1
|
Liu S, Wang Y, He X, Wang Y, Li X. Factors affecting suboptimal maturation of autogenous arteriovenous fistula in elderly patients with diabetes:A narrative review. Heliyon 2024; 10:e35766. [PMID: 39170451 PMCID: PMC11337043 DOI: 10.1016/j.heliyon.2024.e35766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Autogenous arteriovenous fistula (AVF) is considered the preferred vascular access choice for individuals undergoing maintenance hemodialysis (MHD) and is widely utilized in China, as reported by the Dialysis Outcomes and Practice Patterns Study. Despite its popularity, the significant incidence of poor AVF maturation often leads to the need for central venous catheter insertion, increasing the risk of complications like superior vena cava stenosis and catheter-related infections, which in turn raises the overall mortality risk. With the prevalence of diabetes rising globally among the elderly and diabetic kidney disease being a leading cause of end-stage renal disease necessitating renal replacement therapy, our retrospective review aims to explore the various factors affecting AVF maturation in this specific patient population. While there have been numerous studies examining AVF complications in MHD patients, including issues like failure, patency loss, stenosis, thrombosis, poor maturation, and other influencing factors, there remains a gap in large-scale clinical studies focusing on the incidence and risk factors for immature AVF specifically in elderly diabetic patients. This paper delves into the pathophysiological mechanisms, diagnostic criteria, and unique considerations surrounding AVF maturation in elderly diabetic patients, distinguishing them from the general population. Our literature review reveals that elderly diabetic patients exhibit a higher risk of AVF immaturity compared to the general population. Additionally, there exists a continuing discourse regarding several aspects related to this group, including the choice of dialysis access, timing of AVF surgery, and surgical site selection. Furthermore, we delve into the management strategies for vascular access within this specific group with the goal of providing evidence-based guidance for the establishment and maintenance of functional vascular access in elderly diabetic patients.
Collapse
Affiliation(s)
- Shuangyan Liu
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yaqing Wang
- Graduate School of Chengde Medical University, Chengde, 067000, Hebei, China
| | - Xiaojie He
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yuqing Wang
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Xiaodong Li
- Department of Nephrology, Baoding No 1 Central Hospital of Hebei Medical University, Baoding, Hebei, China
| |
Collapse
|
2
|
Laboyrie SL, de Vries MR, Bijkerk R, Rotmans JI. Building a Scaffold for Arteriovenous Fistula Maturation: Unravelling the Role of the Extracellular Matrix. Int J Mol Sci 2023; 24:10825. [PMID: 37446003 DOI: 10.3390/ijms241310825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Vascular access is the lifeline for patients receiving haemodialysis as kidney replacement therapy. As a surgically created arteriovenous fistula (AVF) provides a high-flow conduit suitable for cannulation, it remains the vascular access of choice. In order to use an AVF successfully, the luminal diameter and the vessel wall of the venous outflow tract have to increase. This process is referred to as AVF maturation. AVF non-maturation is an important limitation of AVFs that contributes to their poor primary patency rates. To date, there is no clear overview of the overall role of the extracellular matrix (ECM) in AVF maturation. The ECM is essential for vascular functioning, as it provides structural and mechanical strength and communicates with vascular cells to regulate their differentiation and proliferation. Thus, the ECM is involved in multiple processes that regulate AVF maturation, and it is essential to study its anatomy and vascular response to AVF surgery to define therapeutic targets to improve AVF maturation. In this review, we discuss the composition of both the arterial and venous ECM and its incorporation in the three vessel layers: the tunica intima, media, and adventitia. Furthermore, we examine the effect of chronic kidney failure on the vasculature, the timing of ECM remodelling post-AVF surgery, and current ECM interventions to improve AVF maturation. Lastly, the suitability of ECM interventions as a therapeutic target for AVF maturation will be discussed.
Collapse
Affiliation(s)
- Suzanne L Laboyrie
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Margreet R de Vries
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Vascular Surgery, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Roel Bijkerk
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
3
|
Rai V, Singh H, Agrawal DK. Targeting the Crosstalk of Immune Response and Vascular Smooth Muscle Cells Phenotype Switch for Arteriovenous Fistula Maturation. Int J Mol Sci 2022; 23:12012. [PMID: 36233314 PMCID: PMC9570261 DOI: 10.3390/ijms231912012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Plaque formation, thrombosis, and embolism are the underlying causes of acute cardiovascular events such as myocardial infarction and stroke while early thrombosis and stenosis are common pathologies for the maturation failure of arteriovenous fistula (AVF). Chronic inflammation is a common underlying pathogenesis mediated by innate and adaptive immune response involving infiltration of immune cells and secretion of pro- and anti-inflammatory cytokines. Impaired immune cell infiltration and change in vascular smooth muscle cell (VSMC) phenotype play a crucial role in the underlying pathophysiology. However, the change in the phenotype of VSMCs in a microenvironment of immune cell infiltration and increased secretion of cytokines have not been investigated. Since change in VSMC phenotype regulates vessel remodeling after intimal injury, in this study, we investigated the effect of macrophages and pro-inflammatory cytokines, IL-6, IL-1β, and TNF-α, on the change in VSMC phenotype under in vitro conditions. We also investigated the expression of the markers of VSMC phenotypes in arteries with atherosclerotic plaques and VSMCs isolated from control arteries. We found that the inhibition of cytokine downstream signaling may mitigate the effect of cytokines on the change in VSMCs phenotype. The results of this study support that regulating or targeting immune cell infiltration and function might be a therapeutic strategy to mitigate the effects of chronic inflammation to attenuate plaque formation, early thrombosis, and stenosis, and thus enhance AVF maturation.
Collapse
Affiliation(s)
| | | | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
4
|
Sawma T, Shaito A, Najm N, Sidani M, Orekhov A, El-Yazbi AF, Iratni R, Eid AH. Role of RhoA and Rho-associated kinase in phenotypic switching of vascular smooth muscle cells: Implications for vascular function. Atherosclerosis 2022; 358:12-28. [DOI: 10.1016/j.atherosclerosis.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
|
5
|
Huang X, Guan J, Sheng Z, Wang M, Xu T, Guo G, Wan P, Tian B, Zhou J, Huang A, Hao J, Yao L. Effect of local anti-vascular endothelial growth factor therapy to prevent the formation of stenosis in outflow vein in arteriovenous fistula. J Transl Int Med 2021; 9:307-317. [PMID: 35136729 PMCID: PMC8802407 DOI: 10.2478/jtim-2021-0045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Vascular stenosis and angiogenesis are the major causes of short expectancy of arteriovenous fistula (AVF). Increased expression of vascular endothelial growth factor-A (VEGF-A) has been suggested to play an important role in the pathophysiologic process. Anti-VEGF has been proved to be effective on anti-angiogenesis and applied in clinical practice, but its effect on anti-stenosis remains to be verified before it could be applied to prevent stenosis of AVF. This study was aimed to evaluate the effect of local anti-VEGF therapy to prevent the formation of stenosis in the outflow vein in AVF and its mechanism. METHODS Bioinformatics of VEGF-A and its downstream-regulated molecules from the STRING PPI database were analyzed in this study. The biopsy samples from outflow veins of AVF in patients and C57BL/6 mouse models were analyzed to examine the mechanisms of pathologic vascular stenosis associated with VEGF pathways and their potential therapeutic targets. RESULTS We found that the reduction of VEGF-A could downregulate downstream molecules and subsequently reduce the intimal hyperplasia and abnormal vascular remodeling by analyzing the STRING PPI database. Venous wall thickening, intimal neointima formation, and apoptosis of vascular endothelial cells in the proliferative outflow vein of the AVF were significantly more obvious, and upregulation of expression of VEGF was observed in dysfunctional AVF in patients. In mouse models, the expression of VEGF, Ephrin receptor B4 (EphB4), matrix metalloproteinase (MMP)2, MMP9, tissue inhibitor of metalloproteinase (TIMP)1, TIMP2, and caspase 3 in the control-shRNA surgical group was significantly higher than in the sham group (P < 0.05), and all of these indicators were significantly lower in lentiviral transfection group and Avastin group than in control-shRNA surgical group (P < 0.05) on the 14th day after AVF operation. CONCLUSION VEGF expression is significantly increased in vascular endothelial cells in stenosed or occluded outflow veins of dysfunctional AVF. Local injection of Avastin into the adventitia of the proximal outflow vein in autologous AVF procedure has an excellent potential to prevent the subsequent local stenosis of the proximal outflow vein.
Collapse
Affiliation(s)
- Xin Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Jibin Guan
- College of Pharmacy, University of Minnesota, Minneapolis55455, MN, USA
| | - Zitong Sheng
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Menghua Wang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Guangying Guo
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Pengzhi Wan
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Binyao Tian
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Junlei Zhou
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Junfeng Hao
- Department of Nephrology, Jinqiu Hospital Liaoning Province, Shenyang110016, Liaoning Province, China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| |
Collapse
|
6
|
Shofler D, Rai V, Mansager S, Cramer K, Agrawal DK. Impact of resolvin mediators in the immunopathology of diabetes and wound healing. Expert Rev Clin Immunol 2021; 17:681-690. [PMID: 33793355 DOI: 10.1080/1744666x.2021.1912598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Wound healing in diabetes may be delayed by persistent wound infection due to deficient immune and cellular response to tissue injury. Hyperglycemia due to decreased insulin availability and increased insulin resistance affects the immune response of the body. Accumulation of inflammatory immune cells and pro-inflammatory cytokines results in chronic inflammation and an altered resolution and remodeling phase of wound healing.Areas covered: Pro-resolving mediators called 'resolvins' target the resolution phase of wound healing and are becoming an area of increased interest. Resolvins stimulate self-limited innate immune responses and enhance innate microbial killing and clearance. Resolvins resolve inflammation by decreasing neutrophil infiltration and transmigration, increasing the phagocytic activity of macrophages, decreasing adipose tissue macrophages, downregulating platelet activation, suppressing nuclear factor-kappa beta activation, promoting the apoptosis of polymorphonuclear leukocytes, and improving insulin sensitivity. This review discusses the role of resolvins in diabetic wound healing and potential therapeutic strategies. The review is based on a literature search of PubMed and the Web of Science restricted to publications between January 2001 and October 2020.Expert opinion: There is increasing support for the use of resolvins in clinical applications related to diabetes and wound healing. Further research will help clarify this potential.
Collapse
Affiliation(s)
- David Shofler
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Sarah Mansager
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Kira Cramer
- College of Podiatric Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
7
|
Sterile inflammation in the pathogenesis of maturation failure of arteriovenous fistula. J Mol Med (Berl) 2021; 99:729-741. [PMID: 33666676 DOI: 10.1007/s00109-021-02056-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/19/2020] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
Chronic kidney disease is a widespread terminal illness that afflicts millions of people across the world. Hemodialysis is the predominant therapeutic management strategy for kidney failure and involves the external filtration of metabolic waste within the circulation. This process requires an arteriovenous fistula (AVF) for vascular access. However, AVF maturation failures are significant obstacles in establishing long-term vascular access for hemodialysis. Appropriate stimulation, activation, and proliferation of smooth muscle cells, proper endothelial cell orientation, adequate structural changes in the ECM, and the release of anti-inflammatory markers are associated with maturation. AVFs often fail to mature due to inadequate tissue repair and remodeling, leading to neointimal hyperplasia lesions. The transdifferentiation of myofibroblasts and sterile inflammation are possibly involved in AVF maturation failures; however, limited data is available in this regard. The present article critically reviews the interplay of various damage-associated molecular patterns (DAMPs) and the downstream sterile inflammatory signaling with a focus on the NLRP3 inflammasome. Improved knowledge concerning AVF maturation pathways can be unveiled by investigating the novel DAMPs and the mediators of sterile inflammation in vascular remodeling that would open improved therapeutic opportunities in the management of AVF maturation failures and its associated complications.
Collapse
|
8
|
Wu Y, Wang F, Wang T, Zheng Y, You L, Xue J. Association of Retinol-Binding Protein 4 with Arteriovenous Fistula Dysfunction in Hemodialysis Patients. Blood Purif 2021; 50:906-913. [PMID: 33556944 DOI: 10.1159/000513418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Arteriovenous fistula (AVF) is the most common vascular access for patients undergoing hemodialysis (HD). Neointimal hyperplasia (NIH) might be a potential mechanism of AVF dysfunction. Retinol-binding protein 4 (RBP4) may play an important role in the pathogenesis of NIH. The aim of this study was to investigate whether AVF dysfunction is associated with serum concentrations of RBP4 in HD subjects. METHODS A cohort of 65 Chinese patients undergoing maintenance HD was recruited between November 2017 and June 2019. The serum concentrations of RBP4 of each patient were measured with the ELISA method. Multivariate logistic regression was used to analyze data on demographics, biochemical parameters, and serum RBP4 level to predict AVF dysfunction events. The cutoff for serum RBP4 level was derived from the highest score obtained on the Youden index. Survival data were analyzed with the Cox proportional hazards regression analysis and Kaplan-Meier method. RESULTS Higher serum RBP4 level was observed in patients with AVF dysfunction compared to those without AVF dysfunction events (174.3 vs. 168.4 mg/L, p = 0.001). The prevalence of AVF dysfunction events was greatly higher among the high RBP4 group (37.5 vs. 4.88%, p = 0.001). In univariate analysis, serum RBP4 level was statistically significantly associated with the risk of AVF dysfunction (OR = 1.015, 95% CI 1.002-1.030, p = 0.030). In multivariate analysis, each 1.0 mg/L increase in RBP4 level was associated with a 1.023-fold-increased risk of AVF dysfunction (95% CI for OR: 1.002-1.045; p = 0.032). The Kaplan-Meier survival analysis indicated that the incidence of AVF dysfunction events in the high RBP4 group was significantly higher than that in the low-RBP4 group (p = 0.0007). Multivariate Cox regressions demonstrated that RBP4 was an independent risk factor for AVF dysfunction events in HD patients (HR = 1.015, 95% CI 1.001-1.028, p = 0.033). CONCLUSIONS HD patients with higher serum RBP4 concentrations had a relevant higher incidence of arteriovenous dysfunction events. Serum RBP4 level was an independent risk factor for AVF dysfunction events in HD patients.
Collapse
Affiliation(s)
- Yuanhao Wu
- Department of Nephrology, North Huashan Hospital Affiliated to Fudan University, Shanghai, China.,Department of Nephrology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Fan Wang
- Department of Nephrology, North Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Tingting Wang
- Department of Nephrology, North Huashan Hospital Affiliated to Fudan University, Shanghai, China.,Department of Nephrology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yin Zheng
- Department of Nephrology, North Huashan Hospital Affiliated to Fudan University, Shanghai, China.,Department of Nephrology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Li You
- Department of Nephrology, North Huashan Hospital Affiliated to Fudan University, Shanghai, China, .,Department of Nephrology, Huashan Hospital Affiliated to Fudan University, Shanghai, China,
| | - Jun Xue
- Department of Nephrology, North Huashan Hospital Affiliated to Fudan University, Shanghai, China.,Department of Nephrology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
9
|
Matsubara Y, Kiwan G, Fereydooni A, Langford J, Dardik A. Distinct subsets of T cells and macrophages impact venous remodeling during arteriovenous fistula maturation. JVS Vasc Sci 2020; 1:207-218. [PMID: 33748787 PMCID: PMC7971420 DOI: 10.1016/j.jvssci.2020.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Patients with end-stage renal failure depend on hemodialysis indefinitely without renal transplantation, requiring a long-term patent vascular access. While the arteriovenous fistula (AVF) remains the preferred vascular access for hemodialysis because of its longer patency and fewer complications compared with other vascular accesses, the primary patency of AVF is only 50-60%, presenting a clinical need for improvement. AVF mature by developing a thickened vascular wall and increased diameter to adapt to arterial blood pressure and flow volume. Inflammation plays a critical role during vascular remodeling and fistula maturation; increased shear stress triggers infiltration of T-cells and macrophages that initiate inflammation, with involvement of several different subsets of T-cells and macrophages. We review the literature describing distinct roles of the various subsets of T-cells and macrophages during vascular remodeling. Immunosuppression with sirolimus or prednisolone reduces neointimal hyperplasia during AVF maturation, suggesting novel approaches to enhance vascular remodeling. However, M2 macrophages and CD4+ T-cells play essential roles during AVF maturation, suggesting that total immunosuppression may suppress adaptive vascular remodeling. Therefore it is likely that regulation of inflammation during fistula maturation will require a balanced approach to coordinate the various inflammatory cell subsets. Advances in immunosuppressive drug development and delivery systems may allow for more targeted regulation of inflammation to improve vascular remodeling and enhance AVF maturation.
Collapse
Affiliation(s)
- Yutaka Matsubara
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT.,Department of Surgery and Sciences, Kyushu University, Fukuoka, Japan
| | - Gathe Kiwan
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Arash Fereydooni
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - John Langford
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT.,Division of Vascular and Endovascular Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT.,Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT
| |
Collapse
|
10
|
Park GT, Kwon YW, Lee TW, Kwon SG, Ko HC, Kim MB, Kim JH. Formyl Peptide Receptor 2 Activation Ameliorates Dermal Fibrosis and Inflammation in Bleomycin-Induced Scleroderma. Front Immunol 2019; 10:2095. [PMID: 31552041 PMCID: PMC6733889 DOI: 10.3389/fimmu.2019.02095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/20/2019] [Indexed: 02/02/2023] Open
Abstract
Systemic sclerosis is a profibrotic autoimmune disease mediated by the dysregulation of extracellular matrix synthesis. Formyl peptide receptor 2 (Fpr2) is a G protein-coupled receptor that modulates inflammation and host defense by regulating the activation of inflammatory cells, such as macrophages. However, the role of Fpr2 in the development and therapy of scleroderma is still unclear. The present study was conducted to investigate the effects of Fpr2 activation in the treatment of scleroderma fibrosis. We found that intradermal administration of WKYMVm, an Fpr2-specific agonist, alleviated bleomycin-induced scleroderma fibrosis in mice and decreased dermal thickness in scleroderma skin. WKYMVm-treated scleroderma skin tissues displayed reduced numbers of myofibroblasts expressing α-smooth muscle actin, Vimentin, and phosphorylated SMAD3. WKYMVm treatment attenuated macrophage infiltration in scleroderma skin and reduced the number of M2 macrophages. The therapeutic effects of WKYMVm in scleroderma-associated fibrosis and inflammation were completely abrogated in Fpr2 knockout mice. Moreover, WKYMVm treatment reduced the serum levels of inflammatory cytokines, such as tumor necrosis factor-α, and interferon-γ, in the scleroderma model of wild-type mice but not in Fpr2 knockout mice. These results suggest that WKYMVm-induced activation of Fpr2 leads to alleviation of fibrosis by stimulating immune resolution in systemic sclerosis.
Collapse
Affiliation(s)
- Gyu Tae Park
- Department of Physiology, Pusan National University School of Medicine, Yangsan-si, South Korea
| | - Yang Woo Kwon
- Department of Physiology, Pusan National University School of Medicine, Yangsan-si, South Korea
| | - Tae Wook Lee
- Department of Physiology, Pusan National University School of Medicine, Yangsan-si, South Korea
| | - Seong Gyu Kwon
- Department of Physiology, Pusan National University School of Medicine, Yangsan-si, South Korea
| | - Hyun-Chang Ko
- Department of Dermatology, Pusan National University School of Medicine, Yangsan-si, South Korea
| | - Moon Bum Kim
- Department of Dermatology, Pusan National University School of Medicine, Yangsan-si, South Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan-si, South Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan-si, South Korea
| |
Collapse
|