1
|
Peng X, Zeng Z, Hassan S, Xue Y. The potential of marine natural Products: Recent Advances in the discovery of Anti-Tuberculosis agents. Bioorg Chem 2024; 151:107699. [PMID: 39128242 DOI: 10.1016/j.bioorg.2024.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Tuberculosis (TB) is an infectious airborne disease caused by Mycobacterium tuberculosis. Since the 1990 s, many countries have made significant progress in reducing the incidence of TB and associated mortality by improving health services and strengthening surveillance systems. Nevertheless, due to the emergence of multidrug-resistant TB (MDR-TB), alongside extensively drug-resistant TB (XDR-TB) and TB-HIV co-infection, TB remains one of the lead causes of death arising from infectious disease worldwide, especially in developing countries and disadvantaged populations. Marine natural products (MNPs) have received a large amount of attention in recent years as a source of pharmaceutical constituents and lead compounds, and are expected to offer significant resources and potential in the fields of drug development and biotechnology in the years to come. This review summarizes 169 marine natural products and their synthetic derivatives displaying anti-TB activity from 2013 to the present, including their structures, sources and functions. Partial synthetic information and structure-activity relationships (SARs) are also included.
Collapse
Affiliation(s)
- Xinyu Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Ziqian Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Said Hassan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24540, Pakistan
| | - Yongbo Xue
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
2
|
Yi L, Tan S, White LV, Liang MY, Banwell MG. Total Syntheses of the Structures Assigned to Denigrins A, B, C, F, and G, 3,4-Diaryl-Pyrrole and -Pyrrolidinone Alkaloids, and the Conversion of Congener B into the Co-metabolite Spirodactylone. JOURNAL OF NATURAL PRODUCTS 2024; 87:1521-1531. [PMID: 38754059 DOI: 10.1021/acs.jnatprod.3c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The title marine natural products have been prepared by total synthesis and in the case of congeners 3, 6, and 7 for the first time. Each of these was obtained by manipulation of readily prepared denigrin B (2). The structure, 3, assigned to denigrin C is shown to be incorrect. Reaction of compound 2 with DDQ has led, in high yield, to the related natural product spirodactylone (16), while treating the corresponding permethyl ether 15 with PIFA/BF3·Et2O provides compound 20, embodying an isomeric framework.
Collapse
Affiliation(s)
- Liangguang Yi
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632 China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Shen Tan
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632 China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Lorenzo V White
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632 China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Min-Yi Liang
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632 China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632 China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
3
|
Gris L, Prinsep MR, Peters LM, Battershill CN. Denigrins H-L: Sulfated Derivatives of Denigrins D and E from a New Zealand Dictyodendrilla c.f. dendyi Marine Sponge. Mar Drugs 2024; 22:231. [PMID: 38786622 PMCID: PMC11122787 DOI: 10.3390/md22050231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Five new sulfated arylpyrrole and arylpyrrolone alkaloids, denigrins H-L (1-5), along with two known compounds, dictyodendrin B and denigrin G, were isolated from an extract of a New Zealand Dictyodendrilla c.f. dendyi marine sponge. Denigrins H-L represent the first examples of sulfated denigrins, with denigrins H and I (1-2), as derivatives of denigrin D, containing a pyrrolone core, and denigrins J-L (3-5), as derivatives of denigrin E (6), containing a pyrrole core. Their structures were elucidated by interpretation of 1D and 2D NMR spectroscopic data, ESI, and HR-ESI-MS spectrometric data, as well as comparison with literature data. Compounds 1-5, along with six known compounds previously isolated from the same extract, showed minimal cytotoxicity against the HeLa cervical cancer cell line.
Collapse
Affiliation(s)
- Lauren Gris
- Chemistry and Applied Physics, School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| | - Michèle R. Prinsep
- Chemistry and Applied Physics, School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| | - Linda M. Peters
- Biomedical, Molecular and Cellular Biology, School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| | - Christopher N. Battershill
- School of Science, University of Waikato Coastal Marine Field Station, 58 Cross Road, Sulphur Point, Tauranga 3110, New Zealand;
| |
Collapse
|
4
|
Boshoff HI, Malhotra N, Barry CE, Oh S. The Antitubercular Activities of Natural Products with Fused-Nitrogen-Containing Heterocycles. Pharmaceuticals (Basel) 2024; 17:211. [PMID: 38399426 PMCID: PMC10892018 DOI: 10.3390/ph17020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Tuberculosis (TB) is notorious as the leading cause of death worldwide due to a single infectious entity and its causative agent, Mycobacterium tuberculosis (Mtb), has been able to evolve resistance to all existing drugs in the treatment arsenal complicating disease management programs. In drug discovery efforts, natural products are important starting points in generating novel scaffolds that have evolved to specifically bind to vulnerable targets not only in pathogens such as Mtb, but also in mammalian targets associated with human diseases. Structural diversity is one of the most attractive features of natural products. This review provides a summary of fused-nitrogen-containing heterocycles found in the natural products reported in the literature that are known to have antitubercular activities. The structurally targeted natural products discussed in this review could provide a revealing insight into novel chemical aspects with novel biological functions for TB drug discovery efforts.
Collapse
Affiliation(s)
| | | | | | - Sangmi Oh
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA; (H.I.B.); (N.M.); (C.E.B.III)
| |
Collapse
|
5
|
Gris L, Battershill CN, Prinsep MR. Investigation of the Dietary Preferences of Two Dorid Nudibranchs by Feeding-Choice Experiments and Chemical Analysis. J Chem Ecol 2023; 49:599-610. [PMID: 37458927 PMCID: PMC10725399 DOI: 10.1007/s10886-023-01444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 12/17/2023]
Abstract
Feeding-choice experiments were conducted under laboratory conditions with two dorid spongivorous nudibranchs, Goniobranchus aureomarginatus and Ceratosoma amoenum, collected from a sponge meadow off Tauranga, New Zealand with two sponge prey (Dysidea teawanui sp.nov. and an undescribed species from the Dictyodendrillidae family, possibly Dictyodendrilla tenella (Lendenfeld 1888). The first choice of prey, the total number of prey choices made, and the time spent on each prey target was recorded, results indicating that each nudibranch had strong preferences for specific prey species. Preferences were significant when the time spent grazing on prey was taken into consideration. Goniobranchus aureomarginatus had a strong preference for the undescribed Dictyodendrillid sponge, while Ceratosoma ameonum preferred Dysidea teawanui. The results of the feeding-choice experiments matched observations in the wild. Chemical analysis of the undescribed Dictyodendrillid sponge led to the isolation and characterisation of six known bioactive metabolites, dictyodendrin C (1), D (2) and F (3), as well as denigrin E (4), dactylpyrrole A (5) and lamellarin O1 (6). Two of the known compounds, dictyodendrins C (1) and F (3) were also isolated from G. aureomarginatus individuals. Chemical analysis of D. teawanui afforded ergosterol peroxide, 5α,8α-epidioxy-24-methylcholesta-6,22-dien-3β-ol (7). The structures of the isolated natural products were elucidated based on extensive analysis of 1D and 2D NMR data.
Collapse
Affiliation(s)
- Lauren Gris
- Chemistry and Applied Physics, School of Science, University of Waikato, Private Bag 3105, 3240, Hamilton, New Zealand
| | - Christopher N Battershill
- University of Waikato Coastal Marine Field Station, 58 Cross Road, Sulphur Point, 3110, Tauranga, New Zealand
| | - Michele R Prinsep
- Chemistry and Applied Physics, School of Science, University of Waikato, Private Bag 3105, 3240, Hamilton, New Zealand.
| |
Collapse
|
6
|
Kumar G, C A. Natural products and their analogues acting against Mycobacterium tuberculosis: A recent update. Drug Dev Res 2023; 84:779-804. [PMID: 37086027 DOI: 10.1002/ddr.22063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/28/2023] [Accepted: 04/01/2023] [Indexed: 04/23/2023]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases caused by Mycobacterium tuberculosis (M.tb). It is responsible for significant causes of mortality and morbidity worldwide. M.tb possesses robust defense mechanisms against most antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. Thus, the efficacy of existing front-line drugs is diminishing, and new and recurring cases of TB arising from multidrug-resistant M.tb are increasing. TB begs the scientific community to explore novel therapeutic avenues. A precise knowledge of the compounds with their mode of action could aid in developing new anti-TB agents that can kill latent and actively multiplying M.tb. This can help in the shortening of the anti-TB regimen and can improve the outcome of treatment strategies. Natural products have contributed several antibiotics for TB treatment. The sources of anti-TB drugs/inhibitors discussed in this work are target-based identification/cell-based and phenotypic screening from natural products. Some of the recently identified natural products derived leads have reached clinical stages of TB drug development, which include rifapentine, CPZEN-45, spectinamide-1599 and 1810. We believe these anti-TB agents could emerge as superior therapeutic compounds to treat TB over known Food and Drug Administration drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| | - Amrutha C
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
7
|
Coppola D, Buonocore C, Palisse M, Tedesco P, de Pascale D. Exploring Oceans for Curative Compounds: Potential New Antimicrobial and Anti-Virulence Molecules against Pseudomonas aeruginosa. Mar Drugs 2022; 21:9. [PMID: 36662182 PMCID: PMC9865402 DOI: 10.3390/md21010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Although several antibiotics are already widely used against a large number of pathogens, the discovery of new antimicrobial compounds with new mechanisms of action is critical today in order to overcome the spreading of antimicrobial resistance among pathogen bacteria. In this regard, marine organisms represent a potential source of a wide diversity of unique secondary metabolites produced as an adaptation strategy to survive in competitive and hostile environments. Among the multidrug-resistant Gram-negative bacteria, Pseudomonas aeruginosa is undoubtedly one of the most important species due to its high intrinsic resistance to different classes of antibiotics on the market and its ability to cause serious therapeutic problems. In the present review, we first discuss the general mechanisms involved in the antibiotic resistance of P. aeruginosa. Subsequently, we list the marine molecules identified up until now showing activity against P. aeruginosa, dividing them according to whether they act as antimicrobial or anti-virulence compounds.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Morgan Palisse
- Département des Sciences de la Vie et de la Terre, Université de Caen Normandie, Boulevard Maréchal Juin CS, CEDEX, 14032 Caen, France
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
| |
Collapse
|
8
|
Erol I. Synthesis and characterization of novel sulfonamide functionalized maleimide polymers: Conventional kinetic analysis, antimicrobial activity and dielectric properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Chen Y, Lan P, Banwell MG. Total Synthesis of Denigrin E and Its Oxidative Conversion into Co-occurring Metabolite Denigrin D. Org Lett 2022; 24:2931-2934. [PMID: 35394277 DOI: 10.1021/acs.orglett.2c00955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unambiguous, six-step total synthesis of denigrin E (5) from anisaldehyde 22 has been achieved, confirming the structure of this marine natural product. On treatment with t-BuOOH/Mo(CO)6, compound 5 undergoes a unique and possibly biogenetically relevant oxidative rearrangement to generate the co-occurring metabolite denigrin D (4), which is obtained in 61% yield.
Collapse
Affiliation(s)
- Yu Chen
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China.,College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Li H, Maimaitiming M, Zhou Y, Li H, Wang P, Liu Y, Schäberle TF, Liu Z, Wang CY. Discovery of Marine Natural Products as Promising Antibiotics against Pseudomonas aeruginosa. Mar Drugs 2022; 20:192. [PMID: 35323491 PMCID: PMC8954164 DOI: 10.3390/md20030192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas aeruginosa, one of the most intractable Gram-negative bacteria, has become a public health threat due to its outer polysaccharide layer, efflux transporter system, and high level of biofilm formation, all of which contribute to multi-drug resistance. Even though it is a pathogen of the highest concern, the status of the antibiotic development pipeline is unsatisfactory. In this review, we summarize marine natural products (MNPs) isolated from marine plants, animals, and microorganisms which possess unique structures and promising antibiotic activities against P. aeruginosa. In the last decade, nearly 80 such MNPs, ranging from polyketides to alkaloids, peptides, and terpenoids, have been discovered. Representative compounds exhibited impressive in vitro anti-P. aeruginosa activities with MIC values in the single-digit nanomolar range and in vivo efficacy in infectious mouse models. For some of the compounds, the preliminary structure-activity-relationship (SAR) and anti-bacterial mechanisms of selected compounds were introduced. Compounds that can disrupt biofilm formation or membrane integrity displayed potent inhibition of multi-resistant clinical P. aeruginosa isolates and could be considered as lead compounds for future development. Challenges on how to translate hits into useful candidates for clinical development are also proposed and discussed.
Collapse
Affiliation(s)
- Haoran Li
- Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mireguli Maimaitiming
- Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yue Zhou
- Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Huaxuan Li
- Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Pingyuan Wang
- Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang Liu
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Ohlebergsweg 12, 35392 Giessen, Germany
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), 35392 Giessen, Germany
- Partner Site Giessen-Marburg-Langen, German Center for Infection Research (DZIF), 35392 Giessen, Germany
| | - Zhiqing Liu
- Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Chang-Yun Wang
- Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
11
|
Prieto IM, Paola A, Pérez M, García M, Blustein G, Schejter L, Palermo JA. Antifouling Diterpenoids from the Sponge Dendrilla antarctica. Chem Biodivers 2021; 19:e202100618. [PMID: 34964245 DOI: 10.1002/cbdv.202100618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022]
Abstract
Two nor-diterpenes, 9,11-dihydrogracilin A (1) and the previously unreported 9,11-dihydrogracillinone A (2), were isolated from the sponge Dendrilla antarctica. The sponge was collected by trawling at a depth of 49 m, from the research vessel Puerto Deseado, near the coast of Tierra del Fuego, farther north than the reported habitat for this species. Since these compounds were particularly abundant and the sponge was free from epibionts, both 1 and 2 were included in soluble-matrix paints and tested for antifouling activity in the ocean. The results obtained from these experiments clearly indicated a potent antifouling activity for both compounds against a variety of colonizing organisms, and established a probable role as natural antifoulants for these abundant secondary metabolites and other structurally related compounds previously isolated from Dendrilla spp.
Collapse
Affiliation(s)
- Iván M Prieto
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, C1428EGA, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR) -, C1428EGA, Buenos Aires, Argentina
| | - Analía Paola
- Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDEPINT), Calle 52 e/ 121 y 122, B1900AYB, La Plata, Argentina.,Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo, Calle 60 y 122, B1900, La Plata, Argentina
| | - Miriam Pérez
- Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDEPINT), Calle 52 e/ 121 y 122, B1900AYB, La Plata, Argentina.,Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo, Calle 60 y 122, B1900, La Plata, Argentina
| | - Mónica García
- Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDEPINT), Calle 52 e/ 121 y 122, B1900AYB, La Plata, Argentina
| | - Guillermo Blustein
- Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDEPINT), Calle 52 e/ 121 y 122, B1900AYB, La Plata, Argentina.,Universidad Nacional de La Plata, Facultad de Ciencias Agrarias y Forestales, Calle 60 y 119, B1900, La Plata, Argentina
| | - Laura Schejter
- Laboratorio de Bentos, Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP) and Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Paseo Victoria Ocampo 1, B7602HSA, Mar del Plata, Argentina
| | - Jorge A Palermo
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, C1428EGA, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR) -, C1428EGA, Buenos Aires, Argentina
| |
Collapse
|
12
|
Seipp K, Geske L, Opatz T. Marine Pyrrole Alkaloids. Mar Drugs 2021; 19:514. [PMID: 34564176 PMCID: PMC8471394 DOI: 10.3390/md19090514] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Nitrogen heterocycles are essential parts of the chemical machinery of life and often reveal intriguing structures. They are not only widespread in terrestrial habitats but can also frequently be found as natural products in the marine environment. This review highlights the important class of marine pyrrole alkaloids, well-known for their diverse biological activities. A broad overview of the marine pyrrole alkaloids with a focus on their isolation, biological activities, chemical synthesis, and derivatization covering the decade from 2010 to 2020 is provided. With relevant structural subclasses categorized, this review shall provide a clear and timely synopsis of this area.
Collapse
Affiliation(s)
| | | | - Till Opatz
- Department of Chemistry, Organic Chemistry Section, Johannes Gutenberg University, Duesbergweg 10–14, 55128 Mainz, Germany; (K.S.); (L.G.)
| |
Collapse
|
13
|
Tabassum S, Zahoor AF, Ahmad S, Noreen R, Khan SG, Ahmad H. Cross-coupling reactions towards the synthesis of natural products. Mol Divers 2021; 26:647-689. [PMID: 33609222 DOI: 10.1007/s11030-021-10195-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/30/2021] [Indexed: 01/12/2023]
Abstract
Cross-coupling reactions are powerful synthetic tools for the formation of remarkable building blocks of many naturally occurring molecules, polymers and biologically active compounds. These reactions have brought potent transformations in chemical and pharmaceutical disciplines. In this review, we have focused on the use of cross-coupling reactions such as Suzuki, Negishi, Heck, Sonogashira and Stille in the total synthesis of some natural products of recent years (2016-2020). A short introduction of mentioned cross-coupling reactions along with highlighted aspects of natural products has been stated in separate sections. Additionally, few examples of natural products via incorporation of more than one type of cross-coupling reaction have also been added to demonstrate the importance of these reactions in organic synthesis.
Collapse
Affiliation(s)
- Shaheera Tabassum
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology, Lahore, Faisalabad Campus, Faisalabad, 38000, Pakistan
| | - Razia Noreen
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Hamad Ahmad
- Department of Chemistry, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
14
|
Kang U, Cartner LK, Wang D, Kim CK, Thomas CL, Woldemichael GM, Gryder BE, Shern JF, Khan J, Castello-Branco C, Sherer EC, Wang X, Regalado EL, Gustafson KR. Denigrins and Dactylpyrroles, Arylpyrrole Alkaloids from a Dactylia sp. Marine Sponge. JOURNAL OF NATURAL PRODUCTS 2020; 83:3464-3470. [PMID: 33151696 PMCID: PMC8942300 DOI: 10.1021/acs.jnatprod.0c01103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Seven new arylpyrrole alkaloids (1-7), along with four known compounds, were isolated from an extract of a Dactylia sp. nov. marine sponge, and their structures were elucidated by interpretation of NMR and MS spectroscopic data. Denigrins D-G (1-4) have highly substituted pyrrole or pyrrolone rings in their core structures, while dactylpyrroles A-C (5-7) have tricyclic phenanthrene cores. Due to the proton-deficient nature of these scaffolds, key heteronuclear correlations from 1H-15N HMBC and LR-HSQMBC NMR experiments were used in the structure assignment of denigrin D (1). Dictyodendrin F (8), a previously described co-metabolite, inhibited transcription driven by the oncogenic PAX3-FOXO1 fusion gene with an IC50 value of 13 μM.
Collapse
Affiliation(s)
- Unwoo Kang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Laura K Cartner
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Dongdong Wang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Chang-Kwon Kim
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Cheryl L Thomas
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Girma M Woldemichael
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Berkley E Gryder
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - John F Shern
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Cristiana Castello-Branco
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, United States
| | - Edward C Sherer
- Department of Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Xiao Wang
- Department of Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Erik L Regalado
- Department of Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Kirk R Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
15
|
Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective. Chem Biol Interact 2020; 325:109125. [PMID: 32376238 PMCID: PMC7196551 DOI: 10.1016/j.cbi.2020.109125] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
Abstract
The apparent predicament of the representative chemotherapy for managing respiratory distress calls for an obligatory deliberation for identifying the pharmaceuticals that effectively counter the contemporary intricacies associated with target disease. Multiple, complex regulatory pathways manifest chronic pulmonary disorders, which require chemotherapeutics that produce composite inhibitory effect. The cost effective natural product based molecules hold a high fervor to meet the prospects posed by current respiratory-distress therapy by sparing the tedious drug design and development archetypes, present a robust standing for the possible replacement of the fading practice of poly-pharmacology, and ensure the subversion of a potential disease relapse. This study summarizes the experimental evidences on natural products moieties and their components that illustrates therapeutic efficacy on respiratory disorders. Plant derived therapeutics for managing chronic respiratory disorders. Activity of natural product based molecules on key regulatory pathways of COPD. Preclinical evidence for the efficacy of natural product moieties. Clinical significance of plant derived molecules in pulmonary distress.
Collapse
|
16
|
New potential drug leads against MDR-MTB: A short review. Bioorg Chem 2019; 95:103534. [PMID: 31884135 DOI: 10.1016/j.bioorg.2019.103534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022]
Abstract
Multidrug resistant Mycobacterium tuberculosis (MDR-MTB) infections have created a critical health problem globally. The appalling rise in drug resistance to all the current therapeutics has triggered the need for identifying new antimycobacterial agents effective against multidrug-resistant Mycobacterium tuberculosis. Structurally unique chemical entities with new mode of action will be required to combat this pressing issue. This review gives an overview of the structures and outlines on various aspects of in vitro pharmacological activities of new antimycobacterial agents, mechanism of action and brief structure activity relationships in the perspective of drug discovery and development. This review also summarizes on recent reports of new antimycobacterial agents.
Collapse
|
17
|
Marine Pharmacology in 2014-2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2019; 18:md18010005. [PMID: 31861527 PMCID: PMC7024264 DOI: 10.3390/md18010005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
The systematic review of the marine pharmacology literature from 2014 to 2015 was completed in a manner consistent with the 1998-2013 reviews of this series. Research in marine pharmacology during 2014-2015, which was reported by investigators in 43 countries, described novel findings on the preclinical pharmacology of 301 marine compounds. These observations included antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral, and anthelmintic pharmacological activities for 133 marine natural products, 85 marine compounds with antidiabetic, and anti-inflammatory activities, as well as those that affected the immune and nervous system, and 83 marine compounds that displayed miscellaneous mechanisms of action, and may probably contribute to novel pharmacological classes upon further research. Thus, in 2014-2015, the preclinical marine natural product pharmacology pipeline provided novel pharmacology as well as new lead compounds for the clinical marine pharmaceutical pipeline, and thus continued to contribute to ongoing global research for alternative therapeutic approaches to many disease categories.
Collapse
|
18
|
Kang U, Caldwell DR, Cartner LK, Wang D, Kim CK, Tian X, Bokesch HR, Henrich CJ, Woldemichael GM, Schnermann MJ, Gustafson KR. Elucidation of Spirodactylone, a Polycyclic Alkaloid from the Sponge Dactylia sp., and Nonenzymatic Generation from the Co-metabolite Denigrin B. Org Lett 2019; 21:4750-4753. [PMID: 31150264 PMCID: PMC8274939 DOI: 10.1021/acs.orglett.9b01636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spirodactylone (1), a hexacyclic indolizidone alkaloid possessing a novel spiro ring system, was isolated from the marine sponge Dactylia sp. The structure was elucidated by extensive spectroscopic methods including application of the LR-HSQMBC NMR pulse sequence. Oxidative cyclization of denigrin B (2), an aryl-substituted 2-oxo-pyrroline derivative that was also isolated from the sponge extract, provided material identical to spirodactylone (1). This confirmed the assigned structure and provides insight into the probable biogenesis of 1.
Collapse
Affiliation(s)
- Unwoo Kang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Donald R. Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Laura K. Cartner
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Dongdong Wang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Chang-Kwon Kim
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Xiangrong Tian
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Research & Development Center of Biorational Pesticide, College of Plant Protection, Northwest A&F University, Yangling 712100, P. R. China
| | - Heidi R. Bokesch
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Curtis J. Henrich
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Girma M. Woldemichael
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Kirk R. Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
19
|
Karak M, Oishi T, Torikai K. Synthesis of anti-tubercular marine alkaloids denigrins A and B. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
|
21
|
Mishra SK, Tripathi G, Kishore N, Singh RK, Singh A, Tiwari VK. Drug development against tuberculosis: Impact of alkaloids. Eur J Med Chem 2017. [DOI: 10.1016/j.ejmech.2017.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
He F, Mai LH, Gardères J, Hussain A, Erakovic Haber V, Bourguet-Kondracki ML. Major Antimicrobial Representatives from Marine Sponges and/or Their Associated Bacteria. BLUE BIOTECHNOLOGY 2017; 55:35-89. [DOI: 10.1007/978-3-319-51284-6_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Moloney MG. Natural Products as a Source for Novel Antibiotics. Trends Pharmacol Sci 2016; 37:689-701. [DOI: 10.1016/j.tips.2016.05.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 01/04/2023]
|
24
|
Affiliation(s)
- Ashwini A. Ghogare
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Alexander Greer
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
25
|
Abstract
This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | - Dimitris Noutsias
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
| | | |
Collapse
|