1
|
Buelvas N, Ugarte-Vio I, Asencio-Leal L, Muñoz-Uribe M, Martin-Martin A, Rojas-Fernández A, Jara JA, Tapia JC, Arias ME, López-Muñoz RA. Indomethacin Induces Spermidine/Spermine-N 1-Acetyltransferase-1 via the Nucleolin-CDK1 Axis and Synergizes with the Polyamine Oxidase Inhibitor Methoctramine in Lung Cancer Cells. Biomolecules 2023; 13:1383. [PMID: 37759783 PMCID: PMC10526249 DOI: 10.3390/biom13091383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Indomethacin is a non-selective NSAID used against pain and inflammation. Although cyclooxygenase (COX) inhibition is considered indomethacin's primary action mechanism, COX-independent ways are associated with beneficial effects in cancer. In colon cancer cells, the activation of the peroxisome proliferator-activated receptor-γ (PPAR-γ) is related to the increase in spermidine/spermine-N1-acetyltransferase-1 (SSAT-1), a key enzyme for polyamine degradation, and related to cell cycle arrest. Indomethacin increases the SSAT-1 levels in lung cancer cells; however, the mechanism relying on the SSAT-1 increase is unclear. Thus, we asked for the influence of the PPAR-γ on the SSAT-1 expression in two lung cancer cell lines: H1299 and A549. We found that the inhibition of PPAR-γ with GW9662 did not revert the increase in SSAT-1 induced by indomethacin. Because the mRNA of SSAT-1 suffers a pre-translation retention step by nucleolin, a nucleolar protein, we explored the relationship between indomethacin and the upstream translation regulators of SSAT-1. We found that indomethacin decreases the nucleolin levels and the cyclin-dependent kinase 1 (CDK1) levels, which phosphorylates nucleolin in mitosis. Overexpression of nucleolin partially reverts the effect of indomethacin over cell viability and SSAT-1 levels. On the other hand, Casein Kinase, known for phosphorylating nucleolin during interphase, is not modified by indomethacin. SSAT-1 exerts its antiproliferative effect by acetylating polyamines, a process reverted by the polyamine oxidase (PAOX). Recently, methoctramine was described as the most specific inhibitor of PAOX. Thus, we asked if methoctramine could increase the effect of indomethacin. We found that, when combined, indomethacin and methoctramine have a synergistic effect against NSCLC cells in vitro. These results suggest that indomethacin increases the SSAT-1 levels by reducing the CDK1-nucleolin regulatory axis, and the PAOX inhibition with methoctramine could improve the antiproliferative effect of indomethacin.
Collapse
Affiliation(s)
- Neudo Buelvas
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Isidora Ugarte-Vio
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Laura Asencio-Leal
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Matías Muñoz-Uribe
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Antonia Martin-Martin
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - Alejandro Rojas-Fernández
- Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| | - José A. Jara
- Instituto de Investigaciones en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago P.O. Box 8380544, Chile
| | - Julio C. Tapia
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago P.O. Box 8380453, Chile
| | - María Elena Arias
- Departamento de Producción Agropecuaria, Universidad de La Frontera, Temuco P.O. Box 4811230, Chile
| | - Rodrigo A. López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia P.O. Box 5110566, Chile
| |
Collapse
|
2
|
Nordio G, Piazzola F, Cozza G, Rossetto M, Cervelli M, Minarini A, Basagni F, Tassinari E, Dalla Via L, Milelli A, Di Paolo ML. From Monoamine Oxidase Inhibition to Antiproliferative Activity: New Biological Perspectives for Polyamine Analogs. Molecules 2023; 28:6329. [PMID: 37687158 PMCID: PMC10490032 DOI: 10.3390/molecules28176329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Monoamine oxidases (MAOs) are well-known pharmacological targets in neurological and neurodegenerative diseases. However, recent studies have revealed a new role for MAOs in certain types of cancer such as glioblastoma and prostate cancer, in which they have been found overexpressed. This finding is opening new frontiers for MAO inhibitors as potential antiproliferative agents. In light of our previous studies demonstrating how a polyamine scaffold can act as MAO inhibitor, our aim was to search for novel analogs with greater inhibitory potency for human MAOs and possibly with antiproliferative activity. A small in-house library of polyamine analogs (2-7) was selected to investigate the effect of constrained linkers between the inner amine functions of a polyamine backbone on the inhibitory potency. Compounds 4 and 5, characterized by a dianiline (4) or dianilide (5) moiety, emerged as the most potent, reversible, and mainly competitive MAO inhibitors (Ki < 1 μM). Additionally, they exhibited a high antiproliferative activity in the LN-229 human glioblastoma cell line (GI50 < 1 μM). The scaffold of compound 5 could represent a potential starting point for future development of anticancer agents endowed with MAO inhibitory activity.
Collapse
Affiliation(s)
- Giulia Nordio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Francesco Piazzola
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| | - Monica Rossetto
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| | - Manuela Cervelli
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy;
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (A.M.); (F.B.)
| | - Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (A.M.); (F.B.)
| | - Elisa Tassinari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy;
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (G.N.); (F.P.); (L.D.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy;
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (G.C.); (M.R.)
| |
Collapse
|
3
|
Perrone C, Pomella S, Cassandri M, Pezzella M, Giuliani S, Gasperi T, Porrazzo A, Alisi A, Pastore A, Codenotti S, Fanzani A, Barillari G, Conti LA, De Angelis B, Quintarelli C, Mariottini P, Locatelli F, Marampon F, Rota R, Cervelli M. Spermine oxidase induces DNA damage and sensitizes fusion negative rhabdomyosarcoma cells to irradiation. Front Cell Dev Biol 2023; 11:1061570. [PMID: 36755974 PMCID: PMC9900442 DOI: 10.3389/fcell.2023.1061570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric myogenic soft tissue sarcoma that includes fusion-positive (FP) and fusion-negative (FN) molecular subtypes. FP-RMS expresses PAX3-FOXO1 fusion protein and often shows dismal prognosis. FN-RMS shows cytogenetic abnormalities and frequently harbors RAS pathway mutations. Despite the multimodal heavy chemo and radiation therapeutic regimens, high risk metastatic/recurrent FN-RMS shows a 5-year survival less than 30% due to poor sensitivity to chemo-radiotherapy. Therefore, the identification of novel targets is needed. Polyamines (PAs) such as putrescine (PUT), spermidine (SPD) and spermine (SPM) are low-molecular-mass highly charged molecules whose intracellular levels are strictly modulated by specific enzymes. Among the latter, spermine oxidase (SMOX) regulates polyamine catabolism oxidizing SPM to SPD, which impacts cellular processes such as apoptosis and DNA damage response. Here we report that low SMOX levels are associated with a worse outcome in FN-RMS, but not in FP-RMS, patients. Consistently, SMOX expression is downregulated in FN-RMS cell lines as compared to normal myoblasts. Moreover, SMOX transcript levels are reduced FN-RMS cells differentiation, being indirectly downregulated by the muscle transcription factor MYOD. Noteworthy, forced expression of SMOX in two cell lines derived from high-risk FN-RMS: 1) reduces SPM and upregulates SPD levels; 2) induces G0/G1 cell cycle arrest followed by apoptosis; 3) impairs anchorage-independent and tumor spheroids growth; 4) inhibits cell migration; 5) increases γH2AX levels and foci formation indicative of DNA damage. In addition, forced expression of SMOX and irradiation synergize at activating ATM and DNA-PKCs, and at inducing γH2AX expression and foci formation, which suggests an enhancement in DNA damage response. Irradiated SMOX-overexpressing FN-RMS cells also show significant decrease in both colony formation capacity and spheroids growth with respect to single approaches. Thus, our results unveil a role for SMOX as inhibitor of tumorigenicity of FN-RMS cells in vitro. In conclusion, our in vitro results suggest that SMOX induction could be a potential combinatorial approach to sensitize FN-RMS to ionizing radiation and deserve further in-depth studies.
Collapse
Affiliation(s)
- Clara Perrone
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Science, “Department of Excellence 2018-2022”, University of Rome “Roma Tre”, Rome, Italy
| | - Silvia Pomella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Michele Pezzella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Giuliani
- Department of Science, “Department of Excellence 2018-2022”, University of Rome “Roma Tre”, Rome, Italy
| | - Tecla Gasperi
- Department of Science, “Department of Excellence 2018-2022”, University of Rome “Roma Tre”, Rome, Italy,Biostructures and Biosystems National Institute (INBB), Rome, Italy
| | - Antonella Porrazzo
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy,Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Anna Pastore
- Research Unit of Diagnostical and Management Innovations, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Libenzio Adrian Conti
- Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Paolo Mariottini
- Department of Science, “Department of Excellence 2018-2022”, University of Rome “Roma Tre”, Rome, Italy
| | - Franco Locatelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,*Correspondence: Rossella Rota, ; Manuela Cervelli,
| | - Manuela Cervelli
- Department of Science, “Department of Excellence 2018-2022”, University of Rome “Roma Tre”, Rome, Italy,*Correspondence: Rossella Rota, ; Manuela Cervelli,
| |
Collapse
|
4
|
Krysenko S, Lopez M, Meyners C, Purder PL, Zinser A, Hausch F, Wohlleben W. A novel synthetic inhibitor of polyamine utilization in Streptomyces coelicolor. FEMS Microbiol Lett 2023; 370:fnad096. [PMID: 37796882 DOI: 10.1093/femsle/fnad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
In this work, we present the first inhibitor of GlnA2Sc, a gamma-glutamylpolyamine synthetase, which allows Streptomyces coelicolor to detoxify high concentrations of polyamines and to utilize them as a carbon or nitrogen source. GlnA2 belongs to the class of glutamine synthetase-like (GS-like) enzymes that catalyze the glutamylation of different nitrogen-containing compounds. Whereas a number of inhibitors for GS are known, none of them are known to inhibit GlnA2. In this work, PPU268, an inhibitor for GlnA2 is presented that is structurally derived from the prototypic GS inhibitor-methionine sulfoximine (MSO). It combines two features: the binding mechanism of MSO and the amine substrate specificity of GlnA2Sc. This inhibitor is a novel compound to block the polyamine utilization in bacteria resulting in the inability to detoxify polyamines. This may offer a possibility to develop novel therapeutic strategies to combat actinobacterial human pathogens that encounter polyamines in the course of the infection processes.
Collapse
Affiliation(s)
- Sergii Krysenko
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Maria Lopez
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- University of Almería, Carr. Sacramento, s/n, 04120 La Cañada, Almería, Spain
| | - Christian Meyners
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Patrick L Purder
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Alina Zinser
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Felix Hausch
- Department of Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, Technical University Darmstadt, Karolinenplatz 5, 64289 Darmstadt, Germany
| | - Wolfgang Wohlleben
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Xiang B, Geng R, Zhang Z, Ji X, Zou J, Chen L, Liu J. Identification of the effect and mechanism of Yiyi Fuzi Baijiang powder against colorectal cancer using network pharmacology and experimental validation. Front Pharmacol 2022; 13:929836. [PMID: 36353478 PMCID: PMC9637639 DOI: 10.3389/fphar.2022.929836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 12/22/2023] Open
Abstract
Background: Yiyi Fuzi Baijiang powder (YFBP) is a traditional Chinese medicine used to treat colorectal cancer, although its bioactivity and mechanisms of action have not been studied in depth yet. The study intended to identify the potential targets and signaling pathways affected by YFBP during the treatment of colorectal cancer through pharmacological network analysis and to further analyze its chemical compositions and molecular mechanisms of action. Methods: The Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID), HitPredict (HIT), and Search Tool for Interactions of Chemicals (STITCH) databases were used to screen the bioactive components and promising targets of YFBP. Targets related to colorectal cancer were retrieved from the GeneCards and Gene Ontology databases. Cytoscape software was used to construct the "herb-active ingredient-target" network. The STRING database was used to construct and analyze protein-protein interactions (PPIs). Afterward, the R packages clusterProfiler and Cytoscape Hub plug-in were used to perform Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of target genes. The results of the network pharmacological analysis were also experimentally validated. Results: In total, 33 active components and 128 target genes were screened. Among them, 46 target genes were considered potential therapeutic targets that crossed the CRC target genes. The network pharmacology analysis showed that the active components of YFBP were correlated positively with CRC inflammatory target genes such as TLR4, TNF, and IL-6. The inflammation-related signaling pathways affected by the active components included the TNF-α, interleukin-17, and toll-like receptor signaling pathways. The active ingredients of YFBP, such as luteolin, β-sitosterol, myristic acid, and vanillin, may exert anti-tumor effects by downregulating SMOX expression via anti-inflammatory signaling and regulation of the TLR4/NF-κB signaling pathway. Conclusion: In the present study, the potential active components, potential targets, and key biological pathways involved in the YFBP treatment of CRC were determined, providing a theoretical foundation for further anti-tumor research.
Collapse
Affiliation(s)
- Bin Xiang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ruiman Geng
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhengkun Zhang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xuxu Ji
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiaqiong Zou
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Carpéné C, Viana P, Iffiú-Soltesz Z, Tapolcsányi P, Földi AÁ, Mátyus P, Dunkel P. Effects of Chemical Structures Interacting with Amine Oxidases on Glucose, Lipid and Hydrogen Peroxide Handling by Human Adipocytes. Molecules 2022; 27:6224. [PMID: 36234761 PMCID: PMC9571511 DOI: 10.3390/molecules27196224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022] Open
Abstract
Benzylamine is a natural molecule present in food and edible plants, capable of activating hexose uptake and inhibiting lipolysis in human fat cells. These effects are dependent on its oxidation by amine oxidases present in adipocytes, and on the subsequent hydrogen peroxide production, known to exhibit insulin-like actions. Virtually, other substrates interacting with such hydrogen peroxide-releasing enzymes potentially can modulate lipid accumulation in adipose tissue. Inhibition of such enzymes has also been reported to influence lipid deposition. We have therefore studied in human adipocytes the lipolytic and lipogenic activities of pharmacological entities designed to interact with amine oxidases highly expressed in this cell type: the semicarbazide-sensitive amine oxidase (SSAO also known as PrAO or VAP-1) and the monoamine oxidases (MAO). The results showed that SZV-2016 and SZV-2017 behaved as better substrates than benzylamine, releasing hydrogen peroxide once oxidized, and reproduced or even exceeded its insulin-like metabolic effects in fat cells. Additionally, several novel SSAO inhibitors, such as SZV-2007 and SZV-1398, have been evidenced and shown to inhibit benzylamine metabolic actions. Taken as a whole, our findings reinforce the list of molecules that influence the regulation of triacylglycerol assembly/breakdown, at least in vitro in human adipocytes. The novel compounds deserve deeper investigation of their mechanisms of interaction with SSAO or MAO, and constitute potential candidates for therapeutic use in obesity and diabetes.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, 31432 Toulouse, France
- Team Dinamix, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, 31432 Toulouse, France
| | - Pénélope Viana
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, 31432 Toulouse, France
- Team Dinamix, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, 31432 Toulouse, France
| | - Zsuzsa Iffiú-Soltesz
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, 31432 Toulouse, France
| | - Pál Tapolcsányi
- Department of Organic Chemistry, Semmelweis University, H-1092 Budapest, Hungary
| | - Anna Ágota Földi
- Department of Organic Chemistry, Semmelweis University, H-1092 Budapest, Hungary
| | - Péter Mátyus
- Department of Organic Chemistry, Semmelweis University, H-1092 Budapest, Hungary
- E-Group ICT SOFTWARE, H-1027 Budapest, Hungary
| | - Petra Dunkel
- Department of Organic Chemistry, Semmelweis University, H-1092 Budapest, Hungary
| |
Collapse
|
7
|
Identification and Characterization of Novel Small-Molecule SMOX Inhibitors. Med Sci (Basel) 2022; 10:medsci10030047. [PMID: 36135832 PMCID: PMC9504029 DOI: 10.3390/medsci10030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
The major intracellular polyamines spermine and spermidine are abundant and ubiquitous compounds that are essential for cellular growth and development. Spermine catabolism is mediated by spermine oxidase (SMOX), a highly inducible flavin-dependent amine oxidase that is upregulated during excitotoxic, ischemic, and inflammatory states. In addition to the loss of radical scavenging capabilities associated with spermine depletion, the catabolism of spermine by SMOX results in the production of toxic byproducts, including H2O2 and acrolein, a highly toxic aldehyde with the ability to form adducts with DNA and inactivate vital cellular proteins. Despite extensive evidence implicating SMOX as a key enzyme contributing to secondary injury associated with multiple pathologic states, the lack of potent and selective inhibitors has significantly impeded the investigation of SMOX as a therapeutic target. In this study, we used a virtual and physical screening approach to identify and characterize a series of hit compounds with inhibitory activity against SMOX. We now report the discovery of potent and highly selective SMOX inhibitors 6 (IC50 0.54 μM, Ki 1.60 μM) and 7 (IC50 0.23 μM, Ki 0.46 μM), which are the most potent SMOX inhibitors reported to date. We hypothesize that these selective SMOX inhibitors will be useful as chemical probes to further elucidate the impact of polyamine catabolism on mechanisms of cellular injury.
Collapse
|
8
|
Ragno R, Minarini A, Proia E, Lorenzo A, Milelli A, Tumiatti V, Fiore M, Fino P, Rutigliano L, Fioravanti R, Tahara T, Pacella E, Greco A, Canettieri G, Di Paolo ML, Agostinelli E. Bovine Serum Amine Oxidase and Polyamine Analogues: Chemical Synthesis and Biological Evaluation Integrated with Molecular Docking and 3-D QSAR Studies. J Chem Inf Model 2022; 62:3910-3927. [PMID: 35948439 DOI: 10.1021/acs.jcim.2c00559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural polyamines (PAs) are key players in cellular homeostasis by regulating cell growth and proliferation. Several observations highlight that PAs are also implicated in pathways regulating cell death. Indeed, the PA accumulation cytotoxic effect, maximized with the use of bovine serum amine oxidase (BSAO) enzyme, represents a valuable strategy against tumor progression. In the present study, along with the design, synthesis, and biological evaluation of a series of new spermine (Spm) analogues (1-23), a mixed structure-based (SB) and ligand-based (LB) protocol was applied. Binding modes of BSAO-PA modeled complexes led to clarify electrostatic and steric features likely affecting the BSAO-PA biochemical kinetics. LB and SB three-dimensional quantitative structure-activity relationship (Py-CoMFA and Py-ComBinE) models were developed by means of the 3d-qsar.com portal, and their analysis represents a strong basis for future design and synthesis of PA BSAO substrates for potential application in oxidative stress-induced chemotherapy.
Collapse
Affiliation(s)
- Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, Bologna 40126, Italy
| | - Eleonora Proia
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Antonini Lorenzo
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, Rimini 47921, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto, 237, Rimini 47921, Italy
| | - Marco Fiore
- Department Institute of Biochemistry and Cell Biology, IBBC-CNR, Via E. Ramarini, 32, Monterotondo Scalo Rome 00015, Italy
| | - Pasquale Fino
- UOC of Dermatology, Policlinico Umberto I Hospital, Sapienza Medical School of Rome, Viale del Policlinico 155, Rome I-00161, Italy
| | - Lavinia Rutigliano
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technology, Sapienza Università di Roma, P. le A. Moro 5, Roma 00185, Italy
| | - Tomoaki Tahara
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Elena Pacella
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy.,Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, Rome 00161, Italy
| | - Maria Luisa Di Paolo
- Department of Molecular Medicine, University Padua, Via G. Colombo 3, Padova 35131, Italy
| | - Enzo Agostinelli
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico155, Rome I-00161, Italy.,International Polyamines Foundation 'ETS-ONLUS', Via del Forte Tiburtino 98, Rome I-00159, Italy
| |
Collapse
|
9
|
Structure of human spermine oxidase in complex with a highly selective allosteric inhibitor. Commun Biol 2022; 5:787. [PMID: 35931745 PMCID: PMC9355956 DOI: 10.1038/s42003-022-03735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Human spermine oxidase (hSMOX) plays a central role in polyamine catabolism. Due to its association with several pathological processes, including inflammation and cancer, hSMOX has garnered interest as a possible therapeutic target. Therefore, determination of the structure of hSMOX is an important step to enable drug discovery and validate hSMOX as a drug target. Using insights from hydrogen/deuterium exchange mass spectrometry (HDX-MS), we engineered a hSMOX construct to obtain the first crystal structure of hSMOX bound to the known polyamine oxidase inhibitor MDL72527 at 2.4 Å resolution. While the overall fold of hSMOX is similar to its homolog, murine N1-acetylpolyamine oxidase (mPAOX), the two structures contain significant differences, notably in their substrate-binding domains and active site pockets. Subsequently, we employed a sensitive biochemical assay to conduct a high-throughput screen that identified a potent and selective hSMOX inhibitor, JNJ-1289. The co-crystal structure of hSMOX with JNJ-1289 was determined at 2.1 Å resolution, revealing that JNJ-1289 binds to an allosteric site, providing JNJ-1289 with a high degree of selectivity towards hSMOX. These results provide crucial insights into understanding the substrate specificity and enzymatic mechanism of hSMOX, and for the design of highly selective inhibitors. Rational engineering of human spermine oxidase yields crystallizable structures and the design of an allosteric inhibitor.
Collapse
|
10
|
Dumouchel JL, Kramlinger VM. Case Study 10: A Case to Investigate Acetyl Transferase Kinetics. Methods Mol Biol 2021; 2342:781-808. [PMID: 34272717 DOI: 10.1007/978-1-0716-1554-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Major routes of metabolism for marketed drugs are predominately driven by enzyme families such as cytochromes P450 and UDP-glucuronosyltransferases. Less studied conjugative enzymes, like N-acetyltransferases (NATs), are commonly associated with detoxification pathways. However, in the clinic, the high occurrence of NAT polymorphism that leads to slow and fast acetylator phenotypes in patient populations has been linked to toxicity for a multitude of drugs. A key example of this is the observed clinical toxicity in patients who exhibit the slow acetylator phenotype and were treated with isoniazid. Toxicity in patients has led to detailed characterization of the two NAT isoforms and their polymorphic genotypes. Investigation in recombinant enzymes, genotyped hepatocytes, and in vivo transgenic models coupled with acetylator status-driven clinical studies have helped understand the role of NATs in drug development, clinical study design and outcomes, and potential roles in human disease models. The selected case studies herein document NAT enzyme kinetics to explore substrate overlap from two human isoforms, preclinical species considerations, and clinical genotype population concerns.
Collapse
Affiliation(s)
- Jennifer L Dumouchel
- Molecular Pharmacology and Physiology Graduate Training Program, Brown University, Providence, RI, USA.
| | - Valerie M Kramlinger
- Translational Medicine, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, USA
| |
Collapse
|
11
|
Agostinelli E. Biochemical and pathophysiological properties of polyamines. Amino Acids 2020; 52:111-117. [PMID: 32072296 DOI: 10.1007/s00726-020-02821-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Enzo Agostinelli
- Department of Biochemical Sciences, A. Rossi Fanelli', Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy. .,International Polyamines Foundation 'ETS-ONLUS', Via del Forte Tiburtino 98, 00159, Rome, Italy.
| |
Collapse
|
12
|
Syatkin SP, Neborak EV, Khlebnikov AI, Komarova MV, Shevkun NA, Kravtsov EG, Blagonravov ML, Agostinelli E. The investigation of structure-activity relationship of polyamine-targeted synthetic compounds from different chemical groups. Amino Acids 2019; 52:199-211. [PMID: 31520286 DOI: 10.1007/s00726-019-02778-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/14/2019] [Indexed: 01/26/2023]
Abstract
The polyamine (PA) metabolism is involved in cell proliferation and differentiation. Increased cellular PA levels are observed in different types of cancers. Products of PA oxidation induce apoptosis in cancer cells. These observations open a perspective to exploit the enzymes of PA catabolism as a target for anticancer drug design. The substances capable to enhance PA oxidation may become potential anticancer agents. The goal of our study was to explore how the mode of ligand binding with a PA catabolic enzyme is associated with its stimulatory or inhibitory effect upon PA oxidation. Murine N1-acetylpolyamine oxidase (5LFO) crystalline structure was used for molecular docking with ligands of various chemical structures. In vitro experiments were carried out to evaluate the action of the tested compounds upon PA oxidative deamination in a cell-free test system from rat liver. Two amino acid residues (Aps211 and Tyr204) in the structure of 5LFO were found to be significant for binding with the tested compounds. 19 out of 51 screened compounds were activators and 17 were inhibitors of oxidative deamination of PA. Taken together, these results enabled to construct a recognition model with characteristic descriptors depicting activators and inhibitors. The general tendency indicated that a strong interaction with Asp211 or Tyr204 was rather typical for activators. The understanding of how the structure determines the binding mode of compounds with PA catabolic enzyme may help in explanation of their structure-activity relationship and thus promote structure-based drug design.
Collapse
Affiliation(s)
- Sergey P Syatkin
- Medical Institute, RUDN University (Peoples' Friendship University of Russia), Miklukho-Maklaya str.6, Moscow, 117198, Russia.
| | - Ekaterina V Neborak
- Medical Institute, RUDN University (Peoples' Friendship University of Russia), Miklukho-Maklaya str.6, Moscow, 117198, Russia
| | - Andrei I Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, Tomsk, 634050, Russia
- Scientific Research Institute of Biological Medicine, Altai State University, Barnaul, 656049, Russia
| | | | - Natalia A Shevkun
- Drug Product Division, Project Development Department, NEARMEDIC PHARMA LLC, Moscow, Russia
| | - Eduard G Kravtsov
- Medical Institute, RUDN University (Peoples' Friendship University of Russia), Miklukho-Maklaya str.6, Moscow, 117198, Russia
| | - Mikhail L Blagonravov
- Medical Institute, RUDN University (Peoples' Friendship University of Russia), Miklukho-Maklaya str.6, Moscow, 117198, Russia
| | - Enzo Agostinelli
- Department of Biochemical Sciences, SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- International Polyamines Foundation, ONLUS, Via del Forte Tiburtino, 98, 00159, Rome, Italy
| |
Collapse
|