1
|
Zohra T, Saeed F, Ikram A, Khan T, Alam S, Adil M, Gul A, Almawash S, Ayaz M. Nanomedicine as a potential novel therapeutic approach against the dengue virus. Nanomedicine (Lond) 2023; 18:1567-1584. [PMID: 37753727 DOI: 10.2217/nnm-2022-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Dengue is an arbovirus infection which is transmitted by Aedes mosquitoes. Its prompt detection and effective treatment is a global health challenge. Various nanoparticle-based vaccines have been formulated to present immunogen (antigens) to instigate an immune response or prevent virus spread, but no specific treatment has been devised. This review explores the role of nanomedicine-based therapeutic agents against dengue virus, taking into consideration the applicable dengue virus assays that are sensitive, specific, have a short turnaround time and are inexpensive. Various kinds of metallic, polymeric and lipid nanoparticles with safe and effective profiles present an alternative strategy that could provide a better remedy for eradicating the dengue virus.
Collapse
Affiliation(s)
- Tanzeel Zohra
- Public Health Laboratories Division, National Institute of Health, Islamabad, 45500, Pakistan
| | - Faryal Saeed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Ikram
- Public Health Laboratories Division, National Institute of Health, Islamabad, 45500, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| | - Siyab Alam
- Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| | - Muhammad Adil
- Department of Biotechnology, University of Malakand, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| | - Ayesha Gul
- Department of Chemical Engineering, Polytechnique Montreal, H3T IJ4, Canada
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18800 Dir (L), KP, Pakistan
| |
Collapse
|
2
|
Shimu MSS, Mahmud S, Tallei TE, Sami SA, Adam AA, Acharjee UK, Paul GK, Emran TB, Zaman S, Uddin MS, Saleh MA, Alshehri S, Ghoneim MM, Alruwali M, Obaidullah AJ, Jui NR, Kim J, Kim B. Phytochemical Compound Screening to Identify Novel Small Molecules against Dengue Virus: A Docking and Dynamics Study. Molecules 2022; 27:molecules27030653. [PMID: 35163918 PMCID: PMC8840231 DOI: 10.3390/molecules27030653] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/04/2023] Open
Abstract
The spread of the Dengue virus over the world, as well as multiple outbreaks of different serotypes, has resulted in a large number of deaths and a medical emergency, as no viable medications to treat Dengue virus patients have yet been found. In this paper, we provide an in silico virtual screening and molecular dynamics-based analysis to uncover efficient Dengue infection inhibitors. Based on a Google search and literature mining, a large phytochemical library was generated and employed as ligand molecules. In this investigation, the protein target NS2B/NS3 from Dengue was employed, and around 27 compounds were evaluated in a docking study. Phellodendroside (−63 kcal/mole), quercimeritrin (−59.5 kcal/mole), and quercetin-7-O-rutinoside (−54.1 kcal/mole) were chosen based on their binding free energy in MM-GBSA. The tested compounds generated numerous interactions at Lys74, Asn152, and Gln167 residues in the active regions of NS2B/NS3, which is needed for the protein’s inhibition. As a result, the stable mode of docked complexes is defined by various descriptors from molecular dynamics simulations, such as RMSD, SASA, Rg, RMSF, and hydrogen bond. The pharmacological properties of the compounds were also investigated, and no toxicity was found in computational ADMET properties calculations. As a result, this computational analysis may aid fellow researchers in developing innovative Dengue virus inhibitors.
Collapse
Affiliation(s)
| | - Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Trina Ekwati Tallei
- Department of Biology, Faculty of Mathematics and Natural Science, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Saad Ahmed Sami
- Department of Pharmacy, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Ahmad Akroman Adam
- Dentistry Study Program, Faculty of Medicine, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Uzzal Kumar Acharjee
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
- Correspondence: (U.K.A.); (M.A.S.); (B.K.)
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Md. Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
- Correspondence: (U.K.A.); (M.A.S.); (B.K.)
| | - Sultan Alshehri
- Department of Pharamaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharamcy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Maha Alruwali
- Department of Pharmacy Practice, College of Pharamcy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia; (M.M.G.); (M.A.)
| | - Ahmad J. Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nabilah Rahman Jui
- Department of Biochemistry and Biotechnology, University of Science and Technology, Chittagong 4202, Bangladesh;
| | - Junghwan Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Korea
- Correspondence: (U.K.A.); (M.A.S.); (B.K.)
| |
Collapse
|
3
|
Scott CAP, Amarilla AA, Bibby S, Newton ND, Hall RA, Hobson-Peters J, Muller DA, Chappell KJ, Young PR, Modhiran N, Watterson D. Implications of Dengue Virus Maturation on Vaccine Induced Humoral Immunity in Mice. Viruses 2021; 13:v13091843. [PMID: 34578424 PMCID: PMC8473161 DOI: 10.3390/v13091843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
The use of dengue virus (DENV) vaccines has been hindered by the complexities of antibody dependent enhancement (ADE). Current late-stage vaccine candidates utilize attenuated and chimeric DENVs that produce particles of varying maturities. Antibodies that are elicited by preferentially exposed epitopes on immature virions have been linked to increased ADE. We aimed to further understand the humoral immunity promoted by DENV particles of varying maturities in an AG129 mouse model using a chimeric insect specific vaccine candidate, bDENV-2. We immunized mice with mature, partially mature, and immature bDENV-2 and found that immunization with partially mature bDENV-2 produced more robust and cross-neutralizing immune responses than immunization with immature or mature bDENV-2. Upon challenge with mouse adapted DENV-2 (D220), we observed 80% protection for mature bDENV-2 vaccinated mice and 100% for immature and partially mature vaccinated mice, suggesting that protection to homotypic challenge is not dependent on maturation. Finally, we found reduced in vitro ADE at subneutralising serum concentrations for mice immunized with mature bDENV-2. These results suggest that both immature and mature DENV particles play a role in homotypic protection; however, the increased risk of in vitro ADE from immature particles indicates potential safety benefits from mature DENV-based vaccines.
Collapse
Affiliation(s)
- Connor A. P. Scott
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
| | - Summa Bibby
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
| | - Natalee D. Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
| | - Keith J. Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
- Correspondence: (N.M.); (D.W.)
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.A.P.S.); (A.A.A.); (S.B.); (N.D.N.); (R.A.H.); (J.H.-P.); (D.A.M.); (K.J.C.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD 4072, Australia
- Correspondence: (N.M.); (D.W.)
| |
Collapse
|
4
|
Jearanaiwitayakul T, Sunintaboon P, Chawengkittikul R, Limthongkul J, Midoeng P, Chaisuwirat P, Warit S, Ubol S. Whole inactivated dengue virus-loaded trimethyl chitosan nanoparticle-based vaccine: immunogenic properties in ex vivo and in vivo models. Hum Vaccin Immunother 2021; 17:2793-2807. [PMID: 33861177 DOI: 10.1080/21645515.2021.1884473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne virus that poses an incomparable public health problem, particularly in tropical and subtropical areas. Vaccination remains the most rational measure for controlling DENV infection. In this study, an ultraviolet irradiation (UV)-inactivated DENV-2 carried by N,N,N-trimethyl chitosan nanoparticles (UV-inactivated DENV2 TMC NPs) was investigated as a potential non-replicating dengue vaccine candidate. Using a human ex vivo model, the human monocyte-derived dendritic cells (MoDCs), we showed that TMC served as both a vaccine vehicle and a potent adjuvant. TMC NPs not only efficiently enhanced UV-inactivated DENV2 internalization into MoDCs but also greatly increased the breadth of UV-inactivated DENV2 immunogenicity to drive the maturation of MoDCs. Moreover, UV-inactivated DENV2 TMC NPs were highly immunogenic in mice, inducing greater levels of antibodies (total IgG, IgG1, IgG2a and neutralizing antibodies) and T cells (activated CD4⁺ and CD8⁺ T cells) against DENV-2 compared to soluble DENV-2 immunogens. Notably, the neutralizing activity of sera from mice immunized with UV-inactivated DENV2 TMC NPs was significantly augmented in the presence of complement activation, leading to the strong elimination of both DENV-2 particles and infected cells. We further showed that the immunogenicity of an inactivated dengue-based vaccine was significantly improved in a concentration-dependent manner. These positive results warrant further investigations of this platform of vaccine delivery for tetravalent vaccines or monovalent vaccines in sequential immunizations.
Collapse
Affiliation(s)
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Salaya, Thailand
| | | | - Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panuwat Midoeng
- Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand
| | | | - Saradee Warit
- Tuberculosis Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Jearanaiwitayakul T, Sunintaboon P, Chawengkittikul R, Limthongkul J, Midoeng P, Warit S, Ubol S. Nanodelivery system enhances the immunogenicity of dengue-2 nonstructural protein 1, DENV-2 NS1. Vaccine 2020; 38:6814-6825. [PMID: 32829977 DOI: 10.1016/j.vaccine.2020.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/19/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Nonstructural protein 1 (NS1) of dengue virus (DENV) is currently recognized as a dengue vaccine candidate. Unfortunately, most of non-replicating immunogens typically stimulate unsatisfactory immune responses, thus, the additional adjuvant is required. In this study, C-terminal truncated DENV-2 NS1 loaded in N,N,N, trimethyl chitosan nanoparticles (NS11-279TMC NPs) was prepared through the ionic gelation method. The immunogenicity of NS11-279TMC NPs was investigated using human ex vivo as well as the murine model. Through a human ex vivo model, it was demonstrated in this study that not only can TMC particles effectively deliver NS11-279 protein into monocyte-derived dendritic cells (MoDCs), but also potently stimulate those cells, resulting in increased expression of maturation marker (CD83), costimulating molecules (CD80, CD86 and HLA-DR) and markedly secreted various types of innate immune cytokines/chemokines. Moreover, mice administered with NS11-279TMC NPs strongly elicited both antibody and T cell responses, produced higher levels of IgG, IgG1, IgG2a and potently activated CD8+ T cells, as compared to mice administered with soluble NS11-279. Importantly, we further demonstrated that anti-NS11-279 antibody induced by this platform of NS11-279 effectively eliminated DENV-2 infected cells through antibody dependent complement-mediated cytotoxicity. Significantly, anti-DENV2 NS11-279 antibody exerted cross-antiviral activity against DENV-1 and -4 but not against DENV-3 infected cells. These findings demonstrate that TMC exerts a desirable adjuvant for enhancing delivery and antigenicity of NS1 based dengue vaccine.
Collapse
Affiliation(s)
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Salaya, Nakornpatom 73170, Thailand.
| | | | - Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Panuwat Midoeng
- Division of Pathology, Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand.
| | - Saradee Warit
- Tuberculosis Research Laboratory, Medical Molecular Biology Research Unit, BIOTEC, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand..
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
6
|
Hurtado-Monzón AM, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, De Jesús-González LA, Reyes-Ruiz JM, Del Ángel RM. The role of anti-flavivirus humoral immune response in protection and pathogenesis. Rev Med Virol 2020; 30:e2100. [PMID: 32101633 DOI: 10.1002/rmv.2100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Flavivirus infections are a public health threat in the world that requires the development of safe and effective vaccines. Therefore, the understanding of the anti-flavivirus humoral immune response is fundamental to future studies on flavivirus pathogenesis and the design of anti-flavivirus therapeutics. This review aims to provide an overview of the current understanding of the function and involvement of flavivirus proteins in the humoral immune response as well as the ability of the anti-envelope (anti-E) antibodies to interfere (neutralizing antibodies) or not (non-neutralizing antibodies) with viral infection, and how they can, in some circumstances enhance dengue virus infection on Fc gamma receptor (FcγR) bearing cells through a mechanism known as antibody-dependent enhancement (ADE). Thus, the dual role of the antibodies against E protein poses a formidable challenge for vaccine development. Also, we discuss the roles of antibody binding stoichiometry (the concentration, affinity, or epitope recognition) in the neutralization of flaviviruses and the "breathing" of flavivirus virions in the humoral immune response. Finally, the relevance of some specific antibodies in the design and improvement of effective vaccines is addressed.
Collapse
Affiliation(s)
- Arianna Mahely Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - José Manuel Reyes-Ruiz
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| |
Collapse
|
7
|
Formation of Virus-Like Particles of the Dengue Virus Serotype 2 Expressed in Silkworm Larvae. Mol Biotechnol 2019; 61:852-859. [PMID: 31473916 DOI: 10.1007/s12033-019-00210-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To explore virus-like particles formation of dengue virus serotype type 2 (DENV-2) structural proteins of, C, prM, E were expressed in silkworm larvae using recombinant Bombyx mori nucleopolyhedroviruses (BmNPV). Each recombinant BmNPV bacmid coding the 2C-prM-E polypeptide and E protein fused with the signal peptide of bombyxin from B. mori was injected into silkworm larvae. The expressed proteins were collected from hemolymph and fat body, and purified using affinity chromatography. E protein was observed at 55 kDa. The DENV virus-like particles (DENV-LPs) with a diameter approximately 35 nm was observed using transmission electron microscopy (TEM) and immunogold-labelling TEM analysis. The binding of each partially purified proteins to heparin, one of receptors for DENV was confirmed. DENV-LPs were secreted in silkworm larval hemolymph even still low amount, but the E protein and heparin binding function were confirmed.
Collapse
|
8
|
Verma M, Bhatnagar S, Kumari K, Mittal N, Sukhralia S, Gopirajan At S, Dhanaraj PS, Lal R. Highly conserved epitopes of DENV structural and non-structural proteins: Candidates for universal vaccine targets. Gene 2019; 695:18-25. [PMID: 30738967 PMCID: PMC7125761 DOI: 10.1016/j.gene.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
Abstract
Dengue is a severe emerging arthropod borne viral disease occurring globally. Around two fifths of the world's population, or up to 3.9 billion people, are at a risk of dengue infection. Infection induces a life-long protective immunity to the homologous serotype but confers only partial and transient protection against subsequent infection caused by other serotypes. Thus, there is a need for a vaccine which is capable of providing a life- long protection against all the serotypes of dengue virus. In our study, comparative genomics of Dengue virus (DENV) was conducted to explore potential candidates for novel vaccine targets. From our analysis we successfully found 100% conserved epitopes in Envelope protein (RCPTQGE); NS3 (SAAQRRGR, PGTSGSPI); NS4A (QRTPQDNQL); NS4B (LQAKATREAQKRA) and NS5 proteins (QRGSGQV) in all DENV serotypes. Some serotype specific conserved motifs were also found in NS1, NS5, Capsid, PrM and Envelope proteins. Using comparative genomics and immunoinformatics approach, we could find conserved epitopes which can be explored as peptide vaccine candidates to combat dengue worldwide. Serotype specific epitopes can also be exploited for rapid diagnostics. All ten proteins are explored to find the conserved epitopes in DENV serotypes, thus making it the most extensively studied viral genome so far.
Collapse
Affiliation(s)
- Mansi Verma
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India; Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Shradha Bhatnagar
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Kavita Kumari
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Nidhi Mittal
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Shivani Sukhralia
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Shruthi Gopirajan At
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - P S Dhanaraj
- Sri Venkateswara College, South Campus, University of Delhi, New Delhi 110021, India
| | - Rup Lal
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| |
Collapse
|
9
|
Churakov M, Villabona-Arenas CJ, Kraemer MUG, Salje H, Cauchemez S. Spatio-temporal dynamics of dengue in Brazil: Seasonal travelling waves and determinants of regional synchrony. PLoS Negl Trop Dis 2019; 13:e0007012. [PMID: 31009460 PMCID: PMC6497439 DOI: 10.1371/journal.pntd.0007012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/02/2019] [Accepted: 03/29/2019] [Indexed: 12/18/2022] Open
Abstract
Dengue continues to be the most important vector-borne viral disease globally and in Brazil, where more than 1.4 million cases and over 500 deaths were reported in 2016. Mosquito control programmes and other interventions have not stopped the alarming trend of increasingly large epidemics in the past few years. Here, we analyzed monthly dengue cases reported in Brazil between 2001 and 2016 to better characterise the key drivers of dengue epidemics. Spatio-temporal analysis revealed recurring travelling waves of disease occurrence. Using wavelet methods, we characterised the average seasonal pattern of dengue in Brazil, which starts in the western states of Acre and Rondônia, then travels eastward to the coast before reaching the northeast of the country. Only two states in the north of Brazil (Roraima and Amapá) did not follow the countrywide pattern and had inconsistent timing of dengue epidemics throughout the study period. We also explored epidemic synchrony and timing of annual dengue cycles in Brazilian regions. Using gravity style models combined with climate factors, we showed that both human mobility and vector ecology contribute to spatial patterns of dengue occurrence. This study offers a characterization of the spatial dynamics of dengue in Brazil and its drivers, which could inform intervention strategies against dengue and other arboviruses.
Collapse
Affiliation(s)
- Mikhail Churakov
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Christian J. Villabona-Arenas
- UMI233 TransVIHMI, Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Moritz U. G. Kraemer
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States of America
- Computational Epidemiology Lab, Boston Children's Hospital, Boston, MA, United States of America
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Henrik Salje
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| |
Collapse
|
10
|
Abstract
The emergence of novel arboviruses of zoonotic potential in South Africa (SA) threatens human health and animal welfare, and affects economic growth and development. These viruses cause severe infections in animals and humans, including neurological diseases, such as encephalitis, resulting in high morbidities, mortalities and economic losses. With increasing reports of Middelburg, Shuni, Sindbis, West Nile and Wesselsbron virus infections in animals and humans in SA, this article reviews and discusses known and currently emerging arboviruses in the country. These reports underscore the need for increased surveillance, vector control management, public health preparedness, focused research, community awareness programs, and the development of rapid and sensitive diagnostic approaches. Furthermore, appropriate medical personnel training and strengthening initiatives for a one-health approach are required to understand and mitigate the emerging arboviral threat to public health.
Collapse
Affiliation(s)
- Eric Mensah
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Mohamed E El Zowalaty
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| |
Collapse
|
11
|
Vaccine Update: Recent Progress With Novel Vaccines, and New Approaches to Safety Monitoring and Vaccine Shortage. J Clin Pharmacol 2018; 58 Suppl 10:S123-S139. [DOI: 10.1002/jcph.1140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/23/2018] [Indexed: 01/22/2023]
|
12
|
Dengue infection in patients with febrile illness and its relationship to climate factors: A case study in the city of Jeddah, Saudi Arabia, for the period 2010-2014. Acta Trop 2018; 181:105-111. [PMID: 29452109 DOI: 10.1016/j.actatropica.2018.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/12/2018] [Indexed: 11/21/2022]
Abstract
Dengue is an important global arboviral disease with expanding geographical range. It is a major public health concern in Western Saudi Arabia since its first detection in the city of Jeddah in 1994. In this retrospective study, we examined dengue incidence among febrile patients suspected for acute dengue infection at King Abdulaziz University Hospital, Jeddah from 2010 to 2014 and we tried to determine the effect of climate factors on dengue incidence in the city. Acute dengue incidence rates among clinically suspected patients showed annual variation with a range from 29.3% to 57%. Male gender and 11-30 years age range were found to be risk factors for dengue infection in Jeddah. While dengue infections can be detected throughout the year, most cases occurred between March and July with peaks in May and June. Seasonality of dengue was found to be significantly associated with the decrease in relative humidity and increase in temperature within the range of ∼25 °C to ∼33 °C but not extremely hot temperatures. Moreover, we found that rainfall during winter (November to February) has a significant lag effect on dengue infection among febrile patients in the city. Jeddah is the second largest city in Saudi Arabia and a major hub for pilgrims because of its close proximity to the holy sites in the Kingdom. The observed high rates of acute dengue infections clearly show the endemicity of dengue in Jeddah. The observed higher incidence rates at young age are expected to cause an increase in severe dengue cases in the future especially that multiple dengue serotypes are co-circulating in the city. Furthermore, the significant association between the different climate factors and dengue and their impact on the disease seasonality should help in the effort to implement effective control and management measures to reduce dengue burden in the Kingdom.
Collapse
|
13
|
Yang H, Yang H, Li Z, Liu L, Wang W, He T, Fan F, Sun Y, Liu J, Li Y, Zeng X. Japanese encephalitis virus/yellow fever virus chimera is safe and confers full protection against yellow fever virus in intracerebrally challenged mice. Vaccine 2018; 36:2450-2455. [PMID: 29580643 DOI: 10.1016/j.vaccine.2018.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/10/2018] [Accepted: 03/14/2018] [Indexed: 11/24/2022]
Abstract
Yellow fever (YF) is an acute viral haemorrhagic disease caused by the yellow fever virus (YFV), which remains a potential threat to public health. The live-attenuated YF vaccine (17D strain) is a safe and highly effective measure against YF. However, increasing adverse events have been associated with YF vaccinations in recent years; thus, safer, alternative vaccines are needed. In this study, using the Japanese encephalitis live vaccine strain SA14-14-2 as a backbone, a novel chimeric virus was constructed by replacing the pre-membrane (prM) and envelope (E) genes with their YFV 17D counterparts.The chimeric virus exhibited a reduced growth rate and a much smaller plaque morphology than did either parental virus. Furthermore, the chimera was much less neurovirulent than was YF17D and protected mice that were challenged with a lethal dose of the YF virus. These results suggest that this chimera has potential as a novel attenuated YF vaccine.
Collapse
Affiliation(s)
- Huiqiang Yang
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Huan Yang
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Zhushi Li
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Lina Liu
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Wei Wang
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Ting He
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Fengming Fan
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Yan Sun
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Jie Liu
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Yuhua Li
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, PR China.
| | - Xianwu Zeng
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China.
| |
Collapse
|
14
|
Edgington MP, Alphey LS. Population dynamics of engineered underdominance and killer-rescue gene drives in the control of disease vectors. PLoS Comput Biol 2018; 14:e1006059. [PMID: 29570717 PMCID: PMC5884568 DOI: 10.1371/journal.pcbi.1006059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 04/04/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
A number of different genetics-based vector control methods have been proposed. Two approaches currently under development in Aedes aegypti mosquitoes are the two-locus engineered underdominance and killer-rescue gene drive systems. Each of these is theoretically capable of increasing in frequency within a population, thus spreading associated desirable genetic traits. Thus they have gained attention for their potential to aid in the fight against various mosquito-vectored diseases. In the case of engineered underdominance, introduced transgenes are theoretically capable of persisting indefinitely (i.e. it is self-sustaining) whilst in the killer-rescue system the rescue component should initially increase in frequency (while the lethal component (killer) is common) before eventually declining (when the killer is rare) and being eliminated (i.e. it is temporally self-limiting). The population genetics of both systems have been explored using discrete generation mathematical models. The effects of various ecological factors on these two systems have also been considered using alternative modelling methodologies. Here we formulate and analyse new mathematical models combining the population dynamics and population genetics of these two classes of gene drive that incorporate ecological factors not previously studied and are simple enough to allow the effects of each to be disentangled. In particular, we focus on the potential effects that may be obtained as a result of differing ecological factors such as strengths of larval competition; numbers of breeding sites; and the relative fitness of transgenic mosquitoes compared with their wild-type counterparts. We also extend our models to consider population dynamics in two demes in order to explore the effects of dispersal between neighbouring populations on the outcome of UD and KR gene drive systems.
Collapse
Affiliation(s)
| | - Luke S. Alphey
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| |
Collapse
|
15
|
Züst R, Li SH, Xie X, Velumani S, Chng M, Toh YX, Zou J, Dong H, Shan C, Pang J, Qin CF, Newell EW, Shi PY, Fink K. Characterization of a candidate tetravalent vaccine based on 2'-O-methyltransferase mutants. PLoS One 2018; 13:e0189262. [PMID: 29298302 PMCID: PMC5751980 DOI: 10.1371/journal.pone.0189262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/23/2017] [Indexed: 11/26/2022] Open
Abstract
Dengue virus (DENV) is one of the most widespread arboviruses. The four DENV serotypes infect about 400 million people every year, causing 96 million clinical dengue cases, of which approximately 500’000 are severe and potentially life-threatening. The only licensed vaccine has a limited efficacy and is only recommended in regions with high endemicity. We previously reported that 2’-O-methyltransferase mutations in DENV-1 and DENV-2 block their capacity to inhibit type I IFNs and render the viruses attenuated in vivo, making them amenable as vaccine strains; here we apply this strategy to all four DENV serotypes to generate a tetravalent, non-chimeric live-attenuated dengue vaccine. 2’-O-methyltransferase mutants of all four serotypes are highly sensitive to type I IFN inhibition in human cells. The tetravalent formulation is attenuated and immunogenic in mice and cynomolgus macaques and elicits a response that protects from virus challenge. These results show the potential of 2’-O-methyltransferase mutant viruses as a safe, tetravalent, non-chimeric dengue vaccine.
Collapse
Affiliation(s)
- Roland Züst
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shi-Hua Li
- Novartis Institute for Tropical Diseases, Chromos, Singapore, Singapore
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xuping Xie
- Novartis Institute for Tropical Diseases, Chromos, Singapore, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Sumathy Velumani
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Melissa Chng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ying-Xiu Toh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jing Zou
- Novartis Institute for Tropical Diseases, Chromos, Singapore, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Hongping Dong
- Novartis Institute for Tropical Diseases, Chromos, Singapore, Singapore
| | - Chao Shan
- Novartis Institute for Tropical Diseases, Chromos, Singapore, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Jassia Pang
- Biological Resource Centre, Agency for Science, Technology and Research, Singapore, Singapore
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Evan W. Newell
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Pei-Yong Shi
- Novartis Institute for Tropical Diseases, Chromos, Singapore, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States of America
- * E-mail: (KF); (PYS)
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- * E-mail: (KF); (PYS)
| |
Collapse
|
16
|
Longitudinal study of Thai people media exposure, knowledge, and behavior on dengue fever prevention and control. J Infect Public Health 2017; 10:836-841. [DOI: 10.1016/j.jiph.2017.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/23/2017] [Accepted: 01/28/2017] [Indexed: 11/24/2022] Open
|
17
|
Edgington MP, Alphey LS. Conditions for success of engineered underdominance gene drive systems. J Theor Biol 2017; 430:128-140. [PMID: 28728996 PMCID: PMC5562440 DOI: 10.1016/j.jtbi.2017.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/20/2017] [Accepted: 07/15/2017] [Indexed: 12/02/2022]
Abstract
Engineered underdominance is one of a number of different gene drive strategies that have been proposed for the genetic control of insect vectors of disease. Here we model a two-locus engineered underdominance based gene drive system that is based on the concept of mutually suppressing lethals. In such a system two genetic constructs are introduced, each possessing a lethal element and a suppressor of the lethal at the other locus. Specifically, we formulate and analyse a population genetics model of this system to assess when different combinations of release strategies (i.e. single or multiple releases of both sexes or males only) and genetic systems (i.e. bisex lethal or female-specific lethal elements and different strengths of suppressors) will give population replacement or fail to do so. We anticipate that results presented here will inform the future design of engineered underdominance gene drive systems as well as providing a point of reference regarding release strategies for those looking to test such a system. Our discussion is framed in the context of genetic control of insect vectors of disease. One of several serious threats in this context are Aedes aegypti mosquitoes as they are the primary vectors of dengue viruses. However, results are also applicable to Ae. aegypti as vectors of Zika, yellow fever and chikungunya viruses and also to the control of a number of other insect species and thereby of insect-vectored pathogens.
Collapse
Affiliation(s)
| | - Luke S Alphey
- The Pirbright Institute, Ash Road, Woking, Surrey, GU24 0NF, UK
| |
Collapse
|
18
|
Habitat productivity and pyrethroid susceptibility status of Aedes aegypti mosquitoes in Dar es Salaam, Tanzania. Infect Dis Poverty 2017; 6:102. [PMID: 28595653 PMCID: PMC5465599 DOI: 10.1186/s40249-017-0316-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 05/12/2017] [Indexed: 01/05/2023] Open
Abstract
Background Aedes aegypti (Diptera: Culicidae) is the main vector of the dengue virus globally. Dengue vector control is mainly based on reducing the vector population through interventions, which target potential breeding sites. However, in Tanzania, little is known about this vector’s habitat productivity and insecticide susceptibility status to support evidence-based implementation of control measures. The present study aimed at assessing the productivity and susceptibility status of A. aegypti mosquitoes to pyrethroid-based insecticides in Dar es Salaam, Tanzania. Methods An entomological assessment was conducted between January and July 2015 in six randomly selected wards in Dar es Salaam, Tanzania. Habitat productivity was determined by the number of female adult A. aegypti mosquitoes emerged per square metre. The susceptibility status of adult A. aegypti females after exposure to 0.05% deltamethrin, 0.75% permethrin and 0.05% lambda-cyhalothrin was evaluated using the standard WHO protocols. Mortality rates were recorded after 24 h exposure and the knockdown effect was recorded at the time points of 10, 15, 20, 30, 40, 50 and 60 min to calculate the median knockdown times (KDT50 and KDT95). Results The results suggest that disposed tyres had the highest productivity, while water storage tanks had the lowest productivity among the breeding habitats Of A. aegypti mosquitoes. All sites demonstrated reduced susceptibility to deltamethrin (0.05%) within 24 h post exposure, with mortalities ranging from 86.3 ± 1.9 (mean ± SD) to 96.8 ± 0.9 (mean ± SD). The lowest and highest susceptibilities were recorded in Mikocheni and Sinza wards, respectively. Similarly, all sites demonstrated reduced susceptibility permethrin (0.75%) ranging from 83.1 ± 2.1% (mean ± SD) to 96.2 ± 0.9% (mean ± SD), in Kipawa and Sinza, respectively. Relatively low mortality rates were observed in relation to lambda-cyhalothrin (0.05%) at all sites, ranging from 83.1 ± 0.7 (mean ± SD) to 86.3 ± 1.4 (mean ± SD). The median KDT50 for deltamethrin, permethrin and lambda-cyhalothrin were 24.9–30.3 min, 24.3–34.4 min and 26.7–32.8 min, respectively. The KDT95 were 55.2–90.9 min for deltamethrin, 54.3–94.6 min for permethrin and 64.5–69.2 min for lambda-cyhalothrin. Conclusions The productive habitats for A. aegypti mosquitoes found in Dar es Salaam were water storage containers, discarded tins and tyres. There was a reduced susceptibility of A. aegypti to and emergence of resistance against pyrethroid-based insecticides. The documented differences in the resistance profiles of A. aegypti mosquitoes warrants regular monitoring the pattern concerning resistance against pyrethroid-based insecticides and define dengue vector control strategies. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0316-0) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Bracho-Churio YT, Martínez-Vega RA, Rodriguez-Morales AJ, Díaz-Quijano RG, Luna-González ML, Diaz-Quijano FA. Determinants of felt demand for dengue vaccines in the North Caribbean region of Colombia. Ann Clin Microbiol Antimicrob 2017; 16:38. [PMID: 28506229 PMCID: PMC5432981 DOI: 10.1186/s12941-017-0213-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/06/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The increasing burden associated with dengue in Latin America makes it essential to understand the community's interest in acquiring vaccines, as an input to plan its introduction in endemic regions. The objective of this study is to learn the felt demand for dengue vaccines by estimating the willingness to pay and its associated factors in endemic communities of the North Caribbean region of Colombia. METHODS A population survey was administered from October to December 2015, including 1037 families in 11 municipalities in Colombia. One adult per family was interviewed on their perception and history of dengue. Participants received a description of four hypothetical scenarios of dengue vaccines, administered in a single dose or in 3 doses, with an effectiveness of 70% for 5 years or 95% for 30 years. The willingness to pay for each one of these vaccines was inquired vs. 5 hypothetical prices in Colombian pesos. RESULTS Most participants recognized dengue as a serious disease in children (99.3%) and adults (98.6%). 33 (3.2%) of the total respondents reported having suffered dengue and 19 (57.6%) of them required hospitalization. The price of the vaccine was inversely related to the willingness to pay. In addition, single dose vaccines (compared to 3 doses) and one with a protection of 95% for 30 years (compared to an effectiveness of 70% for 5 years), were associated with greater willingness to pay. Greater willingness to pay was observed among the respondents who considered it likely to get the disease, either themselves (OR 1.56; CI 95% 1.08-2.26) or their children (OR 1.89; CI 95% 1.28-2.81), in the next 5 years. The participants who have been diagnosed with dengue also showed greater willingness to pay (OR 1.89; CI 95% 1.01-3.54) compared to those who did not have this history. CONCLUSION Factors such as price, number of doses and effectiveness can independently influence the decision to purchase a vaccine against an endemic disease, such as dengue. Additionally, this study reveals that background and perceptions of the disease can affect individuals' interest in acquiring this type of preventive interventions.
Collapse
Affiliation(s)
- Yalil T. Bracho-Churio
- Organización Latinoamericana para el Fomento de la Investigación en Salud, Bucaramanga, Santander Colombia
| | - Ruth A. Martínez-Vega
- Organización Latinoamericana para el Fomento de la Investigación en Salud, Bucaramanga, Santander Colombia
| | - Alfonso J. Rodriguez-Morales
- Organización Latinoamericana para el Fomento de la Investigación en Salud, Bucaramanga, Santander Colombia
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda Colombia
| | - Ronald G. Díaz-Quijano
- Organización Latinoamericana para el Fomento de la Investigación en Salud, Bucaramanga, Santander Colombia
| | - María L. Luna-González
- Organización Latinoamericana para el Fomento de la Investigación en Salud, Bucaramanga, Santander Colombia
| | - Fredi A. Diaz-Quijano
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, São Paulo, SP CEP-01246-904 Brazil
| |
Collapse
|
20
|
Vitorino LC, Bessa LA. Technological Microbiology: Development and Applications. Front Microbiol 2017; 8:827. [PMID: 28539920 PMCID: PMC5423913 DOI: 10.3389/fmicb.2017.00827] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Over thousands of years, modernization could be predicted for the use of microorganisms in the production of foods and beverages. However, the current accelerated pace of new food production is due to the rapid incorporation of biotechnological techniques that allow the rapid identification of new molecules and microorganisms or even the genetic improvement of known species. At no other time in history have microorganisms been so present in areas such as agriculture and medicine, except as recognized villains. Currently, however, beneficial microorganisms such as plant growth promoters and phytopathogen controllers are required by various agricultural crops, and many species are being used as biofactories of important pharmacological molecules. The use of biofactories does not end there: microorganisms have been explored for the synthesis of diverse chemicals, fuel molecules, and industrial polymers, and strains environmentally important due to their biodecomposing or biosorption capacity have gained interest in research laboratories and in industrial activities. We call this new microbiology Technological Microbiology, and we believe that complex techniques, such as heterologous expression and metabolic engineering, can be increasingly incorporated into this applied science, allowing the generation of new and improved products and services.
Collapse
Affiliation(s)
- Luciana C. Vitorino
- Laboratory of Agricultural Microbiology, Goiano Federal InstituteGoiás, Brazil
| | | |
Collapse
|
21
|
Wei K, Li Y. Global evolutionary history and spatio-temporal dynamics of dengue virus type 2. Sci Rep 2017; 7:45505. [PMID: 28378782 PMCID: PMC5381229 DOI: 10.1038/srep45505] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/27/2017] [Indexed: 11/08/2022] Open
Abstract
DENV-2 spread throughout the tropical and subtropical regions globally, which is implicated in deadly outbreaks of DHF and DSS. Since dengue cases have grown dramatically in recent years, about half of the world's population is now at risk. Our timescale analysis indicated that the most recent common ancestor existed about 100 years ago. The rate of nucleotide substitution was estimated to be 8.94 × 10-4 subs/site/year. Selection pressure analysis showed that two sites 160 and 403 were under positive selection, while E gene is mainly shaped by stronger purifying selection. BSP analysis showed that estimating effective population size from samples of sequences has undergone three obvious increases, additionally, Caribbean and Puerto Rico maintained higher levels of genetic diversity relative to other 6 representative geographical populations using GMRF method. The phylogeographic analysis indicated that two major transmission routes are from South America to Caribbean and East&SouthAsia to Puerto Rico. The trunk reconstruction confirmed that the viral evolution spanned 50 years occurred primarily in Southeast Asia and East&South Asia. In addition, phylogeographic association-trait analysis indicated that the viral phenotypes are highly correlated with phylogeny in Nicaragua and Puerto Rico (P < 0.05).
Collapse
Affiliation(s)
- Kaifa Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Yuhan Li
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
22
|
Aguilera-Pesantes D, Robayo LE, Méndez PE, Mollocana D, Marrero-Ponce Y, Torres FJ, Méndez MA. Discovering key residues of dengue virus NS2b-NS3-protease: New binding sites for antiviral inhibitors design. Biochem Biophys Res Commun 2017; 492:631-642. [PMID: 28343993 DOI: 10.1016/j.bbrc.2017.03.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/01/2017] [Accepted: 03/19/2017] [Indexed: 12/24/2022]
Abstract
The NS2B-NS3 protease is essential for the Dengue Virus (DENV) replication process. This complex constitutes a target for efficient antiviral discovery because a drug could inhibit the viral polyprotein processing. Furthermore, since the protease is highly conserved between the four Dengue virus serotypes, it is probable that a drug would be equally effective against all of them. In this article, a strategy is reported that allowed us to identify influential residues on the function of the Dengue NS2b-NS3 Protease. Moreover, this is a strategy that could be applied to virtually any protein for the search of alternative influential residues, and for non-competitive inhibitor development. First, we incorporated several features derived from computational alanine scanning mutagenesis, sequence, structure conservation, and other structure-based characteristics. Second, these features were used as variables to obtain a multilayer perceptron model to identify defined groups (clusters) of key residues as possible candidate pockets for binding sites of new leads on the DENV protease. The identified residues included: i) amino acids close to the beta sheet-loop-beta sheet known to be important in its closed conformation for NS2b ii) residues close to the active site, iii) several residues evenly spread on the NS2b-NS3 contact surface, and iv) some inner residues most likely related to the overall stability of the protease. In addition, we found concordance on our list of residues with previously identified amino acids part of a highly conserved peptide studied for vaccine development.
Collapse
Affiliation(s)
- D Aguilera-Pesantes
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - L E Robayo
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - P E Méndez
- Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - D Mollocana
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - Y Marrero-Ponce
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Grupo de Medicina Molecular y Traslacional (MeM&T), Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Av.Interoceánica Km 12 ½ y Av. Florencia, 17-1200-841, Cumbayá, Quito, Ecuador
| | - F J Torres
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - M A Méndez
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Grupo de Medicina Molecular y Traslacional (MeM&T), Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Av.Interoceánica Km 12 ½ y Av. Florencia, 17-1200-841, Cumbayá, Quito, Ecuador.
| |
Collapse
|
23
|
Nakano K. Future risk of dengue fever to workforce and industry through global supply chain. MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE 2017; 23:433-449. [PMID: 32214871 PMCID: PMC7089289 DOI: 10.1007/s11027-017-9741-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/01/2017] [Indexed: 05/26/2023]
Abstract
The primary vector of the dengue fever virus, the Aedes aegypti mosquito, is distributed across the tropical and sub-tropical latitudes; however, the area at risk of infection has been expanding steadily. This study aimed to identify the industries most vulnerable to the effects of dengue fever by 2030. The assessment was done by considering the international supply chain, with aspects such as the labor intensity, and the relevant geographical and socioeconomic aspects being taken into account. In addition, multi-regional input-output tables were employed to analyze the ripple effects of productivity losses resulting from workers contracting the disease. The results indicate that more than 10% of the workers involved in the supply chain of all the major industries in the United States (USA), China, Japan, and Germany could be considered at risk of contracting dengue fever by 2030. Moreover, the risk was even higher in India and Brazil, namely, more than 70%. The effect of widespread dengue fever infection could influence industrial activities severely, not only in the regions most at risk (India and Brazil) but also in the other regions (USA, Japan, and Germany). Labor-intensive industries, such as agriculture, fisheries, and the distribution sector are particularly at risk and will have to consider appropriate contingency measures. It is recommended that the downstream side of the supply chain, the industries in the USA, Japan, and Germany, supports the introduction of worker's health management system against the infectious disease into their business partners. This study employed limited data and only estimated the possible effects of the disease by 2030. Further comprehensive analysis is required with more data modeled for the future to verify and enhance the reliability of the present results.
Collapse
Affiliation(s)
- Katsuyuki Nakano
- Japan Environmental Management Association for Industry (JEMAI), 2-1, Kajicho 2-Chome, Tokyo, Chiyoda-ku 101-0044 Japan
| |
Collapse
|
24
|
Tsujimoto H, Hanley KA, Sundararajan A, Devitt NP, Schilkey FD, Hansen IA. Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus. PLoS One 2017; 12:e0171345. [PMID: 28152011 PMCID: PMC5289563 DOI: 10.1371/journal.pone.0171345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022] Open
Abstract
Background The Asian tiger mosquito, Aedes albopictus is currently an important vector for dengue, chikungunya and Zika virus, and its role in transmission of arthropod-borne viruses (arboviruses) may increase in the future due to its ability to colonize temperate regions. In contrast to Aedes aegypti, the dominant vector of dengue, chikungunya and Zika virus, genetic responses of Ae. albopictus upon infection with an arbovirus are not well characterized. Here we present a study of the changes in transcript expression in Ae. albopictus exposed to dengue virus serotype 2 via feeding on an artificial bloodmeal. Methodology/Principal findings We isolated midguts and midgut-free carcasses of Ae. albopictus fed on bloodmeals containing dengue virus as well as controls fed on virus-free control meals at day 1 and day 5 post-feeding. We confirmed infection of midguts from mosquitoes sampled on day 5 post-feeding via RT-PCR. RNAseq analysis revealed dynamic modulation of the expression of several putative immunity and dengue virus-responsive genes, some of whose expression was verified by qRT-PCR. For example, a serine protease gene was up-regulated in the midgut at 1 day post infection, which may potentially enhance mosquito susceptibility to dengue infection, while 14 leucine-rich repeat genes, previously shown to be involved in mosquito antiviral defenses, were down-regulated in the carcass at 5 days post infection. The number of significantly modulated genes decreased over time in midguts and increased in carcasses. Conclusion/Significance Dengue virus exposure results in the modulation of genes in a time- and site-specific manner. Previous literature on the interaction between mosquitoes and mosquito-borne pathogens suggests that most of the changes that occurred in Ae. albopictus exposed to DENV would favor virus infection. Many genes identified in this study warrant further characterization to understand their role in viral manipulation of and antiviral response of Ae. albopictus.
Collapse
Affiliation(s)
- Hitoshi Tsujimoto
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- * E-mail:
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Anitha Sundararajan
- NM-INBRE Sequencing and Bioinformatics Core, National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Nicholas P. Devitt
- NM-INBRE Sequencing and Bioinformatics Core, National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Faye D. Schilkey
- NM-INBRE Sequencing and Bioinformatics Core, National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Immo A. Hansen
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
25
|
Gack MU, Diamond MS. Innate immune escape by Dengue and West Nile viruses. Curr Opin Virol 2016; 20:119-128. [PMID: 27792906 DOI: 10.1016/j.coviro.2016.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 09/15/2016] [Accepted: 09/27/2016] [Indexed: 12/28/2022]
Abstract
Dengue (DENV) and West Nile (WNV) viruses are mosquito-transmitted flaviviruses that cause significant morbidity and mortality worldwide. Disease severity and pathogenesis of DENV and WNV infections in humans depend on many factors, including pre-existing immunity, strain virulence, host genetics and virus-host interactions. Among the flavivirus-host interactions, viral evasion of type I interferon (IFN)-mediated innate immunity has a critical role in modulating pathogenesis. DENV and WNV have evolved effective strategies to evade immune surveillance pathways that lead to IFN induction and to block signaling downstream of the IFN-α/β receptor. Here, we discuss recent advances in our understanding of the molecular mechanisms by which DENV and WNV antagonize the type I IFN response in human cells.
Collapse
Affiliation(s)
- Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
26
|
Dengue Virus Envelope Dimer Epitope Monoclonal Antibodies Isolated from Dengue Patients Are Protective against Zika Virus. mBio 2016; 7:mBio.01123-16. [PMID: 27435464 PMCID: PMC4958264 DOI: 10.1128/mbio.01123-16] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Zika virus (ZIKV) is a mosquito-borne flavivirus responsible for thousands of cases of severe fetal malformations and neurological disease since its introduction to Brazil in 2013. Antibodies to flaviviruses can be protective, resulting in lifelong immunity to reinfection by homologous virus. However, cross-reactive antibodies can complicate flavivirus diagnostics and promote more severe disease, as noted after serial dengue virus (DENV) infections. The endemic circulation of DENV in South America and elsewhere raises concerns that preexisting flavivirus immunity may modulate ZIKV disease and transmission potential. Here, we report on the ability of human monoclonal antibodies and immune sera derived from dengue patients to neutralize contemporary epidemic ZIKV strains. We demonstrate that a class of human monoclonal antibodies isolated from DENV patients neutralizes ZIKV in cell culture and is protective in a lethal murine model. We also tested a large panel of convalescent-phase immune sera from humans exposed to primary and repeat DENV infection. Although ZIKV is most closely related to DENV compared to other human-pathogenic flaviviruses, most DENV immune sera (73%) failed to neutralize ZIKV, while others had low (50% effective concentration [EC50], <1:100 serum dilution; 18%) or moderate to high (EC50, >1:100 serum dilution; 9%) levels of cross-neutralizing antibodies. Our results establish that ZIKV and DENV share epitopes that are targeted by neutralizing, protective human antibodies. The availability of potently neutralizing human monoclonal antibodies provides an immunotherapeutic approach to control life-threatening ZIKV infection and also points to the possibility of repurposing DENV vaccines to induce cross-protective immunity to ZIKV. IMPORTANCE ZIKV is an emerging arbovirus that has been associated with severe neurological birth defects and fetal loss in pregnant women and Guillain-Barré syndrome in adults. Currently, there is no vaccine or therapeutic for ZIKV. The identification of a class of antibodies (envelope dimer epitope 1 [EDE1]) that potently neutralizes ZIKV in addition to all four DENV serotypes points to a potential immunotherapeutic to combat ZIKV. This is especially salient given the precedent of antibody therapy to treat pregnant women infected with other viruses associated with microcephaly, such as cytomegalovirus and rubella virus. Furthermore, the identification of a functionally conserved epitope between ZIKV and DENV raises the possibility that a vaccine may be able to elicit neutralizing antibodies against both viruses.
Collapse
|