1
|
Heller CD, Zahedifard F, Doskocil I, Pamfil D, Zoltner M, Kokoska L, Rondevaldova J. Traditional Medicinal Ranunculaceae Species from Romania and Their In Vitro Antioxidant, Antiproliferative, and Antiparasitic Potential. Int J Mol Sci 2024; 25:10987. [PMID: 39456769 PMCID: PMC11507926 DOI: 10.3390/ijms252010987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Several Ranunculaceae species are used in folk medicine to eliminate pathologies associated with oxidative stress as well as parasitic infections; however, a number of studies confirming their pharmacological properties is limited. In this study, 19 ethanolic extracts obtained from 16 Ranunculaceae species were assayed for in vitro antioxidant, antiproliferative, and antiparasitic potential. The maximum antioxidant potential in both oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays was observed for Aconitum toxicum extract [half-maximal inhibitory concentration (IC50) 18.7 and 92.6 μg/mL]. Likewise, Anemone transsilvanica extract exerted the most promising antiproliferative activity against Caco-2 (IC50 46.9 μg/mL) and HT29 (IC50 70.2 μg/mL) cell lines in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, a dual antioxidant and cytotoxicity effect was demonstrated for Aconitum moldavicum and Caltha palustris extracts. Whilst the efficacy of extracts was modest against Trypanosoma brucei (IC50 ranging from 88.8 to 269.3 µg/mL), several extracts exhibited high potency against Leishmania infantum promastigotes (Aconitum vulparia IC50 18.8 µg/mL). We also tested them against the clinically relevant intracellular stage and found extract of A. vulparia to be the most effective (IC50 29.0 ± 1.1 µg/mL). All tested extracts showed no or low toxicity against FHs 74Int normal cell line (IC50 ranging from 152.9 to >512 µg/mL). In conclusion, we suggest the above-mentioned plant extracts as potential candidates for development of novel plant-based antioxidant and/or antiproliferative and/or antileishmanial compounds.
Collapse
Affiliation(s)
- Cristina D. Heller
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic;
| | - Farnaz Zahedifard
- Department of Parasitology, Faculty of Science, Charles University, 252 50 Prague, Czech Republic; (F.Z.); (M.Z.)
| | - Ivo Doskocil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| | - Doru Pamfil
- Department of Horticulture and Landscape Architecture, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania;
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University, 252 50 Prague, Czech Republic; (F.Z.); (M.Z.)
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| | - Johana Rondevaldova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague-Suchdol, Czech Republic;
| |
Collapse
|
2
|
Freitas CS, Pereira IAG, Lage DP, Vale DL, Pimenta BL, Soares NP, Santiago SS, Martins VT, Câmara RSB, Jesus MM, Tavares GSV, Ramos FF, Ludolf F, Magalhães LND, Oliveira FM, Duarte MC, Chávez-Fumagalli MA, Costa AV, Roatt BM, Teixeira RR, Coelho EAF. New synthetic molecules incorporated into polymeric micelles used for treatment against visceral leishmaniasis. Cytokine 2024; 177:156543. [PMID: 38373365 DOI: 10.1016/j.cyto.2024.156543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
Treatment against visceral leishmaniasis (VL) presents problems, mainly related to drug toxicity, high cost and/or by emergence of resistant strains. In the present study, two vanillin synthetic derivatives, 3 s [4-(2-hydroxy-3-(4-octyl-1H-1,2,3-triazol-1-yl)propoxy)-3-methoxybenzaldehyde] and 3 t [4-(3-(4-decyl-1H-1,2,3-triazol-1-yl)-2-hydroxypropoxy)-3-methoxybenzaldehyde], were evaluated as therapeutic candidates in a murine model against Leishmania infantum infection. Molecules were used pure (3 s and 3 t) or incorporated into Poloxamer 407-based micelles (3 s/M and 3 t/M) in the infected animals, which also received amphotericin B (AmpB) or Ambisome® as control. Results showed that 3 s/M and 3 t/M compositions induced a Th1-type immune response in treated animals, with higher levels of IFN-γ, IL-2, TNF-α, IL-12, nitrite, and IgG2a antibodies. Animals presented also low toxicity and significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes, as compared as control groups mice, with the evaluations performed one and 30 days after the application of the therapeutics. In conclusion, preliminary data suggest that 3 s/M and 3 t/M could be considered for future studies as therapeutic agents against VL.
Collapse
Affiliation(s)
- Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Breno L Pimenta
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Nícia P Soares
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Samira S Santiago
- Grupo de Síntese e Pesquisa de Compostos Bioativos, Departamento de Química, Universidade Federal de Viçosa, Avenida PH Rolfs, S/N, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S B Câmara
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo M Jesus
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências Médicas de Minas Gerais, Belo Horizonte 30130-110, Minas Gerais, Brazil
| | - Lícia N D Magalhães
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Fabrício M Oliveira
- Instituto Federal de Educação de Minas Gerais, Rua Afonso Sardinha, 90, Bairro Pioneiros, 36420-000 Ouro Branco, Minas Gerais, Brazil
| | - Mariana C Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José S/N, Umacollo, Arequipa, Peru
| | - Adilson V Costa
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, 29500-000, Alegre, Espírito Santo, Brazil
| | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Róbson R Teixeira
- Grupo de Síntese e Pesquisa de Compostos Bioativos, Departamento de Química, Universidade Federal de Viçosa, Avenida PH Rolfs, S/N, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, Santa Efigênia, 30130-100 Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Tiwari S, Acharya P, Solanki B, Sharma AK, Rawat S. A review on efforts for improvement in medicinally important chemical constituents in Aconitum through biotechnological interventions. 3 Biotech 2023; 13:190. [PMID: 37193333 PMCID: PMC10183062 DOI: 10.1007/s13205-023-03578-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/21/2023] [Indexed: 05/18/2023] Open
Abstract
The genus Aconitum belongs to the family Ranunculaceae, is endowed with more than 350 species on the earth. Medicinally important aconitine type of diterpenoid alkaloids are the characteristic compounds in most of the Aconitum species. The present review endeavored the major research carried out in the field of genetic resource characterization, pharmacological properties, phytochemistry, major factors influencing quantity, biosynthetic pathways and processing methods for recovery of active ingredients, variety improvement, propagation methods, and important metabolite production through cell/organ culture of various Aconitum species. More than 450 derivatives of aconitine-type C19 and C20-diterpenoid alkaloids along with a few other non-alkaloidal compounds, such as phenylpropanoids, flavonoids, terpenoids, and fatty acids, have been identified in the genus. A few Aconitum species and their common diterpenoid alkaloid compounds are also well characterized for analgesic, inflammatory and cytotoxic properties. However, the different isolated compound needs to be validated for supporting other traditional therapeutical uses of the plant species. Aconitine alkaloids shared common biosynthesis pathway, but their diversification mechanism remains unexplored in the genus. Furthermore, the process needs to be developed on secondary metabolite recovery, mass-scale propagation methods, and agro-technologies for maintaining the quality of products. Many species are losing their existence in nature due to over-exploitation or anthropogenic factors; thus, temporal monitoring of the population status in its habitat, and suitable management programs for ascertaining conservation needs to be developed.
Collapse
Affiliation(s)
- Sekhar Tiwari
- Department of Biotechnology, School of Sciences, P. P. Savani University, Surat, Gujarat India
| | - Puja Acharya
- Sikkim Regional Centre, G. B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok, Sikkim India
| | - Bharat Solanki
- Department of Biochemistry, M. B. Patel Science College, Sardar Patel University, Anand, Gujarat India
| | - Anish Kumar Sharma
- Department of Biotechnology, School of Sciences, P. P. Savani University, Surat, Gujarat India
| | - Sandeep Rawat
- Sikkim Regional Centre, G. B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok, Sikkim India
| |
Collapse
|
4
|
Wu JC, Yang L, Zhang YT, Huang S, Chen L, Zhou XL. Diterpenoid alkaloids from the Aconitum episcopale levl. And their chemotaxonomic significance. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Liu XY, Ke BW, Qin Y, Wang FP. The diterpenoid alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2022; 87:1-360. [PMID: 35168778 DOI: 10.1016/bs.alkal.2021.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The diterpenoid alkaloids are a family of extremely important natural products that have long been a research hotspot due to their myriad of intricate structures and diverse biological properties. This chapter systematically summarizes the past 11 years (2009-2019) of studies on the diterpenoid alkaloids, including the "so-called" atypical ones, covering the classification and biogenetic relationships, phytochemistry together with 444 new alkaloids covering 32 novel skeletons and the corrected structures, chemical reactions including conversion toward toxoids, synthetic studies, as well as biological activities. It should be noted that the synthetic studies, especially the total syntheses of various diterpenoid alkaloids, are for the first time reviewed in this treatise. This chapter, in combination with our four previous reviews in volumes 42, 59, 67, and 69, will present to the readers a more completed and updated profile of the diterpenoid alkaloids.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Bo-Wen Ke
- West China Hospital, Sichuan University, Chengdu, China
| | - Yong Qin
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China.
| | - Feng-Peng Wang
- Department of Chemistry of Medicinal Natural Products, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Sakyi PO, Amewu RK, Devine RNOA, Ismaila E, Miller WA, Kwofie SK. The Search for Putative Hits in Combating Leishmaniasis: The Contributions of Natural Products Over the Last Decade. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:489-544. [PMID: 34260050 PMCID: PMC8279035 DOI: 10.1007/s13659-021-00311-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/07/2021] [Indexed: 05/12/2023]
Abstract
Despite advancements in the areas of omics and chemoinformatics, potent novel biotherapeutic molecules with new modes of actions are needed for leishmaniasis. The socioeconomic burden of leishmaniasis remains alarming in endemic regions. Currently, reports from existing endemic areas such as Nepal, Iran, Brazil, India, Sudan and Afghanistan, as well as newly affected countries such as Peru, Bolivia and Somalia indicate concerns of chemoresistance to the classical antimonial treatment. As a result, effective antileishmanial agents which are safe and affordable are urgently needed. Natural products from both flora and fauna have contributed immensely to chemotherapeutics and serve as vital sources of new chemical agents. This review focuses on a systematic cross-sectional view of all characterized anti-leishmanial compounds from natural sources over the last decade. Furthermore, IC50/EC50, cytotoxicity and suggested mechanisms of action of some of these natural products are provided. The natural product classification includes alkaloids, terpenes, terpenoids, and phenolics. The plethora of reported mechanisms involve calcium channel inhibition, immunomodulation and apoptosis. Making available enriched data pertaining to bioactivity and mechanisms of natural products complement current efforts geared towards unraveling potent leishmanicides of therapeutic relevance.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. BOX LG 56, Legon, Accra, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. BOX LG 56, Legon, Accra, Ghana
| | - Robert N. O. A. Devine
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Emahi Ismaila
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 54, Accra, Ghana
| |
Collapse
|
7
|
Ali S, Chouhan R, Sultan P, Hassan QP, Gandhi SG. A comprehensive review of phytochemistry, pharmacology and toxicology of the genus Aconitum L. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00565-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Zhang K, Liu C, Yang T, Li X, Wei L, Chen D, Zhou J, Yin Y, Yu X, Li F. Systematically explore the potential hepatotoxic material basis and molecular mechanism of Radix Aconiti Lateralis based on the concept of toxicological evidence chain (TEC). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111342. [PMID: 32971455 DOI: 10.1016/j.ecoenv.2020.111342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Radix aconiti lateralis (Fuzi) is widely used in China as a traditional Chinese medicine for the treatment of asthenia, pain and inflammation. However, its toxic alkaloids often lead to adverse reactions. Currently, most of the toxicity studies on Fuzi are focused on the heart and nervous system, and more comprehensive toxicity studies are needed. In this study, based on the previous reports of Fuzi hepatotoxicity, serum pharmacochemistry and network toxicology were used to screen the potential toxic components of Heishunpian(HSP), a processed product of Fuzi, and to explore the possible mechanism of HSP-induced hepatotoxicity. The results obtained are expressed based on the toxicological evidence chain (TEC). It was found that 22 potential toxic components screened can affect Th17 cell differentiation, Jak-STAT signaling pathway, glutathione metabolism, and other related pathways by regulating AKT1, IL2, F2, GSR, EGFR and other related targets, which induces oxidative stress, metabolic disorders, cell apoptosis, immune response, and excessive release of inflammatory factors, eventually inducing liver damage in rats. This is the first study on HSP-induced hepatotoxicity based on the TEC concept, providing references for further studies on the toxicity mechanism of Fuzi.
Collapse
Affiliation(s)
- Kai Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Chuanxin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Tiange Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Xinxin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Longyin Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Dongling Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Jiali Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Yihui Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Xinyu Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China
| | - Fei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing, 102488, China.
| |
Collapse
|
9
|
Jiang H, Huang S, Gao F, Zhen Y, Li C, Zhou X. Diterpenoid alkaloids from Aconitum brevicalcaratum as autophagy inducers. Nat Prod Res 2019; 33:1741-1746. [PMID: 29430945 PMCID: PMC6474827 DOI: 10.1080/14786419.2018.1437435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/02/2018] [Indexed: 01/29/2023]
Abstract
A new C19 diterpenoid alkaloid, brevicanine (1) and six known ones (2-7) were isolated from Aconitum brevicalcaratum (Finet et Gagnep.) Diels. Their structures were elucidated on the basis of extensive spectroscopic analyses. The cytotoxicity of those compounds was investigated against HCT116 human cancer cell line, which showed none of them possessing considerable anti-proliferative activities. To evaluate the autophagy effect of compounds 1-7, Western blot was used to detect the expression of autophagic marker by stimulating human cancer HCT116 cells. The results showed that compound 6 induced protective autophagy in HCT116 cells. Mechanistic insight showed that compound 6 induced protective autophagy through p53 activation, ERK1/2 and p38 MAPK signaling cascade.
Collapse
Affiliation(s)
- Haiyue Jiang
- school of life science and engineering, southwest Jiaotong university, chengdu, P.r. china
| | - Shuai Huang
- school of life science and engineering, southwest Jiaotong university, chengdu, P.r. china
- center for Molecular and translational Medicine, Institute of Biomedical sciences, Georgia state university, atlanta, Ga, usa
| | - Feng Gao
- school of life science and engineering, southwest Jiaotong university, chengdu, P.r. china
| | - Yongqi Zhen
- school of life science and engineering, southwest Jiaotong university, chengdu, P.r. china
| | - Chunying Li
- center for Molecular and translational Medicine, Institute of Biomedical sciences, Georgia state university, atlanta, Ga, usa
| | - Xianli Zhou
- school of life science and engineering, southwest Jiaotong university, chengdu, P.r. china
| |
Collapse
|
10
|
Lindoso JAL, Moreira CHV, Cunha MA, Queiroz IT. Visceral leishmaniasis and HIV coinfection: current perspectives. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2018; 10:193-201. [PMID: 30410407 PMCID: PMC6197215 DOI: 10.2147/hiv.s143929] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Visceral leishmaniasis (VL) is caused by Leishmania donovani and Leishmania infantum. The burden of VL is concentrated in tropical and subtropical areas; however, HIV infection has spread VL over a hyperendemic area. Several outcomes are observed as a result of VL–HIV coinfection. Impacts are observed in immunopathogenesis, clinical manifestation, diagnosis, and therapeutic response. Concerning clinical manifestation, typical and unusual manifestation has been observed during active VL in HIV-infected patient, as well as alteration in immunoresponse, inducing greater immunosuppression by low CD4 T-lymphocyte count or even by induction of immunoactivation, with cell senescence. Serological diagnosis of VL in the HIV-infected is poor, due to low humoral response, characterized by antibody production, so parasitological methods are more recommended. Another important and even more challenging point is the definition of the best therapeutic regimen for VL in HIV-coinfected patients, because in this population there is greater failure and consequently higher mortality. The challenge of better understanding immunopathogenesis in order to obtain more effective therapies is one of the crucial points to be developed. The combination of drugs and the use of secondary prophylaxis associated with highly active antiretroviral therapy may be the best tool for treatment of HIV coinfection. Some derivatives from natural sources have action against Leishmania; however, studies have been limited to in vitro evaluation, without clinical trials.
Collapse
Affiliation(s)
- José Angelo Lauletta Lindoso
- Instituto de Infectologia Emilio Ribas, São Paulo, Brazil, .,Nucleo de Medicina Tropical, Universidade de Brasília, Brasília, Brazil, .,Laboratorio de Soroepidemiologia, Institutode Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil,
| | - Carlos Henrique Valente Moreira
- Instituto de Infectologia Emilio Ribas, São Paulo, Brazil, .,Laboratorio de Parasitologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - Mirella Alves Cunha
- Departamento de Infectologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Igor Thiago Queiroz
- Universidade Potiguar (UnP), Laureate International Universities, Natal, Brazil.,Hospital Giselda Trigueiro (SESAP/RN), Natal, Brazil
| |
Collapse
|
11
|
Shan L, Chen L, Gao F, Zhou X. Diterpenoid alkaloids from Delphinium naviculare var. lasiocarpum with their antifeedant activity on Spodoptera exigua. Nat Prod Res 2018; 33:3254-3259. [PMID: 29781312 DOI: 10.1080/14786419.2018.1475382] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A new lycoctonine diterpenoid alkaloid navicularine, along with eighteen known diterpenoid alkaloids, were isolated from the whole plant of Delphinium naviculare var. lasiocarpum. Their structures were elucidated on the base of extensive spectroscopic analysis (HR-ESI-MS and NMR) and comparison with data reported in the literature. Most of alkaloids were tested for their antifeedant activity against larvae of Spodoptera exigua (Hübner). The compound shawurensine showed considerably potent antifeedant activity (EC50 = 0.42 and 0.81 mg/cm2 in the choice test and no choice test, respectively).
Collapse
Affiliation(s)
- Lianhai Shan
- School of Life Science and Engineering, Southwest Jiaotong University , Chengdu , P.R. China
| | - Lin Chen
- School of Chemistry and Chemical Engineering, China West Normal University , Nanchong , P.R. China
| | - Feng Gao
- School of Life Science and Engineering, Southwest Jiaotong University , Chengdu , P.R. China
| | - Xianli Zhou
- School of Life Science and Engineering, Southwest Jiaotong University , Chengdu , P.R. China
| |
Collapse
|
12
|
Zhou X, Xu W, Chen L, Gao F. Two New C19-Diterpenoid Alkaloids from Aconitum franchetii var. villosulum. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Samanbay A, Zhao B, Aisa HA. A new denudatine type C 20-diterpenoid alkaloid from Aconitum sinchiangense W. T. Wang. Nat Prod Res 2017; 32:2319-2324. [PMID: 29212360 DOI: 10.1080/14786419.2017.1410814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new denudatine-type C20-diterpenoid alkaloid, designated as sinchianine (1), together with eight known diterpenoid alkaloids, 12-acetyl-12-epi-napelline (2), 12-epi-napelline (3), neoline (4), talatisamine (5), 14-O-acetylsenbusine A (6) and benzoylaconine (7), songorine (8) and aconitine (9), were isolated from the whole herb of Aconitum sinchiangense W. T. Wang. Their structures were elucidated on the basis of extensive spectroscopic analyses (NMR and HR-ESI-MS) and comparison with data reported in the literature.
Collapse
Affiliation(s)
- Ahmatbeck Samanbay
- a College of Pharmacy , Xinjiang Medical University , Urumqi , P. R. China.,b Key Laboratory of Plants Resources and Chemistry of Arid Zone , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi , P. R. China
| | - Bo Zhao
- b Key Laboratory of Plants Resources and Chemistry of Arid Zone , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi , P. R. China.,c State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi , P. R. China
| | - Haji Akber Aisa
- b Key Laboratory of Plants Resources and Chemistry of Arid Zone , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi , P. R. China.,c State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi , P. R. China
| |
Collapse
|
14
|
Zhang X, Li D, Xue X, Zhang Y, Zhang J, Huang C, Guo Z, Tadesse N. First total synthesis of a novel amide alkaloid derived from Aconitum taipeicum and its anticancer activity. Nat Prod Res 2017. [DOI: 10.1080/14786419.2017.1340283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xinxin Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, P.R. China
| | - Dandan Li
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, P.R. China
| | - Xuanji Xue
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, P.R. China
| | - Yan Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, P.R. China
- School of Pharmacy, Xi’an Medical University, Xi’an, P.R. China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, P.R. China
| | - Chen Huang
- Department of Genetics and Molecular Biology, Health Science Center, Xi’an Jiaotong University, Xi’an, P.R. China
| | - Zengjun Guo
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, P.R. China
| | - Nigatu Tadesse
- School of International Education, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
15
|
Moreira RRD, Martins GZ, Varandas R, Cogo J, Perego CH, Roncoli G, Sousa MDC, Nakamura CV, Salgueiro L, Cavaleiro C. Composition and leishmanicidal activity of the essential oil of Vernonia polyanthes Less (Asteraceae). Nat Prod Res 2017; 31:2905-2908. [DOI: 10.1080/14786419.2017.1299723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Raquel Regina Duarte Moreira
- Faculdade de Ciências Farmacêuticas, Departamento de Princípios Ativos Naturais e Toxicologia, Universidade Estadual Paulista (UNESP), Araraquara, Brasil
| | | | - Raquel Varandas
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| | - Juliana Cogo
- Faculdade de Farmácia, Universidade Estadual de Maringá, Paraná, Brasil
| | - Caio Humberto Perego
- Faculdade de Ciências Farmacêuticas, Departamento de Princípios Ativos Naturais e Toxicologia, Universidade Estadual Paulista (UNESP), Araraquara, Brasil
| | - Giovana Roncoli
- Faculdade de Farmácia, Fundação Educacional de Barretos UNIFEB, Barretos, Brasil
| | | | | | - Lígia Salgueiro
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| | - Carlos Cavaleiro
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
- Faculdade de Farmácia, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
16
|
Liang X, Chen L, Song L, Fei W, He M, He C, Yin Z. Diterpenoid alkaloids from the root of Aconitum sinchiangense W. T. Wang with their antitumor and antibacterial activities. Nat Prod Res 2017; 31:2016-2023. [DOI: 10.1080/14786419.2016.1272113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P.R. China
| | - Lan Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P.R. China
| | - Lei Song
- College of Pharmacy, Southwest University for Nationalities, Chengdu, P.R. China
| | - Wenbo Fei
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P.R. China
| | - Min He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P.R. China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P.R. China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
17
|
Yu J, Yin TP, Wang JP, Mei RF, Cai L, Ding ZT. A new C 20-diterpenoid alkaloid from the lateral roots of Aconitum carmichaeli. Nat Prod Res 2016; 31:228-232. [PMID: 27686870 DOI: 10.1080/14786419.2016.1219863] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A new C20-diterpenoid alkaloid carmichaedine (1) and six known alkaloids (2-7) were isolated from the lateral roots of Aconitum carmichaeli. Their structures were established on the basis of extensive spectroscopic analyses. Compound 1 exhibited potent antibacterial activity against Bacillus subtilis with minimum inhibitory concentration of 8 μg/mL.
Collapse
Affiliation(s)
- Jing Yu
- a School of Chemical Science and Technology , Yunnan University , Kunming , P.R. China
| | - Tian-Peng Yin
- a School of Chemical Science and Technology , Yunnan University , Kunming , P.R. China
| | - Jia-Peng Wang
- a School of Chemical Science and Technology , Yunnan University , Kunming , P.R. China
| | - Rui-Feng Mei
- a School of Chemical Science and Technology , Yunnan University , Kunming , P.R. China
| | - Le Cai
- a School of Chemical Science and Technology , Yunnan University , Kunming , P.R. China
| | - Zhong-Tao Ding
- a School of Chemical Science and Technology , Yunnan University , Kunming , P.R. China
| |
Collapse
|
18
|
Chen L, Shan L, Xu W, Zhang J, Huang S, Zhou X. A new C 20-diterpenoid alkaloid from Aconitum soongaricum var. pubescens. Nat Prod Res 2016; 31:523-528. [PMID: 27328130 DOI: 10.1080/14786419.2016.1198348] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A new denudatine-type C20-diterpenoid alkaloid, pubesine (1), along with seven known diterpenoid alkaloids, altaconitine (2), 14-benzoylaconine (3), spicatine A (4), 14-benzoylaconine-8-palmitate (5), 14-O-acetylsenbusine A (6), senbusine A (7) and 14-acetylneoline (8) were isolated from the whole plant of Aconitum soongaricum var. pubescens. Their structures were elucidated by means of extensive spectroscopic analyses (NMR and HR-ESI-MS) and comparison with data reported in the literature. All compounds were evaluated for their cytotoxicity against H460, MCF-7 and Hep G2 human cancer cell lines.
Collapse
Affiliation(s)
- Lin Chen
- a School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , China.,b Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering , Southwest Jiaotong University , Chengdu , China.,c School of Chemistry and Chemical Engineering , China West Normal University , Nanchong , China
| | - Lianhai Shan
- a School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , China
| | - Wenliang Xu
- a School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , China
| | - Jifa Zhang
- a School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , China
| | - Shuai Huang
- a School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , China
| | - Xianli Zhou
- a School of Life Science and Engineering , Southwest Jiaotong University , Chengdu , China.,b Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering , Southwest Jiaotong University , Chengdu , China
| |
Collapse
|