-arylcoumarins was attributed to its therapeutic and relatively easy isolation. Therefore, 3-arylcoumarins can be recognised as useful structures for the design of novel compounds with potential pharmacological interest, particularly in the fields of anti-inflammatory, anti-cancer, antioxidant, Monoamine oxidase (MAO) enzyme inhibition, etc. The current review highlights the biological activities, design, and chemical synthetic methods of 3-arylcoumarins derivatives as well as their important natural product sources.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yu-Hang Miao
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Teng Liu
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yin-Ling Yun
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiao-Ya Sun
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tao Yang
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Jie Sun
- Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
9
|
Šadibolová M, Juvonen RO, Auriola S, Boušová I. In vitro metabolism of helenalin and its inhibitory effect on human cytochrome P450 activity. Arch Toxicol 2022; 96:793-808. [PMID: 34989853 DOI: 10.1007/s00204-021-03218-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
Sesquiterpene lactone helenalin is used as an antiphlogistic in European and Chinese folk medicine. The pharmacological activities of helenalin have been extensively investigated, yet insufficient information exists about its metabolic properties. The objectives of the present study were (1) to investigate the in vitro NADPH-dependent metabolism of helenalin (5 and 100 µM) using human and rat liver microsomes and liver cytosol, (2) to elucidate the role of human cytochrome P450 (CYP) enzymes in its oxidative metabolism, and (3) to study the inhibition of human CYPs by helenalin. Five oxidative metabolites were detected in NADPH-dependent human and rat liver microsomal incubations, while two reduced metabolites were detected only in NADPH-dependent human microsomal and cytosolic incubations. In human liver microsomes, the main oxidative metabolite was 14-hydroxyhelenalin, and in rat liver microsomes 9-hydroxyhelenalin. The overall oxidation of helenalin was several times more efficient in rat than in human liver microsomes. In humans, CYP3A4 and CYP3A5 followed by CYP2B6 were the main enzymes responsible for the hepatic metabolism of helenalin. The extrahepatic CYP2A13 oxidized helenalin most efficiently among CYP enzymes, possessing the Km value of 0.6 µM. Helenalin inhibited CYP3A4 (IC50 = 18.7 µM) and CYP3A5 (IC50 = 62.6 µM), and acted as a mechanism-based inhibitor of CYP2A13 (IC50 = 1.1 µM, KI = 6.7 µM, and kinact = 0.58 ln(%)/min). It may be concluded that the metabolism of helenalin differs between rats and humans, in the latter its oxidation is catalyzed by hepatic CYP2B6, CYP3A4, CYP3A5, and CYP3A7, and extrahepatic CYP2A13.
Collapse
Affiliation(s)
- Michaela Šadibolová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Risto O Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
10
|
Matos MJ, Uriarte E, Santana L. 3-Phenylcoumarins as a Privileged Scaffold in Medicinal Chemistry: The Landmarks of the Past Decade. Molecules 2021; 26:6755. [PMID: 34771164 PMCID: PMC8587835 DOI: 10.3390/molecules26216755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/27/2022] Open
Abstract
3-Phenylcoumarins are a family of heterocyclic molecules that are widely used in both organic and medicinal chemistry. In this overview, research on this scaffold, since 2010, is included and discussed, focusing on aspects related to its natural origin, synthetic procedures and pharmacological applications. This review paper is based on the most relevant literature related to the role of 3-phenylcoumarins in the design of new drug candidates. The references presented in this review have been collected from multiple electronic databases, including SciFinder, Pubmed and Mendeley.
Collapse
Affiliation(s)
- Maria J Matos
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
11
|
Coumarins as Tool Compounds to Aid the Discovery of Selective Function Modulators of Steroid Hormone Binding Proteins. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26175142. [PMID: 34500576 PMCID: PMC8433903 DOI: 10.3390/molecules26175142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022]
Abstract
Steroid hormones play an essential role in a wide variety of actions in the body, such as in metabolism, inflammation, initiating and maintaining sexual differentiation and reproduction, immune functions, and stress response. Androgen, aromatase, and sulfatase pathway enzymes and nuclear receptors are responsible for steroid biosynthesis and sensing steroid hormones. Changes in steroid homeostasis are associated with many endocrine diseases. Thus, the discovery and development of novel drug candidates require a detailed understanding of the small molecule structure–activity relationship with enzymes and receptors participating in steroid hormone synthesis, signaling, and metabolism. Here, we show that simple coumarin derivatives can be employed to build cost-efficiently a set of molecules that derive essential features that enable easy discovery of selective and high-affinity molecules to target proteins. In addition, these compounds are also potent tool molecules to study the metabolism of any small molecule.
Collapse
|
12
|
de Araújo RSA, da Silva-Junior EF, de Aquino TM, Scotti MT, Ishiki HM, Scotti L, Mendonça-Junior FJB. Computer-Aided Drug Design Applied to Secondary Metabolites as Anticancer Agents. Curr Top Med Chem 2021; 20:1677-1703. [PMID: 32515312 DOI: 10.2174/1568026620666200607191838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/06/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022]
Abstract
Computer-Aided Drug Design (CADD) techniques have garnered a great deal of attention in academia and industry because of their great versatility, low costs, possibilities of cost reduction in in vitro screening and in the development of synthetic steps; these techniques are compared with highthroughput screening, in particular for candidate drugs. The secondary metabolism of plants and other organisms provide substantial amounts of new chemical structures, many of which have numerous biological and pharmacological properties for virtually every existing disease, including cancer. In oncology, compounds such as vimblastine, vincristine, taxol, podophyllotoxin, captothecin and cytarabine are examples of how important natural products enhance the cancer-fighting therapeutic arsenal. In this context, this review presents an update of Ligand-Based Drug Design and Structure-Based Drug Design techniques applied to flavonoids, alkaloids and coumarins in the search of new compounds or fragments that can be used in oncology. A systematical search using various databases was performed. The search was limited to articles published in the last 10 years. The great diversity of chemical structures (coumarin, flavonoids and alkaloids) with cancer properties, associated with infinite synthetic possibilities for obtaining analogous compounds, creates a huge chemical environment with potential to be explored, and creates a major difficulty, for screening studies to select compounds with more promising activity for a selected target. CADD techniques appear to be the least expensive and most efficient alternatives to perform virtual screening studies, aiming to selected compounds with better activity profiles and better "drugability".
Collapse
Affiliation(s)
| | | | - Thiago Mendonça de Aquino
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Hamilton M Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente- SP, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | | |
Collapse
|
13
|
Juvonen RO, Ahinko M, Jokinen EM, Huuskonen J, Raunio H, Pentikäinen OT. Substrate Selectivity of Coumarin Derivatives by Human CYP1 Enzymes: In Vitro Enzyme Kinetics and In Silico Modeling. ACS OMEGA 2021; 6:11286-11296. [PMID: 34056284 PMCID: PMC8153946 DOI: 10.1021/acsomega.1c00123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/08/2021] [Indexed: 05/05/2023]
Abstract
Of the three enzymes in the human cytochrome P450 family 1, CYP1A2 is an important enzyme mediating metabolism of xenobiotics including drugs in the liver, while CYP1A1 and CYP1B1 are expressed in extrahepatic tissues. Currently used CYP substrates, such as 7-ethoxycoumarin and 7-ethoxyresorufin, are oxidized by all individual CYP1 forms. The main aim of this study was to find profluorescent coumarin substrates that are more selective for the individual CYP1 forms. Eleven 3-phenylcoumarin derivatives were synthetized, their enzyme kinetic parameters were determined, and their interactions in the active sites of CYP1 enzymes were analyzed by docking and molecular dynamic simulations. All coumarin derivatives and 7-ethoxyresorufin and 7-pentoxyresorufin were oxidized by at least one CYP1 enzyme. 3-(3-Methoxyphenyl)-6-methoxycoumarin (19) was 7-O-demethylated by similar high efficiency [21-30 ML/(min·mol CYP)] by all CYP1 forms and displayed similar binding in the enzyme active sites. 3-(3-Fluoro-4-acetoxyphenyl)coumarin (14) was selectively 7-O-demethylated by CYP1A1, but with low efficiency [0.16 ML/(min mol)]. This was explained by better orientation and stronger H-bond interactions in the active site of CYP1A1 than that of CYP1A2 and CYP1B1. 3-(4-Acetoxyphenyl)-6-chlorocoumarin (20) was 7-O-demethylated most efficiently by CYP1B1 [53 ML/(min·mol CYP)], followed by CYP1A1 [16 ML/(min·mol CYP)] and CYP1A2 [0.6 ML/(min·mol CYP)]. Variations in stabilities of complexes between 20 and the individual CYP enzymes explained these differences. Compounds 14, 19, and 20 are candidates to replace traditional substrates in measuring activity of human CYP1 enzymes.
Collapse
Affiliation(s)
- Risto O. Juvonen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Box 1627, 70211 Kuopio, Finland
| | - Mira Ahinko
- Department
of Biological and Environmental Science & Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland
| | - Elmeri M. Jokinen
- Institute
of Biomedicine, Faculty of Medicine, Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Juhani Huuskonen
- Department
of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland
| | - Hannu Raunio
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Box 1627, 70211 Kuopio, Finland
| | - Olli T. Pentikäinen
- Department
of Biological and Environmental Science & Nanoscience Center, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland
- Institute
of Biomedicine, Faculty of Medicine, Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| |
Collapse
|
14
|
Juvonen RO, Jokinen EM, Huuskonen J, Kärkkäinen O, Raunio H, Pentikäinen OT. Molecular docking and oxidation kinetics of 3-phenyl coumarin derivatives by human CYP2A13. Xenobiotica 2021; 51:1207-1216. [PMID: 33703988 DOI: 10.1080/00498254.2021.1898700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CYP2A13 enzyme is expressed in human extrahepatic tissues, while CYP2A6 is a hepatic enzyme. Reactions catalyzed by CYP2A13 activate tobacco-specific nitrosamines and some other toxic xenobiotics in lungs.To compare oxidation characteristics and substrate-enzyme active site interactions in CYP2A13 vs CYP2A6, we evaluated CYP2A13 mediated oxidation characteristics of 23 coumarin derivatives and modelled their interactions at the enzyme active site.CYP2A13 did not oxidize six coumarin derivatives to corresponding fluorescent 7-hydroxycoumarins. The Km-values of the other coumarins varied 0.85-97 µM, Vmax-values of the oxidation reaction varied 0.25-60 min-1, and intrinsic clearance varied 26-6190 kL/min*mol CYP2A13). Km of 6-chloro-3-(3-hydroxyphenyl)-coumarin was 0.85 (0.55-1.15 95% confidence limit) µM and Vmax 0.25 (0.23-0.26) min-1, whereas Km of 6-hydroxy-3-(3-hydroxyphenyl)-coumarin was 10.9 (9.9-11.8) µM and Vmax 60 (58-63) min-1. Docking analyses demonstrated that 6-chloro or 6-methoxy and 3-(3-hydroxyphenyl) or 3-(4-trifluoromethylphenyl) substituents of coumarin increased affinity to CYP2A13, whereas 3-triazole or 3-(3-acetate phenyl) or 3-(4-acetate phenyl) substituents decreased it.The active site of CYP2A13 accepts more diversified types of coumarin substrates than the hepatic CYP2A6 enzyme. New sensitive and convenient profluorescent CYP2A13 substrates were identified, such as 6-chloro-3-(3-hydroxyphenyl)-coumarin having high affinity and 6-hydroxy-3-(3-hydroxyphenyl)-coumarin with high intrinsic clearance.
Collapse
Affiliation(s)
- Risto O Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Box 1627, 70211 Kuopio, Finland
| | - Elmeri M Jokinen
- Institute of Biomedicine, Faculty of Medicine, Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Juhani Huuskonen
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, FI-40014, Finland
| | - Olli Kärkkäinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Box 1627, 70211 Kuopio, Finland
| | - Hannu Raunio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Box 1627, 70211 Kuopio, Finland
| | - Olli T Pentikäinen
- Institute of Biomedicine, Faculty of Medicine, Integrative Physiology and Pharmacology, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland.,University of Jyvaskyla, Department of Chemistry, P.O. Box 35, FI-40014, Finland
| |
Collapse
|
15
|
Raunio H, Pentikäinen O, Juvonen RO. Coumarin-Based Profluorescent and Fluorescent Substrates for Determining Xenobiotic-Metabolizing Enzyme Activities In Vitro. Int J Mol Sci 2020; 21:ijms21134708. [PMID: 32630278 PMCID: PMC7369699 DOI: 10.3390/ijms21134708] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/03/2023] Open
Abstract
Activities of xenobiotic-metabolizing enzymes have been measured with various in vitro and in vivo methods, such as spectrophotometric, fluorometric, mass spectrometric, and radioactivity-based techniques. In fluorescence-based assays, the reaction produces a fluorescent product from a nonfluorescent substrate or vice versa. Fluorescence-based enzyme assays are usually highly sensitive and specific, allowing measurements on small specimens of tissues with low enzyme activities. Fluorescence assays are also amenable to miniaturization of the reaction mixtures and can thus be done in high throughput. 7-Hydroxycoumarin and its derivatives are widely used as fluorophores due to their desirable photophysical properties. They possess a large π-π conjugated system with electron-rich and charge transfer properties. This conjugated structure leads to applications of 7-hydroxycoumarins as fluorescent sensors for biological activities. We describe in this review historical highlights and current use of coumarins and their derivatives in evaluating activities of the major types of xenobiotic-metabolizing enzyme systems. Traditionally, coumarin substrates have been used to measure oxidative activities of cytochrome P450 (CYP) enzymes. For this purpose, profluorescent coumarins are very sensitive, but generally lack selectivity for individual CYP forms. With the aid of molecular modeling, we have recently described several new coumarin-based substrates for measuring activities of CYP and conjugating enzymes with improved selectivity.
Collapse
Affiliation(s)
- Hannu Raunio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70600 Kuopio, Finland;
- Correspondence:
| | - Olli Pentikäinen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland;
| | - Risto O. Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70600 Kuopio, Finland;
| |
Collapse
|
16
|
Juvonen RO, Jokinen EM, Javaid A, Lehtonen M, Raunio H, Pentikäinen OT. Inhibition of human CYP1 enzymes by a classical inhibitor α-naphthoflavone and a novel inhibitor N-(3, 5-dichlorophenyl)cyclopropanecarboxamide: An in vitro and in silico study. Chem Biol Drug Des 2020; 95:520-533. [PMID: 32060993 DOI: 10.1111/cbdd.13669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 01/01/2023]
Abstract
Enzymes in the cytochrome P450 family 1 (CYP1) catalyze metabolic activation of procarcinogens and deactivation of certain anticancer drugs. Inhibition of these enzymes is a potential approach for cancer chemoprevention and treatment of CYP1-mediated drug resistance. We characterized inhibition of human CYP1A1, CYP1A2, and CYP1B1 enzymes by the novel inhibitor N-(3,5-dichlorophenyl)cyclopropanecarboxamide (DCPCC) and α-naphthoflavone (ANF). Depending on substrate, IC50 values of DCPCC for CYP1A1 or CYP1B1 were 10-95 times higher than for CYP1A2. IC50 of DCPCC for CYP1A2 was 100-fold lower than for enzymes in CYP2 and CYP3 families. DCPCC IC50 values were 10-680 times higher than the ones of ANF. DCPCC was a mixed-type inhibitor of CYP1A2. ANF was a competitive tight-binding inhibitor of CYP1A1, CYP1A2, and CYP1B1. CYP1A1 oxidized DCPCC more rapidly than CYP1A2 or CYP1B1 to the same metabolite. Molecular dynamics simulations and binding free energy calculations explained the differences of binding of DCPCC and ANF to the active sites of all three CYP1 enzymes. We conclude that DCPCC is a more selective inhibitor for CYP1A2 than ANF. DCPCC is a candidate structure to modulate CYP1A2-mediated metabolism of procarcinogens and anticancer drugs.
Collapse
Affiliation(s)
- Risto Olavi Juvonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Elmeri Matias Jokinen
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Adeel Javaid
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Hannu Raunio
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Olli Taneli Pentikäinen
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
17
|
Guo WY, Zeng SMZ, Deora GS, Li QS, Ruan BF. Estrogen Receptor α (ERα)-targeting Compounds and Derivatives: Recent Advances in Structural Modification and Bioactivity. Curr Top Med Chem 2019; 19:1318-1337. [PMID: 31215379 DOI: 10.2174/1568026619666190619142504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common cancer suffered by female, and the second highest cause of cancer-related death among women worldwide. At present, hormone therapy is still the main treatment route and can be divided into three main categories: selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs). However, breast cancer is difficult to cure even after several rounds of anti-estrogen therapy and most drugs have serious side-effects. Here, we review the literature published over the past five years regarding the isolation and synthesis of analogs and their derivatives.
Collapse
Affiliation(s)
- Wei-Yun Guo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shang-Ming-Zhu Zeng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Girdhar Singh Deora
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Qing-Shan Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Ban-Feng Ruan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
18
|
A Perspective: Active Role of Lipids in Neurotransmitter Dynamics. Mol Neurobiol 2019; 57:910-925. [PMID: 31595461 PMCID: PMC7031182 DOI: 10.1007/s12035-019-01775-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/01/2019] [Indexed: 12/30/2022]
Abstract
Synaptic neurotransmission is generally considered as a function of membrane-embedded receptors and ion channels in response to the neurotransmitter (NT) release and binding. This perspective aims to widen the protein-centric view by including another vital component—the synaptic membrane—in the discussion. A vast set of atomistic molecular dynamics simulations and biophysical experiments indicate that NTs are divided into membrane-binding and membrane-nonbinding categories. The binary choice takes place at the water-membrane interface and follows closely the positioning of the receptors’ binding sites in relation to the membrane. Accordingly, when a lipophilic NT is on route to a membrane-buried binding site, it adheres on the membrane and, then, travels along its plane towards the receptor. In contrast, lipophobic NTs, which are destined to bind into receptors with extracellular binding sites, prefer the water phase. This membrane-based sorting splits the neurotransmission into membrane-independent and membrane-dependent mechanisms and should make the NT binding into the receptors more efficient than random diffusion would allow. The potential implications and notable exceptions to the mechanisms are discussed here. Importantly, maintaining specific membrane lipid compositions (MLCs) at the synapses, especially regarding anionic lipids, affect the level of NT-membrane association. These effects provide a plausible link between the MLC imbalances and neurological diseases such as depression or Parkinson’s disease. Moreover, the membrane plays a vital role in other phases of the NT life cycle, including storage and release from the synaptic vesicles, transport from the synaptic cleft, as well as their synthesis and degradation.
Collapse
|
19
|
Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem 2019; 183:111700. [PMID: 31546197 DOI: 10.1016/j.ejmech.2019.111700] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Anticancer agents are critical for the cancer treatment, but side effects and the drug resistance associated with the currently used anticancer agents create an urgent need to explore novel drugs with low side effects and high efficacy. 1,2,3-Triazole is privileged building block in the discovery of new anticancer agents, and some of its derivatives have already been applied in clinics or under clinical trials for fighting against cancers. Hybrid molecules occupy an important position in cancer control, and hybridization of 1,2,3-triazole framework with other anticancer pharmacophores may provide valuable therapeutic intervention for the treatment of cancer, especially drug-resistant cancer. This review emphasizes the recent advances in 1,2,3-triazole-containing hybrids with anticancer potential, covering articles published between 2015 and 2019, and the structure-activity relationships, together with mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| | - Shi-Jia Zhao
- Wuhan University of Science and Technology, Wuhan, PR China
| | - Yi Liu
- Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
20
|
Coumarin-containing hybrids and their anticancer activities. Eur J Med Chem 2019; 181:111587. [PMID: 31404864 DOI: 10.1016/j.ejmech.2019.111587] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/21/2019] [Accepted: 08/04/2019] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide, and it results in around 9 million deaths annually. The anticancer agents play an intriguing role in the treatment of cancers, while the severe anticancer scenario and the emergence of drug-resistant especially multidrug-resistant cancers create a huge demand for novel anticancer drugs with different mechanisms of action. The coumarin scaffold is ubiquitous in nature and is a highly privileged motif for the development of novel drugs due to its biodiversity and versatility. Coumarin derivatives can exert diverse antiproliferative mechanisms, and some of them such as Irosustat are under clinical trials for the treatment of various cancers, revealing their potential as putative anticancer drugs. Hybridization of coumarin moiety with other anticancer pharmacophores is a promising strategy to reduce side effects, overcome the drug resistance, and may provide valuable therapeutic intervention for the treatment of cancers. Thus, coumarin-containing hybrids occupy an important position in the development of novel anticancer agents. This review aims to summarize the recent advances made towards the development of coumarin-containing hybrids as potential anticancer agents, covering articles published between 2015 and 2019, and the structure-activity relationship together with mechanisms of action are also discussed.
Collapse
|
21
|
Reid AM, Juvonen R, Huuskonen P, Lehtonen M, Pasanen M, Lall N. In Vitro Human Metabolism and Inhibition Potency of Verbascoside for CYP Enzymes. Molecules 2019; 24:E2191. [PMID: 31212689 PMCID: PMC6600574 DOI: 10.3390/molecules24112191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Verbascoside is found in many medicinal plant families such as Verbenaceae. Important biological activities have been ascribed to verbascoside. Investigated in this study is the potential of verbascoside as an adjuvant during tuberculosis treatment. The present study reports on the in vitro metabolism in human hepatic microsomes and cytosol incubations as well as the presence and quantity of verbascoside within Lippia scaberrima. Additionally, studied are the inhibitory properties on human hepatic CYP enzymes together with antioxidant and cytotoxic properties. The results yielded no metabolites in the hydrolysis or cytochrome P450 (CYP) oxidation incubations. However, five different methylated conjugates of verbascoside could be found in S-adenosylmethionine incubation, three different sulphate conjugates with 3'-phosphoadenosine 5'-phosphosulfate (PAPS) incubation with human liver samples, and very low levels of glucuronide metabolites after incubation with recombinant human uridine 5'-diphospho-glucuronosyltransferase (UGT) 1A7, UGT1A8, and UGT1A10. Additionally, verbascoside showed weak inhibitory potency against CYP1A2 and CYP1B1 with IC50 values of 83 µM and 86 µM, respectively. Potent antioxidant and low cytotoxic potential were observed. Based on these data, verbascoside does not possess any clinically relevant CYP-mediated interaction potential, but it has effective biological activity. Therefore, verbascoside could be considered as a lead compound for further drug development and as an adjuvant during tuberculosis treatment.
Collapse
Affiliation(s)
- Anna-Mari Reid
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Risto Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70210, Finland.
| | - Pasi Huuskonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70210, Finland.
| | - Marko Lehtonen
- LC-MS Metabolomics Center, Biocentre, Kuopio, Kuopio FI-70210, Finland.
| | - Markku Pasanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio FI-70210, Finland.
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa.
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA.
- College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India.
| |
Collapse
|
22
|
A Practical Perspective: The Effect of Ligand Conformers on the Negative Image-Based Screening. Int J Mol Sci 2019; 20:ijms20112779. [PMID: 31174295 PMCID: PMC6600450 DOI: 10.3390/ijms20112779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/05/2022] Open
Abstract
Negative image-based (NIB) screening is a rigid molecular docking methodology that can also be employed in docking rescoring. During the NIB screening, a negative image is generated based on the target protein’s ligand-binding cavity by inverting its shape and electrostatics. The resulting NIB model is a drug-like entity or pseudo-ligand that is compared directly against ligand 3D conformers, as is done with a template compound in the ligand-based screening. This cavity-based rigid docking has been demonstrated to work with genuine drug targets in both benchmark testing and drug candidate/lead discovery. Firstly, the study explores in-depth the applicability of different ligand 3D conformer generation software for acquiring the best NIB screening results using cyclooxygenase-2 (COX-2) as the example system. Secondly, the entire NIB workflow from the protein structure preparation, model build-up, and ligand conformer generation to the similarity comparison is performed for COX-2. Accordingly, hands-on instructions are provided on how to employ the NIB methodology from start to finish, both with the rigid docking and docking rescoring using noncommercial software. The practical aspects of the NIB methodology, especially the effect of ligand conformers, are discussed thoroughly, thus, making the methodology accessible for new users.
Collapse
|
23
|
Salah M, Abdelsamie AS, Frotscher M. Inhibitors of 17β-hydroxysteroid dehydrogenase type 1, 2 and 14: Structures, biological activities and future challenges. Mol Cell Endocrinol 2019; 489:66-81. [PMID: 30336189 DOI: 10.1016/j.mce.2018.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
During the past 25 years, the modulation of estrogen action by inhibition of 17β-hydroxysteroid dehydrogenase types 1 and 2 (17β-HSD1 and 17β-HSD2), respectively, has been pursued intensively. In the search for novel treatment options for estrogen-dependent diseases (EDD) and in order to explore estrogenic signaling pathways, a large number of steroidal and nonsteroidal inhibitors of these enzymes has been described in the literature. The present review gives a survey on the development of inhibitor classes as well as the structural formulas and biological properties of their most interesting representatives. In addition, rationally designed dual inhibitors of both 17β-HSD1 and steroid sulfatase (STS) as well as the first inhibitors of 17β-HSD14 are covered.
Collapse
Affiliation(s)
- Mohamed Salah
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123, Saarbrücken, Germany
| | - Ahmed S Abdelsamie
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E81, 66123, Saarbrücken, Germany; Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, D-66123, Saarbrücken, Germany.
| |
Collapse
|
24
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
25
|
Juvonen RO, Ahinko M, Huuskonen J, Raunio H, Pentikäinen OT. Development of new Coumarin-based profluorescent substrates for human cytochrome P450 enzymes. Xenobiotica 2018; 49:1015-1024. [DOI: 10.1080/00498254.2018.1530399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Risto O. Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mira Ahinko
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Juhani Huuskonen
- Department of Chemistry, University of Jyvaskyla, Jyvaskyla, Finland
| | - Hannu Raunio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli T. Pentikäinen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Institute of Biomedicine, Faculty of Medicine Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| |
Collapse
|
26
|
Rauhamäki S, Postila PA, Lätti S, Niinivehmas S, Multamäki E, Liedl KR, Pentikäinen OT. Discovery of Retinoic Acid-Related Orphan Receptor γt Inverse Agonists via Docking and Negative Image-Based Screening. ACS OMEGA 2018; 3:6259-6266. [PMID: 30023945 PMCID: PMC6044741 DOI: 10.1021/acsomega.8b00603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/31/2018] [Indexed: 05/14/2023]
Abstract
Retinoic acid-related orphan receptor γt (RORγt) has a vital role in the differentiation of T-helper 17 (TH17) cells. Potent and specific RORγt inverse agonists are sought for treating TH17-related diseases such as psoriasis, rheumatoid arthritis, and type 1 diabetes. Here, the aim was to discover novel RORγt ligands using both standard molecular docking and negative image-based screening. Interestingly, both of these in silico techniques put forward mostly the same compounds for experimental testing. In total, 11 of the 34 molecules purchased for testing were verified as RORγt inverse agonists, thus making the effective hit rate 32%. The pIC50 values for the compounds varied from 4.9 (11 μM) to 6.2 (590 nM). Importantly, the fact that the verified hits represent four different cores highlights the structural diversity of the RORγt inverse agonism and the ability of the applied screening methodologies to facilitate much-desired scaffold hopping for drug design.
Collapse
Affiliation(s)
- Sanna Rauhamäki
- Department
of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014 University of Jyvaskyla, Finland
| | - Pekka A. Postila
- Department
of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014 University of Jyvaskyla, Finland
| | - Sakari Lätti
- Department
of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014 University of Jyvaskyla, Finland
- Institute
of Biomedicine, Integrative Physiology and Pharmacology, Kiinamyllynkatu 10 C6, University of Turku, FI-20520 Turku, Finland
| | - Sanna Niinivehmas
- Department
of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014 University of Jyvaskyla, Finland
- Institute
of Biomedicine, Integrative Physiology and Pharmacology, Kiinamyllynkatu 10 C6, University of Turku, FI-20520 Turku, Finland
| | - Elina Multamäki
- Department
of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014 University of Jyvaskyla, Finland
| | - Klaus R. Liedl
- Institute
of General, Inorganic and Theoretical Chemistry, Centre for Chemistry
and Biomedicine, University of Innsbruck, Innrain 82, A-6020 Innsbruck, Austria
| | - Olli T. Pentikäinen
- Department
of Biological and Environmental Science & Nanoscience Center, University of Jyväskylä, P.O. Box 35, Jyväskylä FI-40014 University of Jyvaskyla, Finland
- Institute
of Biomedicine, Integrative Physiology and Pharmacology, Kiinamyllynkatu 10 C6, University of Turku, FI-20520 Turku, Finland
- Institute
of General, Inorganic and Theoretical Chemistry, Centre for Chemistry
and Biomedicine, University of Innsbruck, Innrain 82, A-6020 Innsbruck, Austria
- E-mail: (O.T.P.)
| |
Collapse
|