1
|
Alruhaimi RS, Kamel EM, Alnasser SM, Alzoghaibi MA, Lamsabhi AM, Mahmoud AM. Mechanistic insights into carbonic anhydrase IX inhibition by coumarins from Calendula officinalis: in vitro and in silico approaches. RSC Adv 2024; 14:33602-33618. [PMID: 39444941 PMCID: PMC11497074 DOI: 10.1039/d4ra05984k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Given the critical role of carbonic anhydrase IX (CA IX) in various pathological conditions, there is a significant demand for new inhibitors to enhance patient outcomes and clinical management. In this study, we examined the inhibitory effectiveness of five coumarins derived from Calendula officinalis against CA IX using in vitro assays and computational modeling. Among the coumarins tested, xeroboside and isobaisseoside were identified as the most potent inhibitors. Kinetic studies indicated that xeroboside and isobaisseoside exhibit a mixed inhibition mode. Molecular docking analysis showed that the tested coumarins exhibit binding affinities and extensive polar interactions with CA IX. These coumarins demonstrated significant hydrophobic interactions and occupied the same binding site as acetazolamide (AAZ). Molecular dynamics (MD) indicated that xeroboside and isobaisseoside exhibited consistent trajectories and notable energy stabilization during their interaction with CA IX. MM/PBSA calculations showed that xeroboside displayed the lowest binding free energy (-27.26 ± 2.48 kJ mol-1). Potential Energy Landscape (PEL) analysis revealed distinct and stable conformational states for the CA IX-ligand complexes, with xeroboside exhibiting the most stable and lowest energy configuration. These computational findings are consistent with the experimental results, highlighting the potential efficacy of xeroboside and isobaisseoside as CA IX inhibitors. In conclusion, Calendula officinalis-derived coumarins are promising candidates as effective CA IX inhibitors.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - Emadeldin M Kamel
- Organic Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| | - Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University Qassim 51452 Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University Riyadh 11461 Saudi Arabia
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco Módulo 13 Madrid 28049 Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid Madrid 28049 Spain
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University Manchester M1 5GD UK
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University Beni-Suef 62514 Egypt
| |
Collapse
|
2
|
Li TY, Qin C, Zhao BB, Li ZR, Wang YY, Zhao YT, Wang WB. Construction of a prognostic model with exosome biogenesis- and release-related genes and identification of RAB27B in immune infiltration of pancreatic cancer. Transl Cancer Res 2024; 13:4846-4865. [PMID: 39430819 PMCID: PMC11483359 DOI: 10.21037/tcr-24-54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/19/2024] [Indexed: 10/22/2024]
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and fatal disease. Exosomes are extracellular vesicles that plays a vital rule in the progression and metastasis of PDAC. However, the specific mechanism of exosome biogenesis and release in the tumorigenesis and development of pancreatic cancer remains elusive. The aim of this study is to develop novel biomarkers and construct a reliable prognostic signature to accurately stratify patients and optimize clinical decision-making. Methods Gene expression and clinical data were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Univariate Cox regression analysis, random forest analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, and multivariate Cox regression analysis were used to construct the risk signature. The effectiveness of the model was validated by survival point plot, Kaplan-Meier survival analysis, and receiver operating characteristic (ROC) curve in training, testing and entire cohorts. Meanwhile, single sample gene set enrichment analysis (ssGSEA), ESTIMATE and CIBERSORT algorithm were utilized to assess the association of the risk signature with the immune status in the PDAC tumor microenvironment. We also performed functional enrichment, tumor mutation analysis, and DNA methylation analyses based on the risk signature. The function of the core gene was further verified by polymerase chain reaction (PCR), western blot, bicinchoninic acid (BCA), immunohistochemistry (IHC) and in vitro experiments including cell proliferation, migration, and apoptosis experiments. Results We constructed an exosome biogenesis- and release-related risk model which could serve as an effective and independent prognosis predictor for PDAC patients. The immune infiltration analysis revealed that our signature was related to the PDAC immune microenvironment, mainly associated with a lower proportion of natural killer (NK) cells and CD8+ T cells. Tissue microarray IHC confirmed the association of RAB27B with poor prognosis in PDAC. Knockdown of RAB27B expression promoted PDAC cells' apoptosis, while decreased cellular proliferation and migration. Also, knockdown of RAB27B expression led to reduced exosome secretion, while RAB27B overexpression promoted exosome secretion. Conclusions The predictive signature can predict overall survival, help elucidate the mechanism of exosome biogenesis and release, and provide immunotherapy guidance for PDAC patients.
Collapse
Affiliation(s)
- Tian-Yu Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, China
| | - Bang-Bo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, China
| | - Ze-Ru Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, China
| | - Yuan-Yang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, China
| | - Yu-Tong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, China
| | - Wei-Bin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
3
|
Peppicelli S, Calorini L, Bianchini F, Papucci L, Magnelli L, Andreucci E. Acidity and hypoxia of tumor microenvironment, a positive interplay in extracellular vesicle release by tumor cells. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00969-z. [PMID: 39023664 DOI: 10.1007/s13402-024-00969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
The complex and continuously evolving features of the tumor microenvironment, varying between tumor histotypes, are characterized by the presence of host cells and tumor cells embedded in a milieu shaped by hypoxia and low pH, resulting from the frequent imbalance between vascularity and tumor cell proliferation. These microenvironmental metabolic stressors play a crucial role in remodeling host cells and tumor cells, contributing to the stimulation of cancer cell heterogeneity, clonal evolution, and multidrug resistance, ultimately leading to progression and metastasis. The extracellular vesicles (EVs), membrane-enclosed structures released into the extracellular milieu by tumor/host cells, are now recognized as critical drivers in the complex intercellular communication between tumor cells and the local cellular components in a hypoxic/acidic microenvironment. Understanding the intricate molecular mechanisms governing the interactions between tumor and host cells within a hypoxic and acidic microenvironment, triggered by the release of EVs, could pave the way for innovative strategies to disrupt the complex interplay of cancer cells with their microenvironment. This approach may contribute to the development of an efficient and safe therapeutic strategy to combat cancer progression. Therefore, we review the major findings on the release of EVs in a hypoxic/acidic tumor microenvironment to appreciate their role in tumor progression toward metastatic disease.
Collapse
Affiliation(s)
- Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy.
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| |
Collapse
|
4
|
Qiu C, Wang W, Xu S, Li Y, Zhu J, Zhang Y, Lei C, Li W, Li H, Li X. Construction and validation of a hypoxia-related gene signature to predict the prognosis of breast cancer. BMC Cancer 2024; 24:402. [PMID: 38561760 PMCID: PMC10986118 DOI: 10.1186/s12885-024-12182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Among the most common forms of cancer worldwide, breast cancer posed a serious threat to women. Recent research revealed a lack of oxygen, known as hypoxia, was crucial in forming breast cancer. This research aimed to create a robust signature with hypoxia-related genes to predict the prognosis of breast cancer patients. The function of hypoxia genes was further studied through cell line experiments. MATERIALS AND METHODS In the bioinformatic part, transcriptome and clinical information of breast cancer were obtained from The Cancer Genome Atlas(TCGA). Hypoxia-related genes were downloaded from the Genecards Platform. Differentially expressed hypoxia-related genes (DEHRGs) were identified. The TCGA filtered data was evenly split, ensuring a 1:1 distribution between the training and testing sets. Prognostic-related DEHRGs were identified through Cox regression. The signature was established through the training set. Then, it was validated using the test set and external validation set GSE131769 from Gene Expression Omnibus (GEO). The nomogram was created by incorporating the signature and clinicopathological characteristics. The predictive value of the nomogram was evaluated by C-index and receiver operating characteristiccurve. Immune microenvironment and mutation burden were also examined. In the experiment part, the function of the two most significant hypoxia-related genes were further explored by cell-line experiments. RESULTS In the bioinformatic part, 141 up-regulated and 157 down-regulated DEHRGs were screened out. A prognostic signature was constructed containing nine hypoxia genes (ALOX15B, CA9, CD24, CHEK1, FOXM1, HOTAIR, KCNJ11, NEDD9, PSME2) in the training set. Low-risk patients exhibited a much more favorable prognosis than higher-risk ones (P < 0.001). The signature was double-validated in the test set and GSE131769 (P = 0.006 and P = 0.001). The nomogram showed excellent predictive value with 1-year OS AUC: 0.788, 3-year OS AUC: 0.783, and 5-year OS AUC: 0.817. Patients in the high-risk group had a higher tumor mutation burden when compared to the low-risk group. In the experiment part, the down-regulation of PSME2 inhibited cell growth ability and clone formation capability of breast cancer cells, while the down-regulation of KCNJ11 did not have any functions. CONCLUSION Based on 9 DEHRGs, a reliable signature was established through the bioinformatic method. It could accurately predict the prognosis of breast cancer patients. Cell line experiment indicated that PSME2 played a protective role. Summarily, we provided a new insight to predict the prognosis of breast cancer by hypoxia-related genes.
Collapse
Affiliation(s)
- Chaoran Qiu
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Wenjun Wang
- The Sixth Affiliated Hospital of Jinan University(Dongguan Eastern Central Hospital), Dongguan, China
| | - Shengshan Xu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Jiangmen, China
| | - Yong Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Jingtao Zhu
- Department of Breast Surgery, Foshan Fosun Chancheng Hospital, Foshan, China
| | - Yiwen Zhang
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Chuqian Lei
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Weiwen Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China
| | - Hongsheng Li
- Department of Breast Surgery, Guangzhou Medical University Affiliated Cancer Hospital, Guangzhou, China.
| | - Xiaoping Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong, China.
| |
Collapse
|
5
|
Maqsood Q, Sumrin A, Saleem Y, Wajid A, Mahnoor M. Exosomes in Cancer: Diagnostic and Therapeutic Applications. Clin Med Insights Oncol 2024; 18:11795549231215966. [PMID: 38249520 PMCID: PMC10799603 DOI: 10.1177/11795549231215966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/29/2023] [Indexed: 01/23/2024] Open
Abstract
Small extracellular vesicles called exosomes are produced by cells and contain a range of biomolecules, including proteins, lipids, and nucleic acids. Exosomes have been implicated in the development and spread of cancer, and recent studies have shown that their contents may be exploited as biomarkers for early detection and ongoing surveillance of the disease. In this review article, we summarize the current knowledge on exosomes as biomarkers of cancer. We discuss the various methods used for exosome isolation and characterization, as well as the different types of biomolecules found within exosomes that are relevant for cancer diagnosis and prognosis. We also highlight recent studies that have demonstrated the utility of exosomal biomarkers in different types of cancer, such as lung cancer, breast cancer, and pancreatic cancer. Overall, exosomes show great promise as noninvasive biomarkers for cancer detection and monitoring. Exosomes have the ability to transform cancer diagnostic and therapeutic paradigms, providing promise for more efficient and individualized. This review seeks to serve as an inspiration for new ideas and research in the never-ending fight against cancer. Moreover, further studies are needed to validate their clinical utility and establish standardized protocols for their isolation and analysis. With continued research and development, exosomal biomarkers have the potential to revolutionize cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Department of Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Yasar Saleem
- Department of Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Laboratories Complex Lahore, Lahore, Pakistan
| | - Abdul Wajid
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Muhammada Mahnoor
- Department of Rehabilitation Science, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
6
|
Fais S, Logozzi M. The Diagnostic and Prognostic Value of Plasmatic Exosome Count in Cancer Patients and in Patients with Other Pathologies. Int J Mol Sci 2024; 25:1049. [PMID: 38256122 PMCID: PMC10816819 DOI: 10.3390/ijms25021049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The extent of both scientific articles and reviews on extracellular vesicles (EVs) has grown impressively over the last few decades [...].
Collapse
Affiliation(s)
- Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
7
|
Rodríguez-Zorrilla S, Lorenzo-Pouso AI, Fais S, Logozzi MA, Mizzoni D, Di Raimo R, Giuliani A, García-García A, Pérez-Jardón A, Ortega KL, Martínez-González Á, Pérez-Sayáns M. Increased Plasmatic Levels of Exosomes Are Significantly Related to Relapse Rate in Patients with Oral Squamous Cell Carcinoma: A Cohort Study. Cancers (Basel) 2023; 15:5693. [PMID: 38067397 PMCID: PMC10705147 DOI: 10.3390/cancers15235693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is characterized by an immunosuppressive tumor microenvironment. Their plasma-derived exosomes deliver immunomodulatory molecules and cargo that correlate significantly with clinical parameters. This study aims to assess the exosomal profile as a potential tool for early detection of relapse and long-term outcomes in OSCC patients undergoing conventional therapy. METHODS 27 OSCC patients with a median 38-month follow-up were included in this study. The relationship between NTA-derived parameters and clinical pathological parameters was examined, and receiver operating characteristic (ROC) curves were utilized to evaluate the diagnostic efficacy of these values in detecting cancer relapse. RESULTS Plasmatic levels of exosomes prior to surgery showed a drastic reduction after surgical intervention (8.08E vs. 1.41 × 109 particles/mL, p = 0.006). Postsurgical concentrations of exosomes were higher in patients who experienced relapse compared to those who remained disease-free (2.97 × 109 vs. 1.11 × 109 particles/mL, p = 0.046). Additionally, patients who relapsed exhibited larger exosome sizes after surgery (141.47 vs. 132.31 nm, p = 0.03). Patients with lower concentrations of exosomes prior to surgery demonstrated better disease-free survival compared to those with higher levels (p = 0.012). ROC analysis revealed an area under the curve of 0.82 for presurgical exosome concentration in identifying relapse. CONCLUSIONS Presurgical exosomal plasmatic levels serve as independent predictors of early recurrence and survival in OSCC. All in all, our findings indicate that the detection of peripheral exosomes represents a novel tool for the clinical management of OSCC, with potential implications for prognosis assessment.
Collapse
Affiliation(s)
- Samuel Rodríguez-Zorrilla
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
| | - Alejandro I. Lorenzo-Pouso
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.F.); (M.A.L.)
| | - Maria A. Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (S.F.); (M.A.L.)
| | - Davide Mizzoni
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Rossella Di Raimo
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy; (D.M.); (R.D.R.)
| | - Alessandro Giuliani
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Abel García-García
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
| | - Alba Pérez-Jardón
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
| | - Karem L. Ortega
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- School of Dentistry, Department of Oral Pathology, University of São Paulo, Av. Lineu Prestes, 2227, Cidade Universitária São Paulo, Sao Paulo 05508-000, Brazil
| | - Ángel Martínez-González
- Endocrinology and Nutrition Service, Complejo Hospitalario Universitario de Pontevedra, Mourente S/N, 36472 Pontevedra, Spain;
| | - Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.R.-Z.); (A.G.-G.); (A.P.-J.); (K.L.O.); (M.P.-S.)
- ORALRES Group, Health Research Institute of Santiago de Compostela (FIDIS), 15782 Santiago de Compostela, Spain
- Institute of Materials (IMATUS), Avenida do Mestre Mateo, 25, 15782 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Dey D, Ghosh S, Mirgh D, Panda SP, Jha NK, Jha SK. Role of exosomes in prostate cancer and male fertility. Drug Discov Today 2023; 28:103791. [PMID: 37777169 DOI: 10.1016/j.drudis.2023.103791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Prostate cancer (PCa) is the second most common and fifth most aggressive neoplasm among men worldwide. In the last decade, extracellular vesicle (EV) research has decoded multiple unsolved cancer-related mysteries. EVs can be classified as microvesicles, apoptotic bodies, and exosomes, among others. Exosomes play a key role in cellular signaling. Their internal cargos (nucleic acids, proteins, lipids) influence the recipient cell. In PCa, the exosome is the regulator of cancer progression. It is also a promising theranostics tool for PCa. Moreover, exosomes have strong participation in male fertility complications. This review aims to highlight the exosome theranostics signature in PCa and its association with male fertility.
Collapse
Affiliation(s)
- Dwaipayan Dey
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, West Bengal 700118, India
| | - Srestha Ghosh
- Department of Microbiology, Lady Brabourne College, Kolkata 700017, West Bengal, India
| | - Divya Mirgh
- Johns Hopkins University, Baltimore, MD 21218, USA
| | - Siva Parsad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal, University, Dehradun, India.
| |
Collapse
|
9
|
Supuran CT. Targeting carbonic anhydrases for the management of hypoxic metastatic tumors. Expert Opin Ther Pat 2023; 33:701-720. [PMID: 37545058 DOI: 10.1080/13543776.2023.2245971] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Several isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) are connected with tumorigenesis. Hypoxic tumors overexpress CA IX and XII as a consequence of HIF activation cascade, being involved in pH regulation, metabolism, and metastases formation. Other isoforms (CA I, II, III, IV) were also reported to be present in some tumors. AREAS COVERED Some CA isoforms are biomarkers for disease progression or response to therapy. Inhibitors, antibodies, and other procedures for targeting these enzymes for the treatment of tumors/metastases are discussed. Sulfonamides and coumarins represent the most investigated classes of inhibitors, but carboxylates, selenium, and tellurium-containing inhibitors were also investigated. Hybrid drugs of CA inhibitors with other antitumor agents for multitargeted therapy were reported. EXPERT OPINION Targeting CAs present in solid or hematological tumors with selective, targeted inhibitors is a validated approach, which has been consolidated in the last years. A host of new preclinical data and several clinical trials of antibodies and small-molecule inhibitors are ongoing, which connected with the large number of new chemotypes/procedures discovered to be effective, may lead to a breakthrough in this therapeutic area. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2018 to 2023.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
10
|
Logozzi M, Orefice NS, Di Raimo R, Mizzoni D, Fais S. The Importance of Detecting, Quantifying, and Characterizing Exosomes as a New Diagnostic/Prognostic Approach for Tumor Patients. Cancers (Basel) 2023; 15:cancers15112878. [PMID: 37296842 DOI: 10.3390/cancers15112878] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Exosomes are extracellular vesicles (EVs) of nanometric size studied for their role in tumor pathogenesis and progression and as a new source of tumor biomarkers. The clinical studies have provided encouraging but probably unexpected results, including the exosome plasmatic levels' clinical relevance and well-known biomarkers' overexpression on the circulating EVs. The technical approach to obtaining EVs includes methods to physically purify EVs and characterize EVs, such as Nanosight Tracking Analysis (NTA), immunocapture-based ELISA, and nano-scale flow cytometry. Based on the above approaches, some clinical investigations have been performed on patients with different tumors, providing exciting and promising results. Here we emphasize data showing that exosome plasmatic levels are consistently higher in tumor patients than in controls and that plasmatic exosomes express well-known tumor markers (e.g., PSA and CEA), proteins with enzymatic activity, and nucleic acids. However, we also know that tumor microenvironment acidity is a key factor in influencing both the amount and the characteristics of the exosome released by tumor cells. In fact, acidity significantly increases exosome release by tumor cells, which correlates with the number of exosomes that circulate through the body of a tumor patient.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Nicola Salvatore Orefice
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Davide Mizzoni
- ExoLab Italia, Tecnopolo d'Abruzzo, 67100 L'Aquila, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
11
|
Salavaty A, Azadian E, Naik SH, Currie PD. Clonal selection parallels between normal and cancer tissues. Trends Genet 2023; 39:358-380. [PMID: 36842901 DOI: 10.1016/j.tig.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/28/2023]
Abstract
Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.
Collapse
Affiliation(s)
- Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Systems Biology Institute Australia, Monash University, Clayton, VIC 3800, Australia.
| | - Esmaeel Azadian
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Shalin H Naik
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
12
|
Venturella M, Falsini A, Coppola F, Giuntini G, Carraro F, Zocco D, Chiesi A, Naldini A. CA-IX-Expressing Small Extracellular Vesicles (sEVs) Are Released by Melanoma Cells under Hypoxia and in the Blood of Advanced Melanoma Patients. Int J Mol Sci 2023; 24:ijms24076122. [PMID: 37047096 PMCID: PMC10094632 DOI: 10.3390/ijms24076122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Cutaneous melanoma is a highly aggressive skin cancer, with poor prognosis. The tumor microenvironment is characterized by areas of hypoxia. Carbonic anhydrase IX (CA-IX) is a marker of tumor hypoxia and its expression is regulated by hypoxia-inducible factor-1 (HIF-1). CA-IX has been found to be highly expressed in invasive melanomas. In this study, we investigated the effects of hypoxia on the release of small extracellular vesicles (sEVs) in two melanoma in vitro models. We demonstrated that melanoma cells release sEVs under both normoxic and hypoxic conditions, but only hypoxia-induced sEVs express CA-IX mRNA and protein. Moreover, we optimized an ELISA assay to provide evidence for CA-IX protein expression on the membranes of the sEVs. These CA-IX-positive sEVs may be exploited as potential biomarkers for liquid biopsy.
Collapse
Affiliation(s)
- Marta Venturella
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Alessandro Falsini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Federica Coppola
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Gaia Giuntini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Fabio Carraro
- Cellular and Molecular Physiology Unit, Department of Medical Biotechnologies, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Davide Zocco
- Lonza Siena, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Antonio Chiesi
- Exosomics SpA, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Antonella Naldini
- Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
13
|
Carbonic Anhydrase IX in Tumor Tissue and Plasma of Breast Cancer Patients: Reliable Biomarker of Hypoxia and Prognosis. Int J Mol Sci 2023; 24:ijms24054325. [PMID: 36901756 PMCID: PMC10002431 DOI: 10.3390/ijms24054325] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Carbonic anhydrase IX (CA IX) is recognized as an excellent marker of hypoxia and an adverse prognostic factor in solid tumors, including breast cancer (BC). Clinical studies confirm that soluble CA IX (sCA IX), shed into body fluids, predicts the response to some therapeutics. However, CA IX is not included in clinical practice guidelines, possibly due to a lack of validated diagnostic tools. Here, we present two novel diagnostic tools-a monoclonal antibody for CA IX detection by immunohistochemistry and an ELISA kit for the detection of sCA IX in the plasma-validated on a cohort of 100 patients with early BC. We confirm that tissue CA IX positivity (24%) correlates with tumor grading, necrosis, negative hormone receptor status, and the TNBC molecular subtype. We show that antibody IV/18 can specifically detect all subcellular forms of CA IX. Our ELISA test provides 70% sensitivity and 90% specificity. Although we showed that this test could detect exosomes in addition to shed CA IX ectodomain, we could not demonstrate a clear association of sCA IX with prognosis. Our results indicate that the amount of sCA IX depends on subcellular CA IX localization, but more strictly on the molecular composition of individual molecular subtypes of BC, particularly on metalloproteinases inhibitor expression.
Collapse
|
14
|
Galbiati S, Gabellini D, Ambrosi A, Soriani N, Pasi F, Locatelli M, Lucianò R, Candiani M, Valsecchi L, Zerbini G, Smid M. Early increase in circulating carbonic anhydrase IX: A potential new predictive biomarker of preeclampsia. Front Mol Biosci 2023; 10:1075604. [PMID: 36743209 PMCID: PMC9892551 DOI: 10.3389/fmolb.2023.1075604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Preeclampsia (PE) is a severe complication of pregnancy. The identification of a reliable predictive biomarker could help in setting up a specific preventive strategy. To this aim, we studied carbonic anhydrase IX (CAIX) as a marker of hypoxia (a pathway involved in PE pathogenesis) and compared the diagnostic accuracy of CAIX to that of the validated biomarker sFlt1/PlGF ratio. Fifteen women with overt PE and 38 women at a risk of developing PE, sampled at different time intervals during gestation (a total of 82 plasma samples collected), were enrolled and underwent the CAIX measurement. CAIX levels significantly increased (p < .001) before the onset of the disease in women (25% of the total number) who later on developed PE when compared to women who did not, starting from 28th gestational week. The best CAIX cut-off of 68.268 pg/mL yielded a sensitivity of 100%, a specificity of 81.82%, and an AUC value of .9221. In our pilot study, when compared to the sFlt1/PlGF ratio, CAIX performed better in predicting PE before the clinical onset. Furthermore when implemented as CAIX/PlGF ratio, showed up to be comparable in the identification of women with overt early PE. In conclusion, CAIX could represent an effective predictive biomarker of PE, and larger studies are mandatory to validate this finding.
Collapse
Affiliation(s)
- Silvia Galbiati
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy,*Correspondence: Silvia Galbiati,
| | - Daniela Gabellini
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Ambrosi
- School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Nadia Soriani
- Unit of Genomic for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pasi
- Obstetrics and Gynecology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Locatelli
- Laboratory Medicine Service, IRCCS San Raffaele Hospital, Milan, Italy
| | - Roberta Lucianò
- Department of Pathology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Massimo Candiani
- Obstetrics and Gynecology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Valsecchi
- Obstetrics and Gynecology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Zerbini
- Complications of Diabetes Unit, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Smid
- Obstetrics and Gynecology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
15
|
Tinivella A, Nwachukwu JC, Angeli A, Foschi F, Benatti AL, Pinzi L, Izard T, Ferraroni M, Erumbi R, Christodoulou MS, Passarella D, Supuran CT, Nettles KW, Rastelli G. Design, synthesis, biological evaluation and crystal structure determination of dual modulators of carbonic anhydrases and estrogen receptors. Eur J Med Chem 2023; 246:115011. [PMID: 36516582 DOI: 10.1016/j.ejmech.2022.115011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Multi-target compounds have become increasingly important for the development of safer and more effective drug candidates. In this work, we devised a combined ligand-based and structure-based multi-target repurposing strategy and applied it to a series of hexahydrocyclopenta[c]quinoline compounds synthesized previously. The in silico analyses identified human Carbonic Anhydrases (hCA) and Estrogen Receptors (ER) as top scoring candidates for dual modulation. hCA isoforms IX and XII, and ER subtypes ER⍺ and/or ERβ are co-expressed in various cancer cell types, including breast and prostate cancer cells. ER⍺ is the primary target of anti-estrogen therapy in breast cancer, and the hCA IX isoform is a therapeutic target in triple-negative breast cancer. ER⍺-mediated transcriptional programs and hCA activity in cancer cells promote favorable microenvironments for cell proliferation. Interestingly, several lines of evidence indicate that the combined modulation of these two targets may provide significant therapeutic benefits. Moving from these first results, two additional hexahydrocyclopenta[c]quinoline derivatives bearing a sulfonamide zinc binding group (hCA) and a phenolic hydroxyl (ER) pharmacophoric group placed at the appropriate locations were designed and synthesized. Interestingly, these compounds were able to directly modulate the activities of both hCA and ER targets. In cell-based assays, they inhibited proliferation of breast and prostate cancer cells with micromolar potency and cell type-selective efficacy. The compounds inhibited hCA activity with nanomolar potency and isoform-selectivity. In transactivation assays, they reduced estrogen-driven ER activity with micro-molar potency. Finally, crystal structures of the synthesized ligands in complex with the two targets revealed that the compounds bind directly to the hCA active site, as well as to the ER ligand-binding domain, providing structural explanation to the observed activity and a rationale for optimization of their dual activity. To the best of our knowledge, this work describes the design, synthesis and biological characterization of the first dual modulators of hCA and ER, laying the ground for the structure-based optimization of their multi-target activity.
Collapse
Affiliation(s)
- Annachiara Tinivella
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Jerome C Nwachukwu
- Department of Integrative Structural and Computational Biology, University of Florida Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Francesca Foschi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy; Department of Chemistry, University of Milano, Via Golgi 19, 20133, Milano, Italy
| | - Anna Laura Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy
| | - Tina Izard
- Department of Integrative Structural and Computational Biology, University of Florida Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Marta Ferraroni
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy
| | - Rangarajan Erumbi
- Department of Integrative Structural and Computational Biology, University of Florida Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Michael S Christodoulou
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy; Department of Chemistry, University of Milano, Via Golgi 19, 20133, Milano, Italy
| | - Daniele Passarella
- Department of Chemistry, University of Milano, Via Golgi 19, 20133, Milano, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Kendall W Nettles
- Department of Integrative Structural and Computational Biology, University of Florida Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125, Modena, Italy.
| |
Collapse
|
16
|
Ge Y, Ye T, Fu S, Jiang X, Song H, Liu B, Wang G, Wang J. Research progress of extracellular vesicles as biomarkers in immunotherapy for non-small cell lung cancer. Front Immunol 2023; 14:1114041. [PMID: 37153619 PMCID: PMC10162406 DOI: 10.3389/fimmu.2023.1114041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Lung cancer is one of the most severe forms of malignancy and a leading cause of cancer-related death worldwide, of which non-small cell lung cancer (NSCLC) is the most primary type observed in the clinic. NSCLC is mainly treated with surgery, radiotherapy, and chemotherapy. Additionally, targeted therapy and immunotherapy have also shown promising results. Several immunotherapies, including immune checkpoint inhibitors, have been developed for clinical use and have benefited patients with NSCLC. However, immunotherapy faces several challenges like poor response and unknown effective population. It is essential to identify novel predictive markers to further advance precision immunotherapy for NSCLC. Extracellular vesicles (EVs) present an important research direction. In this review, we focus on the role of EVs as a biomarker in NSCLC immunotherapy considering various perspectives, including the definition and properties of EVs, their role as biomarkers in current NSCLC immunotherapy, and different EV components as biomarkers in NSCLC immunotherapy research. We describe the cross-talk between the role of EVs as biomarkers and novel technical approaches or research concepts in NSCLC immunotherapy, such as neoadjuvants, multi-omics analysis, and the tumour microenvironment. This review will provide a reference for future research to improve the benefits of immunotherapy for patients with NSCLC.
Collapse
Affiliation(s)
- Yang Ge
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Ting Ye
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Siyun Fu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoying Jiang
- Department of Science and Technology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Bin Liu, ; Guoquan Wang, ; Jinghui Wang,
| | - Guoquan Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Bin Liu, ; Guoquan Wang, ; Jinghui Wang,
| | - Jinghui Wang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Bin Liu, ; Guoquan Wang, ; Jinghui Wang,
| |
Collapse
|
17
|
Zhang L, Sun M, He Z, Sun J, Li H, Luo Q. Multi-functional extracellular vesicles: Potentials in cancer immunotherapy. Cancer Lett 2022; 551:215934. [PMID: 36191678 DOI: 10.1016/j.canlet.2022.215934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022]
Abstract
Cancer immunotherapy (CIT) has revolutionized cancer treatment. However, the application of CIT is limited by low response rates and significant individual differences owing to a deficit in 1) immune recognition and 2) immune effector function. Extracellular vesicles (EVs) are cell-derived lipid bilayer-enclosed vesicles that mediate intercellular communication. The specific structure and content of EVs allows for multi-functional modulation of tumor immunity. Given their high biocompatibility, homologous targeting, and permeability across biological barriers, EVs have been evaluated as ideal carriers for promoting the efficacy and specificity of CIT. Herein, we first discuss the role of EVs in regulating tumor immunity and focus on the advantages of using EVs as a therapeutic tool for cancer treatment from a clinical perspective. Further, we outline the current progress in the development of biohybrid EVs for CIT and multi-functional EV-based strategies for overcoming the deficits in tumor immunity. Finally, we discuss the challenges associated with EV-based CIT and future perspectives in the context of ongoing clinical trials involving EV-based therapies, thus offering valuable insights into the future of multi-functional EVs in CIT.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmacy, China Medical University, Shenyang, Liaoning, 110001, PR China; Department of Biotherapy, Cancer Research Institute, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China
| | - Mengchi Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Heran Li
- Department of Pharmacy, China Medical University, Shenyang, Liaoning, 110001, PR China.
| | - Qiuhua Luo
- Department of Pharmacy, China Medical University, Shenyang, Liaoning, 110001, PR China; Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, PR China.
| |
Collapse
|
18
|
Tumor-Derived Extracellular Vesicles in Cancer Immunoediting and Their Potential as Oncoimmunotherapeutics. Cancers (Basel) 2022; 15:cancers15010082. [PMID: 36612080 PMCID: PMC9817790 DOI: 10.3390/cancers15010082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) within and around a tumor is a complex interacting mixture of tumor cells with various stromal cells, including endothelial cells, fibroblasts, and immune cells. In the early steps of tumor formation, the local microenvironment tends to oppose carcinogenesis, while with cancer progression, the microenvironment skews into a protumoral TME and the tumor influences stromal cells to provide tumor-supporting functions. The creation and development of cancer are dependent on escape from immune recognition predominantly by influencing stromal cells, particularly immune cells, to suppress antitumor immunity. This overall process is generally called immunoediting and has been categorized into three phases; elimination, equilibrium, and escape. Interaction of tumor cells with stromal cells in the TME is mediated generally by cell-to-cell contact, cytokines, growth factors, and extracellular vesicles (EVs). The least well studied are EVs (especially exosomes), which are nanoparticle-sized bilayer membrane vesicles released by many cell types that participate in cell/cell communication. EVs carry various proteins, nucleic acids, lipids, and small molecules that influence cells that ingest the EVs. Tumor-derived extracellular vesicles (TEVs) play a significant role in every stage of immunoediting, and their cargoes change from immune-activating in the early stages of immunoediting into immunosuppressing in the escape phase. In addition, their cargos change with different treatments or stress conditions and can be influenced to be more immune stimulatory against cancer. This review focuses on the emerging understanding of how TEVs affect the differentiation and effector functions of stromal cells and their role in immunoediting, from the early stages of immunoediting to immune escape. Consideration of how TEVs can be therapeutically utilized includes different treatments that can modify TEV to support cancer immunotherapy.
Collapse
|
19
|
Alia Moosavian S, Hashemi M, Etemad L, Daneshmand S, Salmasi Z. Melanoma-derived exosomes: Versatile extracellular vesicles for diagnosis, metastasis, immune modulation, and treatment of melanoma. Int Immunopharmacol 2022; 113:109320. [DOI: 10.1016/j.intimp.2022.109320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
20
|
Srivastava A, Rathore S, Munshi A, Ramesh R. Organically derived exosomes as carriers of anticancer drugs and imaging agents for cancer treatment. Semin Cancer Biol 2022; 86:80-100. [PMID: 35192929 PMCID: PMC9388703 DOI: 10.1016/j.semcancer.2022.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), is the umbrella term used for different types of vesicles produced by the cells, among which exosomes form the largest group. Exosomes perform intercellular communication by carrying several biologics from donor or parental cells and delivering them to recipient cells. Their unique cargo-carrying capacity has recently been explored for use as delivery vehicles of anticancer drugs and imaging agents. Being naturally produced, exosomes have many advantages over synthetic lipid-based nanoparticles currently being used clinically to treat cancer and other diseases. The finding of the role of exosomes in human diseases has led to numerous preclinical and clinical studies exploring their use as an amenable drug delivery vehicle and a theranostic in cancer diagnosis and treatment. However, there are certain limitations associated with exosomes, with the most important being the selection of the biological source for producing highly biocompatible exosomes on a large scale. This review article explores the various sources from which therapeutically viable exosomes can be isolated for use as drug carriers for cancer treatment. The methods of exosome isolation and the process of loading them with cancer therapeutics and imaging agents are also discussed in the follow-up sections. Finally, the article concludes with future directions for exosome-based applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Akhil Srivastava
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shipra Rathore
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
21
|
Hiepp L, Mayr D, Gärtner K, Schmoeckel E, Klauschen F, Burges A, Mahner S, Zeidler R, Czogalla B. Carbonic anhydrase XII as biomarker and therapeutic target in ovarian carcinomas. PLoS One 2022; 17:e0271630. [PMID: 35901081 PMCID: PMC9333239 DOI: 10.1371/journal.pone.0271630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022] Open
Abstract
Targeting the tumor-associated carbonic anhydrase XII (CA XII) is considered a promising strategy to improve cancer treatment. As such progress is highly demanded for ovarian carcinomas, the present study aimed to provide deeper information about their CA XII expression profile. A large collection of tissue specimens was stained immunohistochemically with a specific anti-CA XII antibody to evaluate the expression in neoplastic and non-neoplastic epithelial ovarian cells. In addition, flow cytometry was used to measure CA XII expression on tumor cells from malignant ascites fluid. Binding of the antibody revealed a significant CA XII expression in most ovarian carcinoma tissue samples and ascites-derived ovarian carcinoma cells. Moreover, CA XII was expressed at higher levels in ovarian carcinomas as compared to borderline ovarian tumors and non-neoplastic ovarian epithelia. Within the carcinoma tissues, high expression of CA XII was associated with higher tumor grading and a trend towards shorter overall survival. Our results indicate that CA XII plays a crucial role for the malignancy of ovarian carcinoma cells and emphasize the potential of CA XII as a diagnostic marker and therapeutic target in the management of ovarian carcinomas.
Collapse
Affiliation(s)
- Lisa Hiepp
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Doris Mayr
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kathrin Gärtner
- Research Group Therapeutic Antibodies, Helmholtz Center Munich–German Research Center for Environmental Health, Munich, Germany
| | - Elisa Schmoeckel
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Reinhard Zeidler
- Research Group Therapeutic Antibodies, Helmholtz Center Munich–German Research Center for Environmental Health, Munich, Germany
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
22
|
Syeda S, Rawat K, Shrivastava A. Pharmacological Inhibition of Exosome Machinery: An Emerging Prospect in Cancer Therapeutics. Curr Cancer Drug Targets 2022; 22:560-576. [DOI: 10.2174/1568009622666220401093316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Exosomes are nanocarriers that mediate intercellular communication, crucial for normal physiological functions. However, exponentially emerging reports have correlated their dysregulated release with various pathologies, including cancer. In cancer, from stromal remodeling to metastasis, where tumor cells bypass the immune surveillance and show drug resistivity, it has been established to be mediated via tumor-derived exosomes. Owing to their role in cancer pathogenicity, exosome-based strategies offer enormous potential in treatment regimens. These strategies include the use of exosomes as a drug carrier or as an immunotherapeutic agent, which requires advanced nanotechnologies for exosome isolation and characterization. In contrast, pharmacological inhibition of exosome machinery surpasses the requisites of nanotechnology and thus emerges as an essential prospect in cancer therapeutics. In this line, researchers are currently trying to dissect the molecular pathways to reveal the involvement of key regulatory proteins that facilitate the release of tumor-derived exosomes. Subsequently, screening of various molecules in targeting these proteins, with eventual abatement of exosome-induced cancer pathogenicity, is being done. However, their clinical translation requires more extensive studies. Here we comprehensively review the molecular mechanisms regulating exosome release in cancer. Moreover, we give insight into the key findings that highlight the effect of various drugs as exosome blockers, which will add to the route of drug development in cancer management.
Collapse
Affiliation(s)
- Saima Syeda
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Kavita Rawat
- Department of Zoology, University of Delhi, Delhi-110007, India
| | | |
Collapse
|
23
|
Ye M, Wang J, Pan S, Zheng L, Wang ZW, Zhu X. Nucleic acids and proteins carried by exosomes of different origins as potential biomarkers for gynecologic cancers. Mol Ther Oncolytics 2022; 24:101-113. [PMID: 35024437 PMCID: PMC8718571 DOI: 10.1016/j.omto.2021.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Lihong Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
- Corresponding author Zhi-Wei Wang, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
- Corresponding author Xueqiong Zhu, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
24
|
Cappello F, Fais S. Extracellular vesicles in cancer pros and cons: the importance of the evidence-based medicine. Semin Cancer Biol 2022; 86:4-12. [DOI: 10.1016/j.semcancer.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
|
25
|
Cancer extracellular vesicles, tumoroid models, and tumor microenvironment. Semin Cancer Biol 2022; 86:112-126. [PMID: 35032650 DOI: 10.1016/j.semcancer.2022.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Cancer extracellular vesicles (EVs), or exosomes, promote tumor progression through enhancing tumor growth, initiating epithelial-to-mesenchymal transition, remodeling the tumor microenvironment, and preparing metastatic niches. Three-dimensionally (3D) cultured tumoroids / spheroids aim to reproduce some aspects of tumor behavior in vitro and show increased cancer stem cell properties. These properties are transferred to their EVs that promote tumor growth. Moreover, recent tumoroid models can be furnished with aspects of the tumor microenvironment, such as vasculature, hypoxia, and extracellular matrix. This review summarizes tumor tissue culture and engineering platforms compatible with EV research. For example, the combination experiments of 3D-tumoroids and EVs have revealed multifunctional proteins loaded in EVs, such as metalloproteinases and heat shock proteins. EVs or exosomes are able to transfer their cargo molecules to recipient cells, whose fates are often largely altered. In addition, the review summarizes approaches to EV labeling technology using fluorescence and luciferase, useful for studies on EV-mediated intercellular communication, biodistribution, and metastatic niche formation.
Collapse
|
26
|
Kumar R, Kumar A, Ram S, Angeli A, Bonardi A, Nocentini A, Gratteri P, Supuran CT, Sharma PK. Novel benzenesulfonamide-bearing pyrazoles and 1,2,4-thiadiazoles as selective carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 2022; 355:e2100241. [PMID: 34596922 DOI: 10.1002/ardp.202100241] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/28/2021] [Accepted: 09/13/2021] [Indexed: 11/11/2022]
Abstract
Two series comprising 20 novel benzenesulfonamides bearing thioureido-linked pyrazole 8 and amino-1,2,4-thiadiazole 10 were synthesized and assayed as human carbonic anhydrase (hCA) inhibitors against isoforms I and II as well as the tumor-associated isoforms IX and XII. Molecular modeling studies of some potent derivatives (8a, 8c, 10a, and 10c) were also performed against isoforms hCA I, II, and XII. Both the promising series of compounds were synthesized by using commercially available mtethyl ketones and sulfanilamide as the starting materials. Interestingly, this paper also reports a novel methodology for the synthesis of amino-1,2,4-thiadiazoles 10 using 3-amino isoxazoles and 4-isothiocyanatobenzenesulfonamide as reactants. The activity profile of all the newly synthesized compounds reveals that amino-linked 1,2,4-thiadiazoles 10 were better inhibitors of the cytosolic isoform, hCA I, as compared to thioureido-linked pyrazoles 8. Further, hCA II was strongly inhibited by nearly all the newly synthesized sulfonamides, while all the compounds were less effective as hCA IX and XII inhibitors compared to the standard drug acetazolamide. However, in terms of selectivity, compound 8e was found to be the most selective inhibitor of hCA II, which is the isoform associated with glaucoma, edema, altitude sickness, and epilepsy.
Collapse
Affiliation(s)
- Rajiv Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- Department of Chemistry, Ch. Mani Ram Godara Government College for Women, Bhodia Khera, Fatehabad, India
| | - Amit Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Sita Ram
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- Department of Chemistry, J. C. Bose University of Science and Technology, YMCA, Faridabad, India
| | - Andrea Angeli
- NEUROFARBA Department-Pharmaceutical and Nutraceutical Section, University of Florence, Polo Scientifico, Firenze, Italy
| | - Alessandro Bonardi
- NEUROFARBA Department-Pharmaceutical and Nutraceutical Section, University of Florence, Polo Scientifico, Firenze, Italy
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modelling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Firenze, Italy
| | - Alessio Nocentini
- NEUROFARBA Department-Pharmaceutical and Nutraceutical Section, University of Florence, Polo Scientifico, Firenze, Italy
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modelling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Firenze, Italy
| | - Paola Gratteri
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, Laboratory of Molecular Modelling Cheminformatics & QSAR, University of Florence, Polo Scientifico, Firenze, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department-Pharmaceutical and Nutraceutical Section, University of Florence, Polo Scientifico, Firenze, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
27
|
Cutliffe AL, McKenna SL, Chandrashekar DS, Ng A, Devonshire G, Fitzgerald RC, O’Donovan TR, Mackrill JJ. Alterations in the Ca2+ toolkit in oesophageal adenocarcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:543-575. [PMID: 36046118 PMCID: PMC9400700 DOI: 10.37349/etat.2021.00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
Aim: To investigate alterations in transcription of genes, encoding Ca2+ toolkit proteins, in oesophageal adenocarcinoma (OAC) and to assess associations between gene expression, tumor grade, nodal-metastatic stage, and patient survival. Methods: The expression of 275 transcripts, encoding components of the Ca2+ toolkit, was analyzed in two OAC datasets: the Cancer Genome Atlas [via the University of Alabama Cancer (UALCAN) portal] and the oesophageal-cancer, clinical, and molecular stratification [Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS)] dataset. Effects of differential expression of these genes on patient survival were determined using Kaplan-Meier log-rank tests. OAC grade- and metastatic-stage status was investigated for a subset of genes. Adjustment for the multiplicity of testing was made throughout. Results: Of the 275 Ca2+-toolkit genes analyzed, 75 displayed consistent changes in expression between OAC and normal tissue in both datasets. The channel-encoding genes, N-methyl-D-aspartate receptor 2D (GRIN2D), transient receptor potential (TRP) ion channel classical or canonical 4 (TRPC4), and TRP ion channel melastatin 2 (TRPM2) demonstrated the greatest increase in expression in OAC in both datasets. Nine genes were consistently upregulated in both datasets and were also associated with improved survival outcomes. The 6 top-ranking genes for the weighted significance of altered expression and survival outcomes were selected for further analysis: voltage-gated Ca2+ channel subunit α 1D (CACNA1D), voltage-gated Ca2+ channel auxiliary subunit α2 δ4 (CACNA2D4), junctophilin 1 (JPH1), acid-sensing ion channel 4 (ACCN4), TRPM5, and secretory pathway Ca2+ ATPase 2 (ATP2C2). CACNA1D, JPH1, and ATP2C2 were also upregulated in advanced OAC tumor grades and nodal-metastatic stages in both datasets. Conclusions: This study has unveiled alterations of the Ca2+ toolkit in OAC, compared to normal tissue. Such Ca2+ signalling findings are consistent with those from studies on other cancers. Genes that were consistently upregulated in both datasets might represent useful markers for patient diagnosis. Genes that were consistently upregulated, and which were associated with improved survival, might be useful markers for patient outcome. These survival-associated genes may also represent targets for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Alana L. Cutliffe
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| | - Sharon L. McKenna
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Darshan S. Chandrashekar
- Department of Pathology, Molecular & Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alvin Ng
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Rebecca C. Fitzgerald
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Tracey R. O’Donovan
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - John J. Mackrill
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| |
Collapse
|
28
|
Logozzi M, Mizzoni D, Di Raimo R, Giuliani A, Maggi M, Sciarra A, Fais S. Plasmatic Exosome Number and Size Distinguish Prostate Cancer Patients From Healthy Individuals: A Prospective Clinical Study. Front Oncol 2021; 11:727317. [PMID: 34745949 PMCID: PMC8564386 DOI: 10.3389/fonc.2021.727317] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
There is a urgent need for valuable strategy in early and less invasive diagnosis for cancer. Preliminary data have shown that the plasmatic levels of exosomes increase in cancer condition. This study investigates the relevance of plasmatic levels and size distribution of exosomes in 42 individuals with no signs of urological disease (CTR) as compared to 65 prostate cancer patients (PCa). It was used Nanoparticle Tracking Analysis (NTA), a highly reliable and sensitive method for exosomes characterization and quantification. The relation structure among the NTA-derived parameters was assessed by means of Principal Component Analysis, which allowed detecting the global discriminant power of NTA test in terms of Receiver Operating Characteristic (ROC) curve and the selection of cut-off thresholds. The results showed that PCa had significantly higher plasmatic levels of exosomes and that the exosomes were smaller in size as compared to the CTR; the values reached 89% sensitivity and 71% specificity, in distinguishing PCa from CTR. These results propose a new exosome-based non-invasive clinical approach for the clinical follow-up of prostate cancer undergoing surgical treatment; in addition this method may be developed as a new screening test for prostate cancer's early diagnosis. While this clinical study was performed in prostate cancer, it may represent a proof of concept extendable to virtually all cancers, as it is suggested by both pre-clinical evidence and clinical data obtained with different technical approaches.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Maggi
- Department of Urology, Policlinico Umberto I, Università La Sapienza, Rome, Italy
| | - Alessandro Sciarra
- Department of Urology, Policlinico Umberto I, Università La Sapienza, Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
29
|
Zhong Y, Li H, Li P, Chen Y, Zhang M, Yuan Z, Zhang Y, Xu Z, Luo G, Fang Y, Li X. Exosomes: A New Pathway for Cancer Drug Resistance. Front Oncol 2021; 11:743556. [PMID: 34631581 PMCID: PMC8497983 DOI: 10.3389/fonc.2021.743556] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Exosomes are extracellular vesicles (EVs) that are secreted into body fluids by multiple cell types and are enriched in bioactive molecules, although their exact contents depend on the cells of origin. Studies have shown that exosomes in the tumor microenvironment affect tumor growth, metastasis and drug resistance by mediating intercellular communication and the transport of specific molecules, although their exact mechanisms of action need to be investigated further. In this review, we have summarized current knowledge on the relationship between tumor drug resistance and exosomes, and have discussed the potential applications of exosomes as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yunbin Zhong
- Hand, Foot Vascular Surgery, Tungwah Hospital to Sun Yet-sen University, Dongguan, China
| | - Haibo Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Peiwen Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Chen
- Dermatology Department, The First Hospital of Changsha, Changsha, China
| | - Mengyao Zhang
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhendong Yuan
- Hand, Foot Vascular Surgery, Tungwah Hospital to Sun Yet-sen University, Dongguan, China
| | - Yufang Zhang
- Anyang Tumor Hospital, The Fourth Affiliated Hospital of Henan University of Science and Technology, Anyang, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Geng Luo
- Hand, Foot Vascular Surgery, Tungwah Hospital to Sun Yet-sen University, Dongguan, China
| | - Yuan Fang
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Abstract
The transmission of information between tumor cells and other cell types in the tumor microenvironment plays an important role in tumor metastasis and is critically modulated by exosomes and other mediators. Tumor-derived exosomes can promote epithelial-mesenchymal transition, angiogenesis, immune escape, formation of the pre-metastatic microenvironment, and transmission of drug-resistant molecules, thereby promoting tumor growth, invasion, and metastasis. Integrins are important regulatory molecules on exosomes that can locate metastatic cells at the initial stage of metastasis and show good organotropism. This fact suggests that a clear understanding of the roles of exosomal integrins will be beneficial for future clinical applications. Follow-up studies on exosomes using continuously updated purification techniques and identification methods are extremely important. In addition to their potential as cancer biomarkers, exosomes also provide new research directions for precision medicine. Currently, exosomes have potential value in disease treatment and provide clinicians with more meaningful judgment standards.
Collapse
|
31
|
Logozzi M, Di Raimo R, Mizzoni D, Fais S. What we know on the potential use of exosomes for nanodelivery. Semin Cancer Biol 2021; 86:13-25. [PMID: 34517111 DOI: 10.1016/j.semcancer.2021.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/19/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022]
Abstract
Antitumor therapy is taking into consideration the possibility to use natural nanovesicles, called exosomes, as an ideal delivery for both old and new anti-cancer molecules. This with the attempt to improve the efficacy, at the same time reducing the systemic toxicity of physical, chemical, and biological molecules. Exosomes may in fact increase the level of biomimetism, through simulating what really occurs in nature. Although extracellularly released vesicles include both microvesicles (MVs) and exosomes, only exosomes have the size that may be considered suitable for potential use to this purpose, also by analogy with the diffusely used artificial nanoparticles, such as lyposomes. In fact, recent reports have shown that exosomes are able to interact with target cells within an organ or at a distance using different mechanisms. Much is yet to be understood about exosomes, and currently, we are looking at the visible top of an iceberg, with most of what we have to understand on these nanovesicles still under the sea. In fact, we know that exosomes released by normal cells always trigger positive effects, while those released by cells in pathological condition, such as tumors may induce undesired, dangerous, and mostly unknown effects. To date we have many pre-clinical data available and possibly useful to think about a strategic use of exosomes as a delivery nanodevice in cancer treatment. However, this review wants to critically emphasize two important points actually hampering further discussion in the field : (i) the clinical data are virtually absent at the moment ; (ii) the best cellular source of exosomes to be used to deliver drugs is really far to be defined. Facing off these two points may well facilitate the attempt to figure out this very important issue for improving at the best future anti-cancer treatments.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
32
|
Mishra CB, Mongre RK, Prakash A, Jeon R, Supuran CT, Lee MS. Anti-breast cancer action of carbonic anhydrase IX inhibitor 4-[4-(4-Benzo[1,3]dioxol-5-ylmethyl-piperazin-1-yl)-benzylidene-hydrazinocarbonyl]-benzenesulfonamide (BSM-0004): in vitro and in vivo studies. J Enzyme Inhib Med Chem 2021; 36:954-963. [PMID: 33947294 PMCID: PMC8118463 DOI: 10.1080/14756366.2021.1909580] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Anti-breast cancer action of novel human carbonic anhydrase IX (hCA IX) inhibitor BSM-0004 has been investigated using in vitro and in vivo models of breast cancer. BSM-0004 was found to be a potent and selective hCA IX inhibitor with a Ki value of 96 nM. In vitro anticancer effect of BSM-0004 was analysed against MCF 7 and MDA-MA-231 cells, BSM-0004 exerted an effective cytotoxic effect under normoxic and hypoxic conditions, inducing apoptosis in MCF 7 cells. Additionally, this compound significantly regulates the expression of crucial biomarkers associated with apoptosis. The investigation was extended to confirm the efficacy of this hCA IX inhibitor against in vivo model of breast cancer. The results specified that the treatment of BSM-0004 displayed an effective in vivo anticancer effect, reducing tumour growth in a xenograft cancer model. Hence, our investigation delivers an effective anti-breast cancer agent that engenders the anticancer effect by inhibiting hCA IX.
Collapse
Affiliation(s)
| | - Raj Kumar Mongre
- Department of Biosystem, Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul, Republic of Korea
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University, Gurgaon, India
| | - Raok Jeon
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Florence, Italy
| | - Myeong-Sok Lee
- Department of Biosystem, Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Macario AJL, Conway de Macario E. Chaperonins in cancer: Expression, function, and migration in extracellular vesicles. Semin Cancer Biol 2021; 86:26-35. [PMID: 34087417 DOI: 10.1016/j.semcancer.2021.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/08/2023]
Abstract
The chaperonins CCT and Hsp60 are molecular chaperones, members of the chaperone system (CS). Chaperones are cytoprotective but if abnormal in quantity or quality they may cause diseases, the chaperonopathies. Here, recent advances in the understanding of CCT and Hsp60 in cancerology are briefly discussed, focusing on breast and brain cancers. CCT subunits, particularly CCT2, were increased in breast cancer cells and this correlated with tumor progression. Experimental induction of CCT2 increase was accompanied by an increase of CCT3, 4, and 5, providing another evidence for the interconnection between the members of the CS and the difficulties expected while manipulating one member with therapeutic purposes. Another in silico study demonstrated a direct correlation between the increase in the tumor tissue of the mRNA levels of all CCT subunits, except CCTB6, with bad prognosis. Studies with glioblastomas demonstrated an increase in the CCT subunits in the tumor tissue and in extracellular vesicles (EVs) derived from them. Expression levels of CCT1, 2, 6A, and 7 were the most increased and markers of bad prognosis, particularly CCT6A. A method for measuring Hsp60 and related miRNA in exosomes from blood of patients with glioblastomas or other brain tumors was discussed, and the results indicate that the triad Hsp60-related miRNAs-exosomes has potential regarding diagnosis and patient monitoring. All these data provide a strong foundation for future studies on the role played by chaperonins in carcinogenesis and for fully developing their theranostics applications along with exosomes.
Collapse
Affiliation(s)
- Alberto J L Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA; Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| |
Collapse
|
34
|
Hou PP, Chen HZ. Extracellular vesicles in the tumor immune microenvironment. Cancer Lett 2021; 516:48-56. [PMID: 34082025 DOI: 10.1016/j.canlet.2021.05.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) have gained significant attention in recent decades as major mediators of intercellular communication that are involved in various essential physiological and pathological processes. They are secreted by almost all cell types and carry bioactive materials, such as proteins, lipids and nucleic acids, that can be transmitted from host cells to recipient cells, thereby eliciting phenotypic and functional alterations in the recipient cells. Recent evidence shows that EVs play essential roles in remodeling the tumor immune microenvironment (TIME). EVs derived from tumor cells and immune cells mediate mutual communication at proximal and distal sites, which determines tumor fate and antitumor therapeutic effectiveness. In this review, the current understanding of EVs and their roles in remodeling the TIME and modulating tumor-specific immunity are summarized. We mainly discuss the mutual regulation between tumor cells and tumor-infiltrating immune cells through the delivery of EVs in the TIME. We also describe the limitations of current studies and discuss directions for further research.
Collapse
Affiliation(s)
- Pei-Pei Hou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Hang-Zi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
35
|
Salciccia S, Capriotti AL, Laganà A, Fais S, Logozzi M, De Berardinis E, Busetto GM, Di Pierro GB, Ricciuti GP, Del Giudice F, Sciarra A, Carroll PR, Cooperberg MR, Sciarra B, Maggi M. Biomarkers in Prostate Cancer Diagnosis: From Current Knowledge to the Role of Metabolomics and Exosomes. Int J Mol Sci 2021; 22:ijms22094367. [PMID: 33922033 PMCID: PMC8122596 DOI: 10.3390/ijms22094367] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Early detection of prostate cancer (PC) is largely carried out using assessment of prostate-specific antigen (PSA) level; yet it cannot reliably discriminate between benign pathologies and clinically significant forms of PC. To overcome the current limitations of PSA, new urinary and serum biomarkers have been developed in recent years. Although several biomarkers have been explored in various scenarios and patient settings, to date, specific guidelines with a high level of evidence on the use of these markers are lacking. Recent advances in metabolomic, genomics, and proteomics have made new potential biomarkers available. A number of studies focused on the characterization of the specific PC metabolic phenotype using different experimental approaches has been recently reported; yet, to date, research on metabolomic application for PC has focused on a small group of metabolites that have been known to be related to the prostate gland. Exosomes are extracellular vesicles that are secreted from all mammalian cells and virtually detected in all bio-fluids, thus allowing their use as tumor biomarkers. Thanks to a general improvement of the technical equipment to analyze exosomes, we are able to obtain reliable quantitative and qualitative information useful for clinical application. Although some pilot clinical investigations have proposed potential PC biomarkers, data are still preliminary and non-conclusive.
Collapse
Affiliation(s)
- Stefano Salciccia
- Department of Urology, Sapienza Rome University, Policlinico Umberto I, 00161 Rome, Italy; (S.S.); (E.D.B.); (G.B.D.P.); (G.P.R.); (F.D.G.); (M.M.)
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza Rome University, 00161 Rome, Italy; (A.L.C.); (A.L.); (B.S.)
| | - Aldo Laganà
- Department of Chemistry, Sapienza Rome University, 00161 Rome, Italy; (A.L.C.); (A.L.); (B.S.)
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.F.); (M.L.)
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.F.); (M.L.)
| | - Ettore De Berardinis
- Department of Urology, Sapienza Rome University, Policlinico Umberto I, 00161 Rome, Italy; (S.S.); (E.D.B.); (G.B.D.P.); (G.P.R.); (F.D.G.); (M.M.)
| | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, Policlinico Riuniti, 71122 Foggia, Italy;
| | - Giovanni Battista Di Pierro
- Department of Urology, Sapienza Rome University, Policlinico Umberto I, 00161 Rome, Italy; (S.S.); (E.D.B.); (G.B.D.P.); (G.P.R.); (F.D.G.); (M.M.)
| | - Gian Piero Ricciuti
- Department of Urology, Sapienza Rome University, Policlinico Umberto I, 00161 Rome, Italy; (S.S.); (E.D.B.); (G.B.D.P.); (G.P.R.); (F.D.G.); (M.M.)
| | - Francesco Del Giudice
- Department of Urology, Sapienza Rome University, Policlinico Umberto I, 00161 Rome, Italy; (S.S.); (E.D.B.); (G.B.D.P.); (G.P.R.); (F.D.G.); (M.M.)
| | - Alessandro Sciarra
- Department of Urology, Sapienza Rome University, Policlinico Umberto I, 00161 Rome, Italy; (S.S.); (E.D.B.); (G.B.D.P.); (G.P.R.); (F.D.G.); (M.M.)
- Correspondence: ; Tel.: +39-0649974201; Fax: +39-0649970284
| | - Peter R. Carroll
- Department of Urology, UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA; (P.R.C.); (M.R.C.)
| | - Matthew R. Cooperberg
- Department of Urology, UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA; (P.R.C.); (M.R.C.)
| | - Beatrice Sciarra
- Department of Chemistry, Sapienza Rome University, 00161 Rome, Italy; (A.L.C.); (A.L.); (B.S.)
| | - Martina Maggi
- Department of Urology, Sapienza Rome University, Policlinico Umberto I, 00161 Rome, Italy; (S.S.); (E.D.B.); (G.B.D.P.); (G.P.R.); (F.D.G.); (M.M.)
| |
Collapse
|
36
|
He R, Wang Z, Shi W, Yu L, Xia H, Huang Z, Liu S, Zhao X, Xu Y, Yam JWP, Cui Y. Exosomes in hepatocellular carcinoma microenvironment and their potential clinical application value. Biomed Pharmacother 2021; 138:111529. [PMID: 34311529 DOI: 10.1016/j.biopha.2021.111529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has become a challenging disease in the world today. Due to the limitations on the current diagnosis and treatment as well as its high metastatic ability and high recurrence rate, HCC gradually becomes the second deadliest tumor. Exosomes are one of the types of cell-derived vesicles and can carry intracellular materials such as genetic materials, lipids, and proteins. In recent years, it has been verified that exosomes are linked to numerous physiological and pathological processes, including HCC. However, how exosomes affect HCC progression remains largely unknown. In this review, the exosome-mediated cellular material transfer between cells of different types in the HCC microenvironment and their effects on the behaviors and functions of recipient cells are studied. Furthermore, we also addressed the underlying molecular mechanisms. We believe that new light on the diagnosis of this cancer as well as its treatment strategies will be shed after a collation of literature in this area.
Collapse
Affiliation(s)
- Risheng He
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zhongrui Wang
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wenguang Shi
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Liang Yu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Haoming Xia
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Ziyue Huang
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Shuqiang Liu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xudong Zhao
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yi Xu
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| | - Yunfu Cui
- Department of Pancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
37
|
Chen Y, Wu T, Zhu Z, Huang H, Zhang L, Goel A, Yang M, Wang X. An integrated workflow for biomarker development using microRNAs in extracellular vesicles for cancer precision medicine. Semin Cancer Biol 2021; 74:134-155. [PMID: 33766650 DOI: 10.1016/j.semcancer.2021.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
EV-miRNAs are microRNA (miRNA) molecules encapsulated in extracellular vesicles (EVs), which play crucial roles in tumor pathogenesis, progression, and metastasis. Recent studies about EV-miRNAs have gained novel insights into cancer biology and have demonstrated a great potential to develop novel liquid biopsy assays for various applications. Notably, compared to conventional liquid biomarkers, EV-miRNAs are more advantageous in representing host-cell molecular architecture and exhibiting higher stability and specificity. Despite various available techniques for EV-miRNA separation, concentration, profiling, and data analysis, a standardized approach for EV-miRNA biomarker development is yet lacking. In this review, we performed a substantial literature review and distilled an integrated workflow encompassing important steps for EV-miRNA biomarker development, including sample collection and EV isolation, EV-miRNA extraction and quantification, high-throughput data preprocessing, biomarker prioritization and model construction, functional analysis, as well as validation. With the rapid growth of "big data", we highlight the importance of efficient mining of high-throughput data for the discovery of EV-miRNA biomarkers and integrating multiple independent datasets for in silico and experimental validations to increase the robustness and reproducibility. Furthermore, as an efficient strategy in systems biology, network inference provides insights into the regulatory mechanisms and can be used to select functionally important EV-miRNAs to refine the biomarker candidates. Despite the encouraging development in the field, a number of challenges still hinder the clinical translation. We finally summarize several common challenges in various biomarker studies and discuss potential opportunities emerging in the related fields.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Tan Wu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Zhongxu Zhu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China.
| |
Collapse
|
38
|
Zhou H, Qin F, Chen C. Designing Hypoxia-Responsive Nanotheranostic Agents for Tumor Imaging and Therapy. Adv Healthc Mater 2021; 10:e2001277. [PMID: 32985141 DOI: 10.1002/adhm.202001277] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/06/2020] [Indexed: 12/15/2022]
Abstract
Hypoxia, a common feature of most solid tumors, plays an important role in tumor proliferation, metastasis, and invasion, leading to drug, radiation, and photodynamic therapy resistance, and resulting in a sharp reduction in the disease-free survival rate of tumor patients. The lack of sufficient blood supply to the interior regions of tumors hinders the delivery of traditional drugs and contrast agents, interfering with their accumulation in the hypoxic region, and preventing efficient theranostics. Thus, there is a need for the fabrication of novel tumor theranostic agents that overcome these obstacles. Reports, in recent years, of hypoxia-responsive nanomaterials may provide with such means. In this review, a comprehensive description of the physicochemical and biological characteristics of hypoxic tumor tissues is provided, the principles of designing the hypoxia-responsive tumor theranostic agents are discussed, and the recent research into hypoxia-triggered nanomaterials is examined. Additionally, other hypoxia-associated responsive strategies, the current limitations, and future prospects for hypoxia-responsive nanotheranostic agents in tumor treatment are discussed.
Collapse
Affiliation(s)
- Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- College of Materials Sciences and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- Research Unit of Nanoscience and Technology Chinese Academy of Medical Sciences Beijing 100190 China
| | - Fenglan Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China
- College of Materials Sciences and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- Research Unit of Nanoscience and Technology Chinese Academy of Medical Sciences Beijing 100190 China
| |
Collapse
|
39
|
Blandina P, Provensi G, Passsani MB, Capasso C, Supuran CT. Carbonic anhydrase modulation of emotional memory. Implications for the treatment of cognitive disorders. J Enzyme Inhib Med Chem 2021; 35:1206-1214. [PMID: 32401069 PMCID: PMC7269066 DOI: 10.1080/14756366.2020.1766455] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which use CO2 as substrate, catalysing its interconversion to bicarbonate and a proton. In humans 15 CAs are expressed, 12 of which are catalytically active: the cytosolic CA I-III, VII, XIII, the membrane-bound CA IV, the mitochondrial CA VA and VB, the secreted CA VI, and the transmembrane CA IX, XII, XIV. Nine isoforms are present in the mammalian brain. Evidence supporting that CA inhibitors impair memory in humans has come from studies on topiramate and acetazolamide during acute high-altitude exposure. In contrast, administration of CA activators in animal models enhances memory and learning. Here we review the involvement of selective CA inhibition/activation in cognition-related disorders. CAs may represent a crucial family of new targets for improving cognition as well as in therapeutic areas, such as phobias, obsessive-compulsive disorder, generalised anxiety, and post-traumatic stress disorders, for which few efficient therapies are available.
Collapse
Affiliation(s)
- Patrizio Blandina
- Department of Neurofarba, Section of Pharmacology and Toxicology, University of Florence, Firenze, Italy
| | - Gustavo Provensi
- Department of Neurofarba, Section of Pharmacology and Toxicology, University of Florence, Firenze, Italy
| | - Maria Beatrice Passsani
- Department of Health Science, Section of Clinical Pharmacology and Oncology, University of Florence, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T Supuran
- Department of Neurofarba, University of Florence, Section of Pharmaceutical and Nutraceutical Sciences, Firenze, Italy
| |
Collapse
|
40
|
Mostafazadeh M, Samadi N, Kahroba H, Baradaran B, Haiaty S, Nouri M. Potential roles and prognostic significance of exosomes in cancer drug resistance. Cell Biosci 2021; 11:1. [PMID: 33407894 PMCID: PMC7789218 DOI: 10.1186/s13578-020-00515-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Drug resistance is a major impediment in cancer therapy which strongly reduces the efficiency of anti-cancer drugs. Exosomes are extracellular vesicles with cup or spherical shape with a size range of 40-150 nm released by eukaryotic cells that contain genetic materials, proteins, and lipids which mediate a specific cell-to-cell communication. The potential roles of exosomes in intrinsic and acquired drug resistance have been reported in several studies. Furthermore, a line of evidence suggested that the content of exosomes released from tumor cells in biological samples may be associated with the clinical outcomes of cancer patients. In this review, we highlighted the recent studies regarding the potential roles of exosomes in tumor initiation, progression, and chemoresistance. This study suggests the possible role of exosomes for drug delivery and their contents in prognosis and resistance to chemotherapy in cancer patients.
Collapse
Affiliation(s)
- Mostafa Mostafazadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Li S, Wang W. Extracellular Vesicles in Tumors: A Potential Mediator of Bone Metastasis. Front Cell Dev Biol 2021; 9:639514. [PMID: 33869189 PMCID: PMC8047145 DOI: 10.3389/fcell.2021.639514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
As one of the most common metastatic sites, bone has a unique microenvironment for the growth and prosperity of metastatic tumor cells. Bone metastasis is a common complication for tumor patients and accounts for 15-20% of systemic metastasis, which is only secondary to lung and liver metastasis. Cancers prone to bone metastasis include lung, breast, and prostate cancer. Extracellular vesicles (EVs) are lipid membrane vesicles released from different cell types. It is clear that EVs are associated with multiple biological phenomena and are crucial for intracellular communication by transporting intracellular substances. Recent studies have implicated EVs in the development of cancer. However, the potential roles of EVs in the pathological exchange of bone cells between tumors and the bone microenvironment remain an emerging area. This review is focused on the role of tumor-derived EVs in bone metastasis and possible regulatory mechanisms.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University, Shenyang, China
- *Correspondence: Shenglong Li,
| | - Wei Wang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- Wei Wang,
| |
Collapse
|
42
|
Exosomes: Their Role in Pathogenesis, Diagnosis and Treatment of Diseases. Cancers (Basel) 2020; 13:cancers13010084. [PMID: 33396739 PMCID: PMC7795854 DOI: 10.3390/cancers13010084] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The aim of this review is to provide an overview of the current scientific evidence concerning the role played by exosomes in the pathogenesis, diagnosis and treatment of diseases. The potential use of exosomes as delivery vectors for small-molecule therapeutic agents will be discussed. In addition, a special emphasis will be placed on the involvement of exosomes in oncological diseases, as well as to their potential therapeutic application as liquid biopsy tools mainly in cancer diagnosis. A better understanding of exosome biology could improve the results of clinical interventions using exosomes as therapeutic agents. Abstract Exosomes are lipid bilayer particles released from cells into their surrounding environment. These vesicles are mediators of near and long-distance intercellular communication and affect various aspects of cell biology. In addition to their biological function, they play an increasingly important role both in diagnosis and as therapeutic agents. In this paper, we review recent literature related to the molecular composition of exosomes, paying special attention to their role in pathogenesis, along with their application as biomarkers and as therapeutic tools. In this context, we analyze the potential use of exosomes in biomedicine, as well as the limitations that preclude their wider application.
Collapse
|
43
|
Ozensoy Guler O, Supuran CT, Capasso C. Carbonic anhydrase IX as a novel candidate in liquid biopsy. J Enzyme Inhib Med Chem 2020; 35:255-260. [PMID: 31790601 PMCID: PMC6896409 DOI: 10.1080/14756366.2019.1697251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
Among the diagnostic techniques for the identification of tumour biomarkers, the liquid biopsy is considered one that offers future research on precision diagnosis and treatment of tumours in a non-invasive manner. The approach consists of isolating tumor-derived components, such as circulating tumour cells (CTC), tumour cell-free DNA (ctDNA), and extracellular vesicles (EVs), from the patient peripheral blood fluids. These elements constitute a source of genomic and proteomic information for cancer treatment. Within the tumour-derived components of the body fluids, the enzyme indicated with the acronym CA IX and belonging to the superfamily of carbonic anhydrases (CA, EC 4.2.1.1) is a promising aspirant for checking tumours. CA IX is a transmembrane-CA isoform that is strongly overexpressed in many cancers being not much diffused in healthy tissues except the gastrointestinal tract. Here, it is summarised the role of CA IX as tumour-associated protein and its putative relationship in liquid biopsyfor diagnosing and monitoring cancer progression.
Collapse
Affiliation(s)
- Ozen Ozensoy Guler
- Department of Medical Biology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Claudiu. T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| |
Collapse
|
44
|
Logozzi M, Mizzoni D, Capasso C, Del Prete S, Di Raimo R, Falchi M, Angelini DF, Sciarra A, Maggi M, Supuran CT, Fais S. Plasmatic exosomes from prostate cancer patients show increased carbonic anhydrase IX expression and activity and low pH. J Enzyme Inhib Med Chem 2020; 35:280-288. [PMID: 31790614 PMCID: PMC6896418 DOI: 10.1080/14756366.2019.1697249] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 12/27/2022] Open
Abstract
Acidity, hypoxia and increased release of exosomes are severe phenotypes of tumours. The regulation of pH in tumours involves the interaction of several proteins, including the carbonic anhydrases which catalyze the formation of bicarbonate and protons from carbon dioxide and water. Among CA isoforms, CA IX is over-expressed in a large number of solid tumours, conferring to cancer cells a survival advantage in hypoxic and acidic microenvironment, but there isn't evidence that CA IX expression could have a real clinical impact. Therefore, in this study for the first time the expression and activity of CA IX have been investigated in the plasmatic exosomes obtained from patients with prostate carcinoma (PCa). For this purpose, the study was performed through different methodological approaches, such as NTA, western blot analysis, enzyme activity assay, Nanoscale flow cytometry, ELISA, confocal microscopy. The results showed that PCa exosomes significantly overexpressed CA IX levels and related activity as compared to healthy donors. Furthermore, CA IX expression and activity were correlated to the exosome intraluminal pH, demonstrating for the first time that PCa exosomes are acidic. Our data suggest the possible use of the exosomal CA IX expression and activity as a biomarker of cancer progression in PCa.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Clemente Capasso
- National Research Council, Institute of Biosciences and BioResources, Naples, Italy
| | - Sonia Del Prete
- National Research Council, Institute of Biosciences and BioResources, Naples, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | - Alessandro Sciarra
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Martina Maggi
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, University of Florence, Section of Pharmaceutical Chemistry, Florence, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
45
|
Zhang H, Lu J, Liu J, Zhang G, Lu A. Advances in the discovery of exosome inhibitors in cancer. J Enzyme Inhib Med Chem 2020; 35:1322-1330. [PMID: 32543905 PMCID: PMC7717571 DOI: 10.1080/14756366.2020.1754814] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Exosomes are small membrane vesicles released by most eukaryotic cells. They are considered to play an essential role in cell-to-cell communication, and It is also found that they serve as functional mediators in many severe diseases, including progression of various types of cancers. Inhibition of exosome release may slow the progression of some cancers; thus, exosome has been an attractive target for cancer treatment. Over the years, considerable efforts have been made to discover novel, highly potent and excellently selective exosome inhibitors. Most of these inhibitors are derived from synthetic compounds, some of which are currently existed drugs and found to have the potential to inhibit exosome release. In this review, we briefly discussed the development of exosome inhibitors that are currently discovered and provided guidance for the future development of inhibitors.
Collapse
Affiliation(s)
- Huarui Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute of Integrated Bioinfomedicine and Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jun Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Integrated Bioinfomedicine and Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jin Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute of Integrated Bioinfomedicine and Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute of Integrated Bioinfomedicine and Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute of Integrated Bioinfomedicine and Translational Science, Hong Kong Baptist University Shenzhen Research Institute and Continuing Education, Shenzhen, China
| |
Collapse
|
46
|
Legumain Induces Oral Cancer Pain by Biased Agonism of Protease-Activated Receptor-2. J Neurosci 2020; 41:193-210. [PMID: 33172978 DOI: 10.1523/jneurosci.1211-20.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most painful cancers, which interferes with orofacial function including talking and eating. We report that legumain (Lgmn) cleaves protease-activated receptor-2 (PAR2) in the acidic OSCC microenvironment to cause pain. Lgmn is a cysteine protease of late endosomes and lysosomes that can be secreted; it exhibits maximal activity in acidic environments. The role of Lgmn in PAR2-dependent cancer pain is unknown. We studied Lgmn activation in human oral cancers and oral cancer mouse models. Lgmn was activated in OSCC patient tumors, compared with matched normal oral tissue. After intraplantar, facial or lingual injection, Lgmn evoked nociception in wild-type (WT) female mice but not in female mice lacking PAR2 in NaV1.8-positive neurons (Par2Nav1.8), nor in female mice treated with a Lgmn inhibitor, LI-1. Inoculation of an OSCC cell line caused mechanical and thermal hyperalgesia that was reversed by LI-1. Par2Nav1.8 and Lgmn deletion attenuated mechanical allodynia in female mice with carcinogen-induced OSCC. Lgmn caused PAR2-dependent hyperexcitability of trigeminal neurons from WT female mice. Par2 deletion, LI-1, and inhibitors of adenylyl cyclase or protein kinase A (PKA) prevented the effects of Lgmn. Under acidified conditions, Lgmn cleaved within the extracellular N terminus of PAR2 at Asn30↓Arg31, proximal to the canonical trypsin activation site. Lgmn activated PAR2 by biased mechanisms in HEK293 cells to induce Ca2+ mobilization, cAMP formation, and PKA/protein kinase D (PKD) activation, but not β-arrestin recruitment or PAR2 endocytosis. Thus, in the acidified OSCC microenvironment, Lgmn activates PAR2 by biased mechanisms that evoke cancer pain.SIGNIFICANCE STATEMENT Oral squamous cell carcinoma (OSCC) is one of the most painful cancers. We report that legumain (Lgmn), which exhibits maximal activity in acidic environments, cleaves protease-activated receptor-2 (PAR2) on neurons to produce OSCC pain. Active Lgmn was elevated in OSCC patient tumors, compared with matched normal oral tissue. Lgmn evokes pain-like behavior through PAR2 Exposure of pain-sensing neurons to Lgmn decreased the current required to generate an action potential through PAR2 Inhibitors of adenylyl cyclase and protein kinase A (PKA) prevented the effects of Lgmn. Lgmn activated PAR2 to induce calcium mobilization, cAMP formation, and activation of protein kinase D (PKD) and PKA, but not β-arrestin recruitment or PAR2 endocytosis. Thus, Lgmn is a biased agonist of PAR2 that evokes cancer pain.
Collapse
|
47
|
Nabariya DK, Pallu R, Yenuganti VR. Exosomes: The protagonists in the tale of colorectal cancer? Biochim Biophys Acta Rev Cancer 2020; 1874:188426. [PMID: 32956762 DOI: 10.1016/j.bbcan.2020.188426] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023]
Abstract
Exosomes, which facilitate intercellular communication, antigen presentation and shuttling of biological agents, were initially thought as the cell's garbage cargo but today, after about 40 years of their discovery, we are now beginning to understand their potential role in diagnosis and therapy of several diseases including cancers. Various studies over the decades have signified the role of exosomes in different stages of cancer. Exosomes play a key role in colorectal cancer initiation (CRC), promotion of anti- apoptotic signaling pathways, regulating tumor microenvironment, enhancing tumorigenicity, promotion of angiogenesis, stem cell proliferation and endothelial cell migration, establishment of immune suppressive environment, formation of pre- metastatic niche and metastasis. Exosomes also elicits drug resistance. Since, they have the ability to cross the biological barrier, exosomes are now being explored as an efficient target specific drug delivery system that facilitates the shipping of different biomolecules and therapeutic drugs. However, cautious and strong investigative approaches are required before approving exosomes as therapeutics or drug delivery systems. In this review, we summarize the role of exosomes in different stages of CRC and also elaborate on the applications of exosomes in diagnosis and therapy with respect to CRC.
Collapse
Affiliation(s)
- Deepti Kailash Nabariya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Reddanna Pallu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Vengala Rao Yenuganti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
48
|
Logozzi M, Mizzoni D, Di Raimo R, Fais S. Exosomes: A Source for New and Old Biomarkers in Cancer. Cancers (Basel) 2020; 12:E2566. [PMID: 32916840 PMCID: PMC7565506 DOI: 10.3390/cancers12092566] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
Clinical oncology needs reliable tumor biomarkers to allow a follow-up of tumor patients who do not necessarily need invasive approaches. To date, the existing biomarkers are not sufficiently reliable, and many of them have generated more problems than facilitating the commitment of clinical oncologists. Over the last decades, a broad family of extracellular vesicles, with size ranging between micro to nano, has been raised as a new hope for potential sources of new tumor biomarkers. However, while knowledge in the field is increasing, we do not currently have definitive information allowing a clinical use of extracellular vesicles in cancer clinics. Recent evidence provides new perspective in clinical oncology, based on data showing that circulating nanovesicles called exosomes may represent a valuable source of tumor biomarkers. In this review, we discuss the existing clinical data supporting a key role of exosomes as a source of tumor biomarkers, including proteins and miRNAs, but also discuss the importance of the expression of known tumor biomarkers when expressed on exosomes.
Collapse
Affiliation(s)
| | | | | | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (M.L.); (D.M.); (R.D.R.)
| |
Collapse
|
49
|
Extracellular Vesicles-Based Drug Delivery Systems: A New Challenge and the Exemplum of Malignant Pleural Mesothelioma. Int J Mol Sci 2020; 21:ijms21155432. [PMID: 32751556 PMCID: PMC7432055 DOI: 10.3390/ijms21155432] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Research for the most selective drug delivery to tumors represents a fascinating key target in science. Alongside the artificial delivery systems identified in the last decades (e.g., liposomes), a family of natural extracellular vesicles (EVs) has gained increasing focus for their potential use in delivering anticancer compounds. EVs are released by all cell types to mediate cell-to-cell communication both at the paracrine and the systemic levels, suggesting a role for them as an ideal nano-delivery system. Malignant pleural mesothelioma (MPM) stands out among currently untreatable tumors, also due to the difficulties in achieving an early diagnosis. Thus, early diagnosis and treatment of MPM are both unmet clinical needs. This review looks at indirect and direct evidence that EVs may represent both a new tool for allowing an early diagnosis of MPM and a potential new delivery system for more efficient therapeutic strategies. Since MPM is a relatively rare malignant tumor and preclinical MPM models developed to date are very few and not reliable, this review will report data obtained in other tumor types, suggesting the potential use of EVs in mesothelioma patients as well.
Collapse
|
50
|
The Interplay of Dysregulated pH and Electrolyte Imbalance in Cancer. Cancers (Basel) 2020; 12:cancers12040898. [PMID: 32272658 PMCID: PMC7226178 DOI: 10.3390/cancers12040898] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics driven by a combination of poor vascular perfusion, regional hypoxia, and increased the flux of carbons through fermentative glycolysis. This leads to extracellular acidosis and intracellular alkalinization. Dysregulated pH dynamics influence cancer cell biology, from cell transformation and tumorigenesis to proliferation, local growth, invasion, and metastasis. Moreover, this dysregulated intracellular pH (pHi) drives a metabolic shift to increased aerobic glycolysis and reduced mitochondrial oxidative phosphorylation, referred to as the Warburg effect, or Warburg metabolism, which is a selective feature of cancer. This metabolic reprogramming confers a thermodynamic advantage on cancer cells and tissues by protecting them against oxidative stress, enhancing their resistance to hypoxia, and allowing a rapid conversion of nutrients into biomass to enable cell proliferation. Indeed, most cancers have increased glucose uptake and lactic acid production. Furthermore, cancer cells have very dysregulated electrolyte balances, and in the interaction of the pH dynamics with electrolyte, dynamics is less well known. In this review, we highlight the interconnected roles of dysregulated pH dynamics and electrolytes imbalance in cancer initiation, progression, adaptation, and in determining the programming and reprogramming of tumor cell metabolism.
Collapse
|