1
|
Zahran EM, Elfoly E, Elhamadany EY, Hemied MS, Elsayed TA, Hisham M, Abdelmohsen UR. Unveiling the Broad-Spectrum Efficacy of Volatile Terpenes to Fight Against SARS-COV-2-Associated Mucormycosis. Chem Biodivers 2025:e202402847. [PMID: 39853998 DOI: 10.1002/cbdv.202402847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/12/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Mucormycosis, a life-threatening fungal infection caused by Mucorales, affects immunocompromised patients, especially SARS-CoV-2 ones. Existing antifungal therapies, like amphotericin B, have serious health risks. The current study reviews the literature regarding an overview of SARS-CoV-2-associated mucormycosis, along with different terpenes from diverse edible sources, such as basil, ginger, and clove, which are detected till June 2024. The antifungal potential of collected terpenes, their classifications, mechanisms of action, minimum inhibitory concentration (MIC) values, and future perspectives are discussed here. The search identified 89 fungicidal volatile terpenes, belonging to about 26 families, from which 45 were selected for further in silico analysis. The results highlighted oryzalexin B (60), oryzalexin D (62), carvacrol (4), mansorin B (66), muzigadial (86), and lubimin (80) as potential antifungal agents against lanosterol 14α-demethylase, CotH3, and mucoricin as potential targets in Mucorales. CotH3 is crucial for activating GRP-78, a host co-receptor for ACE2, which is essential for SARS-CoV-2 pathogenesis. Additionally, carvacrol was in vitro investigated against Mucor racemosus via the agar diffusion method, giving an MIC value of 1 mg/mL, compared to 0.1 mg/mL of ketoconazole. This study suggests promising potential for volatile terpenes in combating SARS-CoV-2-associated mucormycosis, with the need for further refined in vitro and in vivo studies to establish clinical efficacy.
Collapse
Affiliation(s)
- Eman Maher Zahran
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, Egypt
| | - Ethar Elfoly
- Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, Egypt
| | - Eyad Y Elhamadany
- Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, Egypt
| | - Muhammad S Hemied
- Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, Egypt
| | - Tarek A Elsayed
- Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, Egypt
| | - Mohamed Hisham
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, Egypt
- Deraya Center for Scientific Research, Deraya University, Universities Zone, New Minia City, Egypt
| |
Collapse
|
2
|
Sánchez García E, Torres-Alvarez C, Morales Sosa EG, Pimentel-González M, Villarreal Treviño L, Amaya Guerra CA, Castillo S, Rodríguez Rodríguez J. Essential Oil of Fractionated Oregano as Motility Inhibitor of Bacteria Associated with Urinary Tract Infections. Antibiotics (Basel) 2024; 13:665. [PMID: 39061347 PMCID: PMC11273670 DOI: 10.3390/antibiotics13070665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
In this research, several analyses were carried out on concentrated fractions of Mexican oregano essential oil (Poliomintha longiflora Gray) in order to determine its ability to inhibit the growth and the motility of Escherichia coli (swimming), Pseudomonas aeruginosa (swimming), and Proteus vulgaris (swarming); these Gram-negative bacteria associated with urinary tract infections are motile due to the presence of flagella, which is considered an important virulence factor that favors their motility when trying to reach the target organ and cause an infection. Also, the resistance pattern to antibiotics of each strain was determined. The results showed resistance pattern (8 out of 12 antibiotics tested) for P. aureginosa, while E. coli and P. vulgaris were resistant to 4 antibiotics out of the 12 tested. On the other hand, fractionated oregano caused an inhibition of growth and a reduction in motility, varying between fractions and among bacteria. Fraction 4 showed major growth reduction, with MBC values ranging from 0.002 to 23.7 mg/mL. Treatment with fractionated oregano (F1, F2, F3, F4) reduced the motility by 92-81% for P. vulgaris, 90-83% for E. coli, and 100-8.9% for P. aeruginosa. These results demonstrated a higher performance with a lower application dose due to its high content of Carvacrol and Thymol; unlike other concentrated fractions, this synergy of oxygenated monoterpenes may cause greater antimicrobial activity.
Collapse
Affiliation(s)
- Eduardo Sánchez García
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (E.S.G.); (E.G.M.S.); (M.P.-G.); (L.V.T.); (C.A.A.G.)
| | - Cynthia Torres-Alvarez
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa s/n, Ex-Hacienda “El Canadá”, General Escobedo 66050, NL, Mexico;
| | - Elías G. Morales Sosa
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (E.S.G.); (E.G.M.S.); (M.P.-G.); (L.V.T.); (C.A.A.G.)
| | - Mariana Pimentel-González
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (E.S.G.); (E.G.M.S.); (M.P.-G.); (L.V.T.); (C.A.A.G.)
| | - Licet Villarreal Treviño
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (E.S.G.); (E.G.M.S.); (M.P.-G.); (L.V.T.); (C.A.A.G.)
| | - Carlos Abel Amaya Guerra
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (E.S.G.); (E.G.M.S.); (M.P.-G.); (L.V.T.); (C.A.A.G.)
| | - Sandra Castillo
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza 66455, NL, Mexico; (E.S.G.); (E.G.M.S.); (M.P.-G.); (L.V.T.); (C.A.A.G.)
| | - José Rodríguez Rodríguez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
| |
Collapse
|
3
|
Leung AKC, Barankin B, Lam JM, Leong KF, Hon KL. Tinea pedis: an updated review. Drugs Context 2023; 12:2023-5-1. [PMID: 37415917 PMCID: PMC10321471 DOI: 10.7573/dic.2023-5-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Background Tinea pedis is one of the most common superficial fungal infections of the skin, with various clinical manifestations. This review aims to familiarize physicians with the clinical features, diagnosis and management of tinea pedis. Methods A search was conducted in April 2023 in PubMed Clinical Queries using the key terms 'tinea pedis' OR 'athlete's foot'. The search strategy included all clinical trials, observational studies and reviews published in English within the past 10 years. Results Tinea pedis is most often caused by Trichophyton rubrum and Trichophyton interdigitale. It is estimated that approximately 3% of the world population have tinea pedis. The prevalence is higher in adolescents and adults than in children. The peak age incidence is between 16 and 45 years of age. Tinea pedis is more common amongst males than females. Transmission amongst family members is the most common route, and transmission can also occur through indirect contact with contaminated belongings of the affected patient. Three main clinical forms of tinea pedis are recognized: interdigital, hyperkeratotic (moccasin-type) and vesiculobullous (inflammatory). The accuracy of clinical diagnosis of tinea pedis is low. A KOH wet-mount examination of skin scrapings of the active border of the lesion is recommended as a point-of-care testing. The diagnosis can be confirmed, if necessary, by fungal culture or culture-independent molecular tools of skin scrapings. Superficial or localized tinea pedis usually responds to topical antifungal therapy. Oral antifungal therapy should be reserved for severe disease, failed topical antifungal therapy, concomitant presence of onychomycosis or in immunocompromised patients. Conclusion Topical antifungal therapy (once to twice daily for 1-6 weeks) is the mainstay of treatment for superficial or localized tinea pedis. Examples of topical antifungal agents include allylamines (e.g. terbinafine), azoles (e.g. ketoconazole), benzylamine, ciclopirox, tolnaftate and amorolfine. Oral antifungal agents used for the treatment of tinea pedis include terbinafine, itraconazole and fluconazole. Combined therapy with topical and oral antifungals may increase the cure rate. The prognosis is good with appropriate antifungal treatment. Untreated, the lesions may persist and progress.
Collapse
Affiliation(s)
- Alexander KC Leung
- Department of Pediatrics, The University of Calgary and The Alberta Children’s Hospital, Calgary, Alberta, Canada
| | | | - Joseph M Lam
- Department of Pediatrics and Department of Dermatology and Skin Sciences, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Kin Fon Leong
- Pediatric Institute, Kuala Lumpur General Hospital, Kuala Lumpur, Malaysia
| | - Kam Lun Hon
- Department of Paediatrics, Chinese University of Hong Kong Medical Centre, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
4
|
Domingues J, Delgado F, Gonçalves JC, Zuzarte M, Duarte AP. Mediterranean Lavenders from Section Stoechas: An Undervalued Source of Secondary Metabolites with Pharmacological Potential. Metabolites 2023; 13:metabo13030337. [PMID: 36984777 PMCID: PMC10054607 DOI: 10.3390/metabo13030337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Globally, climate change and wildfires are disrupting natural ecosystems, thus setting several endemic species at risk. The genus Lavandula is widely present in the Mediterranean region and its species, namely, those included in the section Stoechas, are valuable resources of active compounds with several biological assets. Since ancient times lavenders have been used in traditional medicine and for domestic purposes. These species are melliferous, decorative, and essential oil-producing plants with a high economic interest in the pharmaceutical, flavor, fragrance, and food industries. The essential oils of Lavandula section Stoechas are characterized by high amounts of 1,8-cineole, camphor, fenchone, and specifically for L. stoechas subsp. luisieri one of the major compounds is trans-α-necrodyl acetate. On the other hand, the diversity of non-volatile components like phenolic compounds, such as phenolic acids and flavonoids, make these species an important source of phytochemicals with pharmacological interest. Rosmarinic, caffeic, and salvianolic B acids are the major phenolic acids, and luteolin and eriodictyol-O-glucuronide are the main reported flavonoids. However, the concentration of these secondary metabolites is strongly affected by the plant’s phenological phase and varies in Lavandula sp. from different areas of origin. Indeed, lavender extracts have shown promising antioxidant, antimicrobial, anti-inflammatory, and anticancer properties as well as several other beneficial actions with potential for commercial applications. Despite several studies on the bioactive potential of lavenders from the section Stoechas, a systematized and updated review of their chemical profile is lacking. Therefore, we carried out the present review that gathers relevant information on the different types of secondary metabolites found in these species as well as their bioactive potential.
Collapse
Affiliation(s)
- Joana Domingues
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Fernanda Delgado
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), 6001-909 Castelo Branco, Portugal
- Research Centre for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco (CERNAS-IPCB), 6001-909 Castelo Branco, Portugal
| | - José Carlos Gonçalves
- Plant Biotechnology Centre of Beira Interior (CBPBI), 6001-909 Castelo Branco, Portugal
- Polytechnic Institute of Castelo Branco-School of Agriculture (IPCB-ESA), 6001-909 Castelo Branco, Portugal
- Research Centre for Natural Resources, Environment and Society, Polytechnic Institute of Castelo Branco (CERNAS-IPCB), 6001-909 Castelo Branco, Portugal
| | - Mónica Zuzarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Ana Paula Duarte
- Health Sciences Research Centre (CICS), University of Beira Interior, 6200-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
5
|
Xie Y, Zhou X, Zhang J, Yu H, Song Z. Immunomodulatory responses of differentially polarized macrophages to fungal infections. Int Immunopharmacol 2022; 111:109089. [PMID: 35964406 DOI: 10.1016/j.intimp.2022.109089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 11/05/2022]
Abstract
Macrophages, the first line of defense against invasive fungi in the innate immune system, are widely distributed in the blood and tissues of the body. In response to various internal and external stimulators, macrophages can polarize into classically activated macrophages (M1) and alternatively activated macrophages (M2). These two types of polarized macrophages play different roles in antifungal activity and in maintaining the steady-state balance between inflammation and tissue repair. However, the antifungal mechanisms of M1- and M2-type macrophages have not been fully described. In this review, the immune regulatory mechanisms against pathogenic fungi of these two classical types of macrophages in various tissues are summarized. The effects of antifungal factors on macrophage differentiation are also highlighted. The description of these data, on the one hand provides valuable insight for future investigations and also highlights new strategies for the treatment of pathogenic fungal infections.
Collapse
Affiliation(s)
- Yuxin Xie
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China.
| | - Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China.
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Molecular Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China.
| | - Hong Yu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Cell Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, PR China.
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China; The Public Platform of Molecular Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, People's Republic of China.
| |
Collapse
|
6
|
Trifan A, Luca SV, Bostănaru AC, Brebu M, Jităreanu A, Cristina RT, Skalicka-Woźniak K, Granica S, Czerwińska ME, Kruk A, Greige-Gerges H, Sieniawska E, Mareș M. Apiaceae Essential Oils: Boosters of Terbinafine Activity against Dermatophytes and Potent Anti-Inflammatory Effectors. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112378. [PMID: 34834740 PMCID: PMC8623916 DOI: 10.3390/plants10112378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 05/03/2023]
Abstract
Dermatophyte infections represent an important public health concern, affecting up to 25% of the world's population. Trichophyton rubrum and T. mentagrophytes are the predominant dermatophytes in cutaneous infections, with a prevalence accounting for 70% of dermatophytoses. Although terbinafine represents the preferred treatment, its clinical use is hampered by side effects, drug-drug interactions, and the emergence of resistant clinical isolates. Combination therapy, associating terbinafine and essential oils (EOs), represents a promising strategy in the treatment of dermatophytosis. In this study, we screened the potential of selected Apiaceae EOs (ajowan, coriander, caraway, and anise) to improve the antifungal activity of terbinafine against T. rubrum ATCC 28188 and T. mentagrophytes ATCC 9533. The chemical profile of EOs was analyzed by gas chromatography. The minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) of EOs/main compounds were determined according to EUCAST-AFST guidelines, with minor modifications. The checkerboard microtiter method was used to identify putative synergistic combinations of EOs/main constituents with terbinafine. The influence of EOs on the viability and pro-inflammatory cytokine production (IL-1β, IL-8 and TNF-α) was determined using an ex vivo human neutrophils model. The binary associations of tested EOs with terbinafine were found to be synergistic against T. rubrum, with FICI values of 0.26-0.31. At the tested concentrations (6.25-25 mg/L), EOs did not exert cytotoxic effects towards human neutrophils. Anise EO was the most potent inhibitor of IL-1β release (46.49% inhibition at 25 mg/L), while coriander EO displayed the highest inhibition towards IL-8 and TNF-α production (54.15% and 54.91%, respectively). In conclusion, the synergistic combinations of terbinafine and investigated Apiaceae EOs could be a starting point in the development of novel topical therapies against T. rubrum-related dermatophytosis.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
- Correspondence: (A.T.); (A.-C.B.)
| | - Simon Vlad Luca
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
- Biothermodynamics, TUM School of Life and Food Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Andra-Cristina Bostănaru
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania;
- Correspondence: (A.T.); (A.-C.B.)
| | - Mihai Brebu
- Physical Chemistry of Polymers Laboratory, Petru Poni Institute of Macromolecular Chemistry, 700481 Iasi, Romania;
| | - Alexandra Jităreanu
- Department of Toxicology, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Romeo-Teodor Cristina
- Department of Pharmacology, The Banat University of Agricultural Sciences and Veterinary Medicine, 300645 Timisoara, Romania;
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (K.S.-W.); (E.S.)
| | - Sebastian Granica
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland; (S.G.); (A.K.)
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Aleksandra Kruk
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland; (S.G.); (A.K.)
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, Section II, Lebanese University, Jdaidet el-Matn B.P. 90656, Lebanon;
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (K.S.-W.); (E.S.)
| | - Mihai Mareș
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania;
| |
Collapse
|
7
|
Brescini L, Fioriti S, Morroni G, Barchiesi F. Antifungal Combinations in Dermatophytes. J Fungi (Basel) 2021; 7:jof7090727. [PMID: 34575765 PMCID: PMC8469868 DOI: 10.3390/jof7090727] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
Dermatophytes are the most common cause of fungal infections worldwide, affecting millions of people annually. The emergence of resistance among dermatophytes along with the availability of antifungal susceptibility procedures suitable for testing antifungal agents against this group of fungi make the combinatorial approach particularly interesting to be investigated. Therefore, we reviewed the scientific literature concerning the antifungal combinations against dermatophytes. A literature search on the subject performed in PubMed yielded 68 publications: 37 articles referring to in vitro studies and 31 articles referring to case reports or clinical studies. In vitro studies involved over 400 clinical isolates of dermatophytes (69% Trichophyton spp., 29% Microsporum spp., and 2% Epidermophyton floccosum). Combinations included two antifungal agents or an antifungal agent plus another chemical compound including plant extracts or essential oils, calcineurin inhibitors, peptides, disinfectant agents, and others. In general, drug combinations yielded variable results spanning from synergism to indifference. Antagonism was rarely seen. In over 700 patients with documented dermatophyte infections, an antifungal combination approach could be evaluated. The most frequent combination included a systemic antifungal agent administered orally (i.e., terbinafine, griseofulvin, or azole-mainly itraconazole) plus a topical medication (i.e., azole, terbinafine, ciclopirox, amorolfine) for several weeks. Clinical results indicate that association of antifungal agents is effective, and it might be useful to accelerate the clinical and microbiological healing of a superficial infection. Antifungal combinations in dermatophytes have gained considerable scientific interest over the years and, in consideration of the interesting results available so far, it is desirable to continue the research in this field.
Collapse
Affiliation(s)
- Lucia Brescini
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60020 Ancona, Italy; (L.B.); (S.F.); (G.M.)
| | - Simona Fioriti
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60020 Ancona, Italy; (L.B.); (S.F.); (G.M.)
| | - Gianluca Morroni
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60020 Ancona, Italy; (L.B.); (S.F.); (G.M.)
| | - Francesco Barchiesi
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60020 Ancona, Italy; (L.B.); (S.F.); (G.M.)
- Malattie Infettive, Azienda Ospedaliera Ospedali Riuniti Marche Nord, 61121 Pesaro, Italy
- Correspondence: ; Tel.: +39-721-36-5505
| |
Collapse
|
8
|
Vairinhos J, Miguel MG. Essential oils of spontaneous species of the genus Lavandula from Portugal: a brief review. ACTA ACUST UNITED AC 2021; 75:233-245. [PMID: 32452196 DOI: 10.1515/znc-2020-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
Abstract
Spontaneous lavender growing in uncultivated fields in Portugal have been used in traditional medicine for internal and external uses. The essential oils (EOs) of Lavandula stoechas subsp. luisieri are characterized by the presence of trans-α-necrodyl acetate and trans-necrodol. These EOs are able to prevent the generation and deposition of neurotoxic β-amyloid peptide in Alzheimer's disease. The EOs also present antibacterial, anti-fungal, anti-Leishmania, antioxidant, anti-inflammatory and antifeedant effects. In the case of hydrodistillation, the predominant compound of Lavandula viridis EO was 1,8-cineole, nevertheless in the case of supercritical fluid extraction, the main constituent was camphor. In in vitro shoots EOs, 1,8-cineole and α-pinene were the most important compounds. The EOs presented anti-fungal activity particularly against Cryptococcus neoformans and dermatophytes. The antioxidant and anti-protozoal activities of L. viridis EOs were lower than L. stoechas subsp. luisieri EOs, with hydrodistillation being the best method for obtaining samples with higher antioxidant and anti-acetylcholinesterase activities. The presence of fenchone, 1,8-cineole and camphor was a common trace of the Lavandula pedunculata subsp. pedunculata EOs and in in vitro axillary shoots EOs. Lavandula pedunculata subsp. lusitanica EOs were predominantly constituted of fenchone and camphor. The antioxidant activity of L. pedunculata subsp. lusitanica EOs was poorer than other Lavandula EOs from Portugal.
Collapse
Affiliation(s)
- Jessica Vairinhos
- Department of Chemistry and Pharmacy, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Graça Miguel
- Mediterranean Institute for Agriculture, Environment and Development, Department of Chemistry and Pharmacy, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
9
|
Antifungal Properties of Essential Oils and Their Compounds for Application in Skin Fungal Infections: Conventional and Nonconventional Approaches. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26041093. [PMID: 33669627 PMCID: PMC7922942 DOI: 10.3390/molecules26041093] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
Essential oils (EOs) are known to have varying degrees of antimicrobial properties that are mainly due to the presence of bioactive compounds. These include antiviral, nematicidal, antifungal, insecticidal and antioxidant properties. This review highlights the potential of EOs and their compounds for application as antifungal agents for the treatment of skin diseases via conventional and nonconventional approaches. A search was conducted using three databases (Scopus, Web of Science, Google Scholar), and all relevant articles from the period of 2010-2020 that are freely available in English were extracted. In our findings, EOs with a high percentage of monoterpenes showed strong ability as potential antifungal agents. Lavandula sp., Salvia sp., Thymus sp., Citrus sp., and Cymbopogon sp. were among the various species found to show excellent antifungal properties against various skin diseases. Some researchers developed advanced formulations such as gel, semi-solid, and ointment bases to further evaluate the effectiveness of EOs as antifungal agents. To date, most studies on the application of EOs as antifungal agents were performed using in vitro techniques, and only a limited number pursued in vivo and intervention-based research.
Collapse
|
10
|
Aljaafari MN, AlAli AO, Baqais L, Alqubaisy M, AlAli M, Molouki A, Ong-Abdullah J, Abushelaibi A, Lai KS, Lim SHE. An Overview of the Potential Therapeutic Applications of Essential Oils. Molecules 2021; 26:628. [PMID: 33530290 PMCID: PMC7866131 DOI: 10.3390/molecules26030628] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/27/2022] Open
Abstract
The emergence of antimicrobial resistance (AMR) has urged researchers to explore therapeutic alternatives, one of which includes the use of natural plant products such as essential oils (EO). In fact, EO obtained from clove, oregano, thymus, cinnamon bark, rosemary, eucalyptus, and lavender have been shown to present significant inhibitory effects on bacteria, fungi, and viruses; many studies have been done to measure EO efficacy against microorganisms. The strategy of combinatory effects via conventional and non-conventional methods revealed that the combined effects of EO-EO or EO-antibiotic exhibit enhanced efficacy. This paper aims to review the antimicrobial effects of EO, modes of EO action (membrane disruption, efflux inhibition, increase membrane permeability, and decrease in intracellular ATP), and their compounds' potential as effective agents against bacteria, fungi, and viruses. It is hoped that the integration of EO applications in this work can be used to consider EO for future clinical applications.
Collapse
Affiliation(s)
- Mariam Nasser Aljaafari
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Asma Obaid AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Laila Baqais
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Maream Alqubaisy
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Mudhi AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Aidin Molouki
- Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj 31585-854, Iran;
| | - Janna Ong-Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia;
| | | | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE; (M.N.A.); (A.O.A.); (L.B.); (M.A.); (M.A.); (K.-S.L.)
| |
Collapse
|
11
|
Zhang Y, Long Y, Yu S, Li D, Yang M, Guan Y, Zhang D, Wan J, Liu S, Shi A, Li N, Peng W. Natural volatile oils derived from herbal medicines: A promising therapy way for treating depressive disorder. Pharmacol Res 2020; 164:105376. [PMID: 33316383 DOI: 10.1016/j.phrs.2020.105376] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
Depression is a common global mental disorder that seriously harms human physical and mental health. With the development of society, the increase of pressure and the role of various other factors make the incidence of depression increase year by year. However, there is a lack of drugs that have a fast onset, significant effects, and few side effects. Some volatile oils from traditional natural herbal medicines are usually used to relieve depression and calm emotions, such as Lavender essential oil and Acorus tatarinowii essential oil. It was reported that these volatile oils, are easy to enter the brain through the blood-brain barrier and have good antidepressant effects with little toxicity and side effects. In this review, we summarized the classification of depression, and listed the history of using volatile oils to fight depression in some countries. Importantly, we summarized the anti-depressant natural volatile oils and their monomers from herbal medicine, discussed the anti-depressive mechanisms of the volatile oils from natural medicine. The volatile oils of natural medicine and antidepressant drugs were compared and analyzed, and the application of volatile oils was explained from the clinical use and administration routes. This review would be helpful for the development of potential anti-depressant medicine and provide new alternative treatments for depressive disorders.
Collapse
Affiliation(s)
- Yulu Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Yu Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Shuang Yu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Dan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No.1688 Meiling Avenue, Nanchang, 330004, China
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No.1688 Meiling Avenue, Nanchang, 330004, China
| | - Dingkun Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Jinyan Wan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Songyu Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Ai Shi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China
| | - Nan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China.
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, 611137, PR China.
| |
Collapse
|
12
|
Sharma S, Barkauskaite S, Jaiswal AK, Jaiswal S. Essential oils as additives in active food packaging. Food Chem 2020; 343:128403. [PMID: 33268167 DOI: 10.1016/j.foodchem.2020.128403] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/30/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Food packaging can be considered as a passive barrier that protects food from environmental factors such as ultraviolet light, oxygen, water vapour, pressure and heat. It also prolongs the shelf-life of food by protecting from chemical and microbiological contaminants and enables foods to be transported and stored safely. Active packaging (AP) provides the opportunity for interaction between the external environment and food, resulting in extended shelf-life of food. Chemoactive packaging has an impact on the chemical composition of the food product. The application of natural additive such as essential oils in active packaging can be used in the forms of films and coatings. It has been observed that, AP helps to maintain temperature, moisture level and microbial and quality control of the food. This review article provides an overview of the active packaging incorporated with essential oils, concerns and challenges in industry, and the effect of essential oil on the packaging microstructure, antioxidant and antimicrobial properties.
Collapse
Affiliation(s)
- Shubham Sharma
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Grangegorman, Dublin 7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin 7, Ireland; Centre for Research in Engineering and Surface Technology (CREST), FOCAS Institute, Technological University Dublin - City Campus, Kevin Street, Dublin 8, Ireland
| | - Sandra Barkauskaite
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Grangegorman, Dublin 7, Ireland
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Grangegorman, Dublin 7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin 7, Ireland.
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin - City Campus, Grangegorman, Dublin 7, Ireland; Environmental Sustainability and Health Institute, Technological University Dublin - City Campus, Grangegorman, Dublin 7, Ireland.
| |
Collapse
|
13
|
Giménez-Rota C, Lorán S, Mainar AM, Hernáiz MJ, Rota C. Supercritical Carbon Dioxide Antisolvent Fractionation for the Sustainable Concentration of Lavandula luisieri (Rozeira) Riv.- Mart Antimicrobial and Antioxidant Compounds and Comparison with Its Conventional Extracts. PLANTS 2019; 8:plants8110455. [PMID: 31717810 PMCID: PMC6918246 DOI: 10.3390/plants8110455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/05/2023]
Abstract
Lavandula stoechas subsp. luisieri is a Spanish subspecies from the Lamiaceae family. Its essential oil has been traditionally used for several medical applications though little is known about other extracts. Similar to many other studies aiming to obtain traditional plant extracts to be used in different applications, this work evaluated the antioxidant and antimicrobial activities of Lavandula luisieri extracts and the correlation with their composition. Traditional hydrodistillation and ethanolic maceration were used to obtain the essential oil and the maceration extract, respectively. A green and sustainable methodology was applied to the maceration extract that was under a Supercritical Antisolvent Fractionation process to obtain a fine solid enriched in rosmarinic acid and the terpenes oleanolic and ursolic acids. Antimicrobial activities of all extracts and pure identified compounds (rosmarinic and ursolic acids) were evaluated against five bacterial strains; Listeria monocytogenes, Enterococcus faecium, Staphylococcus aureus, Salmonella Typhimurium and Escherichia coli and were compared with the pure compounds identified, rosmarinic and ursolic acids. All strains were sensitive against L. luisieri essential oil. The solid product obtained from the supercritical process was concentrated in the identified actives compared to the maceration extract, which resulted in higher antimicrobial and DPPH scavenging activities. The supercritical sustainable process provided L. luisieri compounds, with retention of their antimicrobial and antioxidant activities, in a powder exemptof organic solvents with potential application in the clinical, food or cosmetic fields.
Collapse
Affiliation(s)
- Carlota Giménez-Rota
- GATHERS Group, Aragón Institute of Engineering Research (I3A), University of Zaragoza, c/. Mariano Esquillor s/n, 50018 Zaragoza, Spain; (C.G.-R.); (A.M.M.)
- Chemistry in Pharmaceutical Science Department, Pharmacy Faculty, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
| | - Susana Lorán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Veterinary Faculty, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain;
- Correspondence: ; Tel.: +34-876-554-143
| | - Ana M. Mainar
- GATHERS Group, Aragón Institute of Engineering Research (I3A), University of Zaragoza, c/. Mariano Esquillor s/n, 50018 Zaragoza, Spain; (C.G.-R.); (A.M.M.)
| | - María J. Hernáiz
- Chemistry in Pharmaceutical Science Department, Pharmacy Faculty, Complutense University of Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
| | - Carmen Rota
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Veterinary Faculty, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain;
| |
Collapse
|
14
|
XIA DA, DUERNA TIE, MURATA SUSUMU, MORITA EISHIN. In vitro Antifungal Activity of Japanese Folk Herb Extracts against Trichophyton rubrum. Biocontrol Sci 2019; 24:109-116. [DOI: 10.4265/bio.24.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- DA XIA
- Department of Dermatology, Shimane University Faculty of Medicine
| | - TIE DUERNA
- Department of Dermatology, Shimane University Faculty of Medicine
| | - SUSUMU MURATA
- Department of Dermatology, Shimane University Faculty of Medicine
| | - EISHIN MORITA
- Department of Dermatology, Shimane University Faculty of Medicine
| |
Collapse
|
15
|
Anticancer Properties of Essential Oils and Other Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3149362. [PMID: 29765461 PMCID: PMC5889900 DOI: 10.1155/2018/3149362] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/13/2018] [Indexed: 02/06/2023]
Abstract
Essential oils are secondary metabolites with a key-role in plants protection, consisting primarily of terpenes with a volatile nature and a diverse array of chemical structures. Essential oils exhibit a wide range of bioactivities, especially antimicrobial activity, and have long been utilized for treating various human ailments and diseases. Cancer cell prevention and cytotoxicity are exhibited through a wide range of mechanisms of action, with more recent research focusing on synergistic and antagonistic activity between specific essential oils major and minor components. Essential oils have been shown to possess cancer cell targeting activity and are able to increase the efficacy of commonly used chemotherapy drugs including paclitaxel and docetaxel, having also shown proimmune functions when administered to the cancer patient. The present review represents a state-of-the-art review of the research behind the application of EOs as anticancer agents both in vitro and in vivo. Cancer cell target specificity and the use of EOs in combination with conventional chemotherapeutic strategies are also explored.
Collapse
|
16
|
Mao GF, Mo XC, Fouad H, Abbas G, Mo JC. Attraction behaviour of Anagrus nilaparvatae to remote lemongrass (Cymbopogon distans) oil and its volatile compounds. Nat Prod Res 2017; 32:514-520. [DOI: 10.1080/14786419.2017.1326486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Guo-Feng Mao
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Chang Mo
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hatem Fouad
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Department of Field Crop Pests, Plant Protection Research Institute, Agricultural Research Centre, Cairo, Egypt
| | - Ghulam Abbas
- Department of Chemical Engineering, University of Gujarat, Gujarat, Pakistan
| | - Jian-Chu Mo
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|