1
|
Sharma C, Rani J, Kapoor M, Kaur N, Gawdiya S, Pradhan SK. Comparative metabolomics-based screening of fruit extracts of less-known melon ( Cucumis melo var . agrestis) accessions collected from dry terrain of North India by using HPLC-DAD. Nat Prod Res 2024:1-9. [PMID: 39520715 DOI: 10.1080/14786419.2024.2424398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/29/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Cucumis melo var. agrestis (Naudin) is an important wild crop that belongs to the family Cucurbitaceae. Fruits possess digestive, stomachic, vermifuge and febrifuge properties and possess analgesic, antioxidant, antibacterial and anti-inflammatory activities. Current research is aimed at screening diverse phytoconstituents present in the fruit extract of wild melon (C. melo var. agrestis) with the technique of high-performance liquid chromatography (HPLC). Our outcomes showed that fruit extract of C. melo var. agrestis has various phytochemicals such as glycosides, alkaloids, phenols, flavonoids, saponins, tannins, proteins, amino acids and carbohydrates. HPLC analysis revealed that naringenin and catechin were reported to have the highest concentrations among the all studied accessions. PCA and HCA multivariant analysis showed that, first two principal components, i.e. PC1 and PC2 contributed to 54.87% of the variation, where maximum loadings were from apigenin, trailed by gallic acid, rutin, and catechol.
Collapse
Affiliation(s)
| | - Jyoti Rani
- Department of Botany, Chaudhary Devi Lal University, Sirsa, India
| | - Manish Kapoor
- Department of Botany, Punjabi University, Patiala, India
| | - Navneet Kaur
- Department of Botany, Punjabi University, Patiala, India
| | - Sandeep Gawdiya
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Saroj Kumar Pradhan
- Department of Botany, Sri Guru Granth Sahib World University, Fatehgarh Sahib, India
| |
Collapse
|
2
|
Thakur K, Kumari C, Zadokar A, Sharma P, Sharma R. Physiological and omics-based insights for underpinning the molecular regulation of secondary metabolite production in medicinal plants: UV stress resilience. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108060. [PMID: 37897892 DOI: 10.1016/j.plaphy.2023.108060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/30/2023]
Abstract
Despite complex phytoconstituents, the commercial potential of medicinal plants under ultraviolet (UV) stress environment hasn't been fully comprehended. Due to sessile nature, these plants are constantly exposed to damaging radiation, which disturbs their natural physiological and biochemical processes. To combat with UV stress, plants synthesized several small organic molecules (natural products of low molecular mass like alkaloids, terpenoids, flavonoids and phenolics, etc.) known as plant secondary metabolites (PSMs) that come into play to counteract the adverse effect of stress. Plants adapted a stress response by organizing the expression of several genes, enzymes, transcription factors, and proteins involved in the synthesis of chemical substances and by making the signaling cascade (a series of chemical reactions induced by a stimulus within a biological cell) flexible to boost the defensive response. To neutralize UV exposure, secondary metabolites and their signaling network regulate cellular processes at the molecular level. Conventional breeding methods are time-consuming and difficult to reveal the molecular pattern of the stress tolerance medicinal plants. Acquiring in-depth knowledge of the molecular drivers behind the defensive mechanism of medicinal plants against UV radiation would yield advantages (economical and biological) that will bring prosperity to the burgeoning world's population. Thus, this review article emphasized the comprehensive information and clues to identify several potential genes, transcription factors (TFs), proteins, biosynthetic pathways, and biological networks which are involved in resilience mechanism under UV stress in medicinal plants of high-altitudes.
Collapse
Affiliation(s)
- Kamal Thakur
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP, 173 230, India
| | - Chanchal Kumari
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP, 173 230, India
| | - Ashwini Zadokar
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP, 173 230, India
| | - Parul Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP, 173 230, India
| | - Rajnish Sharma
- Department of Biotechnology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP, 173 230, India.
| |
Collapse
|
3
|
Linghu KG, Zhao GD, Zhang DY, Xiong SH, Wu GP, Shen LY, Cui WQ, Zhang T, Hu YJ, Guo B, Shen XC, Yu H. Leocarpinolide B Attenuates Collagen Type II-Induced Arthritis by Inhibiting DNA Binding Activity of NF-κB. Molecules 2023; 28:molecules28104241. [PMID: 37241980 DOI: 10.3390/molecules28104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease triggered by a cascading inflammatory response. Sigesbeckia Herba (SH) has long been utilized as a traditional remedy to alleviate symptoms associated with rheumatism. Our previous study found that leocarpinolide B (LB), a sesquiterpene lactone isolated from the whole plant of SH, possesses potent a anti-inflammatory effect on macrophages. This study was designed to evaluate the therapeutic effects of LB on RA, and further investigate the underlying mechanisms. In collagen type II-induced arthritic mice, LB was demonstrated to decrease the production of autoimmune antibodies in serum and inflammatory cytokines in the joint muscles and recover the decreased regulatory T lymphocytes in spleen. Moreover, LB significantly suppressed the inflammatory infiltration, formation of pannus and bone erosion in the paw joints. In vitro testing showed that LB inhibited the proliferation, migration, invasion, and secretion of inflammatory cytokines in IL-1β-induced human synovial SW982 cells. Network pharmacology and molecular docking suggested NF-κB p65 could be the potential target of LB on RA treatment, subsequent experimental investigation confirmed that LB directly interacted with NF-κB p65 and reduced the DNA binding activity of NF-κB in synovial cells. In conclusion, LB significantly attenuated the collagen type II-induced arthritis, which was at least involved in the inhibition of DNA binding activity of NF-κB through a direct binding to NF-κB p65. These findings suggest that LB could be a valuable lead compound for developing anti-RA drugs.
Collapse
Affiliation(s)
- Ke-Gang Linghu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Guan-Ding Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Dai-Yan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Shi-Hang Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Guo-Ping Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Li-Yu Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wen-Qing Cui
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Tian Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China
| | - Xiang-Chun Shen
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
4
|
Pradhan SK, Sharma V. Simultaneous high-performance thin-layer chromatography analysis of phytoconstituents and antioxidant potential of Inula grandiflora Willd. from India. JPC-J PLANAR CHROMAT 2022. [DOI: 10.1007/s00764-022-00218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Mudassir Jeelani S, Shahnawaz M, Prakash Gupta A, Lattoo SK. Phytochemical Diversity in Relation to Cytogenetic Variability in Inula racemosa Hook.f., an Endangered Medicinal Plant of Himalayas. Chem Biodivers 2022; 19:e202200486. [PMID: 36263992 DOI: 10.1002/cbdv.202200486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/18/2022] [Indexed: 12/27/2022]
Abstract
Inula racemosa, a resourceful critically endangered medicinal herb in the Himalayas is traditionally utilized to cure various human disorders. The species is a wealthy source of sesquiterpene lactones has many pharmacological properties. To quantify and identify the best genetic stocks for a maximum build-up of desired metabolites (isoalantolactone and alantolactone) among existent cytotypes in the species, LC-MS/MS analysis was made. The other comprehensive experiments carried out at present included detailed meiotic examinations of different populations collected from different areas of Kashmir Himalayas. The results presented the occurrence of variable chromosome numbers as n=10 and n=20 in different populations, but the tetraploid cytotype (n=20) is new for the species. The LC-MS/MS investigation revealed significant variability in the content of sesquiterpene lactones in different plant tissues (stem, leaf, and root). An upsurge in the quantity of isoalantolactone and alantolactone was noticed with increasing ploidy levels along the increasing altitudes. Therefore, a habit to accumulate abundant quantities of secondary metabolites and increased adaptability by species/cytotypes thriving at higher altitudes is seen among tetraploid cytotypes during the present investigation. Also, the chromosomal variations seem to enhance the flexibility of polyploid species primarily at upper elevations. Thus, the present study strongly provides quantification of elite cytotypes/chemotypes with optimum concentration of secondary metabolites.
Collapse
Affiliation(s)
- Syed Mudassir Jeelani
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Mohd Shahnawaz
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Ajai Prakash Gupta
- Quality Control and Quality Assurance Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| |
Collapse
|
6
|
Sigesbeckia orientalis Extract Ameliorates the Experimental Diabetic Nephropathy by Downregulating the Inflammatory and Oxidative Stress Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3323745. [PMID: 35966750 PMCID: PMC9374551 DOI: 10.1155/2022/3323745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Diabetes in children and its complications are on the rise globally, which is accompanied by increasing in diabetes-related complications. Oxidative stress and inflammation induced by elevated blood sugar in diabetic patients are considered risk factors associated with the development of diabetes complications, including chronic kidney disease and its later development to end-stage renal disease. Microvascular changes within the kidneys of DM patients often lead to chronic kidney disease, which aggravates the illness. Sigesbeckia orientalis extract (SOE), reported to have strong antioxidative and excellent anti-inflammatory activities, is used in the modern practice of traditional Chinese medicine. Kidneys from three groups of control mice (CTR), mice with streptozotocin (STZ)-induced diabetes (DM), and mice with STZ-induced DM treated with SOE (DMRx) were excised for morphological analyses and immunohistochemical assessments. Only mice in the DM group exhibited significantly lower body weight, but higher blood sugar was present. The results revealed more obvious renal injury in the DM group than in the other groups, which appeared as greater glomerular damage and tubular injury, sores, and plenty of connective tissues within the mesangium. Not only did the DM group have a higher level of cytokine, tumor necrosis factor, and the oxidative stress marker, 8-hydroxyguanosine expression, but also factors of the nuclear factor pathway and biomarkers of microvascular status had changed. Disturbances to the kidneys in DMRx mice were attenuated compared to the DM group. We concluded that SOE is an effective medicine, with antioxidative and anti-inflammatory abilities, to protect against or attenuate diabetic nephropathy from inflammatory disturbances by oxidative stress and to cure vessel damage in a hyperglycemic situation.
Collapse
|
7
|
Wen Y, Liu H, Meng H, Qiao L, Zhang G, Cheng Z. In vitro Induction and Phenotypic Variations of Autotetraploid Garlic ( Allium sativum L.) With Dwarfism. FRONTIERS IN PLANT SCIENCE 2022; 13:917910. [PMID: 35812906 PMCID: PMC9258943 DOI: 10.3389/fpls.2022.917910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/23/2022] [Indexed: 05/16/2023]
Abstract
Garlic (Allium sativum L.) is a compelling horticultural crop with high culinary and therapeutic values. Commercial garlic varieties are male-sterile and propagated asexually from individual cloves or bulbils. Consequently, its main breeding strategy has been confined to the time-consuming and inefficient selection approach from the existing germplasm. Polyploidy, meanwhile, plays a prominent role in conferring plants various changes in morphological, physiological, and ecological properties. Artificial polyploidy induction has gained pivotal attention to generate new genotype for further crop improvement as a mutational breeding method. In our study, efficient and reliable in vitro induction protocols of autotetraploid garlic were established by applying different antimitotic agents based on high-frequency direct shoot organogenesis initiated from inflorescence explant. The explants were cultured on solid medium containing various concentrations of colchicine or oryzalin for different duration days. Afterward, the ploidy levels of regenerated plantlets with stable and distinguished characters were confirmed by flow cytometry and chromosome counting. The colchicine concentration at 0.2% (w/v) combined with culture duration for 20 days was most efficient (the autotetraploid induction rate was 21.8%) compared to the induction rate of 4.3% using oryzalin at 60 μmol L-1 for 20 days. No polymorphic bands were detected by simple sequence repeat analysis between tetraploid and diploid plantlets. The tetraploids exhibited a stable and remarkable dwarfness effect rarely reported in artificial polyploidization among wide range of phenotypic variations. There are both morphological and cytological changes including extremely reduced plant height, thickening and broadening of leaves, disappearance of pseudostem, density reduction, and augmented width of stomatal. Furthermore, the level of phytohormones, including, indole propionic acid, gibberellin, brassinolide, zeatin, dihydrozeatin, and methyl jasmonate, was significantly lower in tetraploids than those in diploid controls, except indole acetic acid and abscisic acid, which could partly explain the dwarfness in hormonal regulation aspect. Moreover, as the typical secondary metabolites of garlic, organosulfur compounds including allicin, diallyl disulfide, and diallyl trisulfide accumulated a higher content significantly in tetraploids. The obtained dwarf genotype of autotetraploid garlic could bring new perspectives for the artificial polyploids breeding and be implemented as a new germplasm to facilitate investigation into whole-genome doubling consequences.
Collapse
Affiliation(s)
- Yanbin Wen
- College of Horticulture, Northwest A&F University, Xianyang, China
- Development Center of Fruit Vegetable and Herbal Tea, Datong, China
| | - Hongjiu Liu
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Huanwen Meng
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Lijun Qiao
- College of Horticulture, Northwest A&F University, Xianyang, China
| | - Guoqing Zhang
- Business School, Shanxi Datong University, Datong, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Xianyang, China
| |
Collapse
|
8
|
Kazantseva VV, Goncharuk EA, Zaitsev GP, Zagoskina NV, Klykov AG. Plant Ploidy Level and the Presence of Cadmium in the Growing Environment Changes the Content of the Main Components of the Phenolic Complex in Buckwheat Sprouts. DOKL BIOCHEM BIOPHYS 2022; 502:10-14. [PMID: 35275299 DOI: 10.1134/s1607672922010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
For the first time, the composition and the content of the main components of the phenolic complex of aboveground organs of buckwheat plants (Fagopyrum esculentum Moench) with different levels of ploidy (2n and 4n) at the initial stages of ontogenesis and their changes under the action of cadmium (Cd, 65 µM) were studied by the method of high-performance liquid chromatography. In all variants, phenolic compounds (PCs) were represented by chlorogenic acid (phenylpropanoid), rutin (flavonol), as well as orientin, isoorientin, vitexin, and isovitexin (flavones). The amount of PCs in the cotyledon leaves in most cases exceeded that in the hypocotyls. Buckwheat seedlings of the tetraploid genotype are characterized by a higher accumulation of PCs as compared to the diploid genotype. Under the effect of Cd, the content of their individual representatives changed: in the hypocotyls of the diploid genotype, it decreased in most cases, whereas in the hypocotyls of the tetraploid genotype it increased. In the cotyledon leaves, the tendency was opposite. It was found that seedlings of two F. esculentum genotypes with different ploidy levels differed in the content of the main PCs and in their response to Cd, which is important for breeding this culture for stress resistance.
Collapse
Affiliation(s)
- V V Kazantseva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
| | - E A Goncharuk
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - G P Zaitsev
- Magarach All-Russia National Research Institute of Vineyards and Wine, Russian Academy of Sciences, Yalta, Russia
| | - N V Zagoskina
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - A G Klykov
- Chaika Federal Research Center of Agricultural Biotechnology of the Far East, Ussuriisk, Russia
| |
Collapse
|
9
|
Jeelani SM, Singh J, Sharma A, Rather GA, Ali SA, Gupta AP, Singh S, Lattoo SK. In-vitro cytotoxicity in relation to chemotypic diversity in diploid and tetraploid populations of Gentiana kurroo Royle. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:113966. [PMID: 33647427 DOI: 10.1016/j.jep.2021.113966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/27/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gentiana kurroo is a multipurpose critically endangered medicinal herb prescribed as medicine in Ayurveda in India and exhibits various pharmacological properties including anti-cancer activity. The species is rich repository of pharmacologically active secondary metabolites together with secoiridoidal glycosides. AIM OF THE STUDY The study aimed to investigate the chemical diversity in different populations/cytotypes prevailing in G. kurroo to identify elite genetic stocks in terms of optimum accumulation/biosynthesis of desired metabolites and having higher in-vitro cytotoxicity potential in relation to chemotypic diversity. MATERIAL AND METHODS The wild plants of the species were collected from different ranges of altitudes from the Kashmir Himalayas. For cytological evaluation, the standard meiotic analysis was performed. The standard LC-MS/MS technique was employed for phytochemical analysis based on different marker compounds viz. sweroside, swertiamarin, and gentiopicroside. Different tissues such as root-stock, aerial parts, and flowers were used for chemo-profiling. Further, the methanolic extracts of diploid and tetraploid cytotypes were assessed for cytotoxic activity by using MTT assay against four different human cancer cell lines. RESULTS The quantification of major bioactive compounds based on tissue- and location-specific comparison, as well as in-vitro cytotoxic potential among extant cytotypes, was evaluated. The comprehensive cytomorphological studies of the populations from NW Himalayas revealed the occurrence of different chromosomal races viz. n = 13, 26. The tetraploid cytotype was hitherto unreported. The tissue-specific chemo-profiling revealed relative dominance of different phytoconstituents in root-stock. There was a noticeable increase in the quantity of the analyzed compounds in relation to increasing ploidy status along the increasing altitudes. The MTT assay of methanolic extracts of diploid and tetraploid cytotypes displayed significant cytotoxicity potential in tetraploids. The root-stock extracts of tetraploids were highly active extracts with IC50 value ranges from 5.65 to 8.53 μg/mL against HCT-116 colon cancer. CONCLUSION The chemical evaluation of major bioactive compounds in diverse cytotypes from different plant parts along different altitudes presented an appreciable variability in sweroside, swertiamarin, and gentiopicroside contents. Additionally, the concentrations of these phytoconstituents varied for cytotoxicity potential among different screened cytotypes. This quantitative difference of active bio-constituents was in correspondence with the growth inhibition percentage of different tested cancer cell lines. Thus, the present investigation strongly alludes towards a prognostic approach for the identification of elite cytotypes/chemotypes with significant pharmacological potential.
Collapse
Affiliation(s)
- Syed Mudassir Jeelani
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| | - Jasvinder Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Arti Sharma
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Gulzar A Rather
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Sheikh Abid Ali
- Division of Biotechnology, CSIR- Indian Institute of Integrative Medicine, Branch Laboratory, Sanat Nagar, Srinagar, 190005, India
| | - Ajai Prakash Gupta
- Quality Control and Quality Assurance Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Shashank Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Surrinder K Lattoo
- Plant Biotechnology Division, CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
10
|
Induction of Polyploidy and Metabolic Profiling in the Medicinal Herb Wedelia chinensis. PLANTS 2021; 10:plants10061232. [PMID: 34204356 PMCID: PMC8235177 DOI: 10.3390/plants10061232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
Wedelia chinensis, which belongs to the Asteraceae family, is a procumbent, perennial herb. It has medicinal anti-inflammatory properties and has been traditionally used as folk medicine in East and South Asia for treating fever, cough and phlegm. In Taiwan, W. chinensis is a common ingredient of herbal tea. Previous studies showed that the plant leaves contain four major bioactive compounds, wedelolactone, demethylwedelolactone, luteolin and apigenin, that have potent antihepatoxic activity, and are thus used as major ingredients in phytopharmaceutical formulations. In this study, we set up optimal conditions for induction of ploidy in W. chinensis. Ploidy can be an effective method of increasing plant biomass and improving medicinal and ornamental characteristics. By using flow cytometry and chicken erythrocyte nuclei as a reference, the DNA content (2C) or genome size of W. chinensis was determined to be 4.80 picograms (pg) in this study for the first time. Subsequently, we developed the successful induction of five triploid and three tetraploid plants by using shoot explants treated with different concentrations (0, 0.25, 0.5, 1, 1.5, 2 g/L) of colchicine. No apparent morphological changes were observed between these polyploid plants and the diploid wild-type (WT) plant, except that larger stomata in leaves were found in all polyploid plants as compared to diploid WT. Ultra-performance liquid chromatography coupled with tandem mass spectrometry was used to quantify the four index compounds (wedelolactone, demethylwedelolactone, luteolin, apigenin) in these polyploid plants, and fluctuating patterns were detected. This is the first report regarding polyploidy in the herbal plant W. chinensis.
Collapse
|
11
|
Tantray YR, Wani MS, Pradhan SK, Hamid M, Jan I, Singhal VK, Gupta RC, Habeeb TH. Morphological, cytological and phytochemical studies in naturally occurring diploid and tetraploid populations of Physochlaina praealta from high altitudes of Trans-Himalaya. JPC-J PLANAR CHROMAT 2021. [DOI: 10.1007/s00764-020-00075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Thakur RK, Rajpal VR, Raina SN, Kumar P, Sonkar A, Joshi L. UPLC-DAD Assisted Phytochemical Quantitation Reveals a Sex, Ploidy and Ecogeography Specificity in the Expression Levels of Selected Secondary Metabolites in Medicinal Tinospora cordifolia: Implications for Elites' Identification Program. Curr Top Med Chem 2020; 20:698-709. [PMID: 31976836 DOI: 10.2174/1568026620666200124105027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Medicinal phytochemistry involving UPLC-DAD in an exhaustive analysis involving quantification of eight commercially important phytochemicals viz. syringin, cordifolioside A, magnoflorine, tinocordiside, palmatine, 20β-hydroxyecdysone, L-tetrahydropalmatine and berberine has been done in 143 accessions from eight states and the union territories of Delhi and Jammu & Kashmir of India representing three different ploidy levels viz. diploid (2x), triploid (3x) and synthetic tetraploid (4x). The study was done to assess the effect of sex, ploidy level and ecogeography on the expression level of secondary metabolites in stems of dioecious, medicinally important shrub Tinospora cordifolia. METHODS Two different UPLC-DAD methods were used for the quantification of eight selected phytochemicals from the alcoholic stem extracts of T. cordifolia accessions. The Waters Acquity UPLC system hyphenated to the QTOF micromass system, equipped with PDA and ESI-Q-TOF detectors was utilized for the quantitative analysis, Mass Lynx v 4.0 software was used for data analysis. RESULTS Significant quantitative changes were observed in the analysed secondary metabolites among different accessions of T. cordifolia. The triploid (3x) cytotypes revealed higher amounts of seven out of eight analysed secondary metabolites than diploids and only 20β-hydroxyecdysone was observed to be present in significantly higher amount in diploid cytotypes. Further, at the tetraploid level, novel induced colchiploid (synthetic 4x) genotypes revealed increase in the yield of all of the analysed eight phytochemicals than their respective diploid counterparts. The quantity of active principles in tetraploid cytotypes were also higher than the average triploid levels at multiple locations in five out of eight tested phytochemicals, indicating the influence of ploidy on expression levels of secondary metabolites in T. cordifolia. Additionally, at each of the three ploidy levels (2x, 3x and synthetic 4x), a significant sex specificity could be observed in the expression levels of active principles, with female sex outperforming the male in the content of some phytochemicals, while others getting overexpressed in the male sex. The manifestation of diverse ecogeographies on secondary metabolism was observed in the form of identification of high yielding accessions from the states of Madhya Pradesh, Delhi and Himachal Pradesh and the Union territory of Jammu & Kashmir. Two triploid female accessions that contained approximately two- to eight fold higher amounts of five out of the eight analysed phytochemicals have been identified as superior elites from the wild from the states of Delhi and Madhya Pradesh. CONCLUSION The paper shows the first observations of ploidy specificity along with subtle sex and ecogeography influence on the expression levels of secondary metabolome in T. cordifolia.
Collapse
Affiliation(s)
- Rakesh Kr Thakur
- Amity institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Vijay Rani Rajpal
- Botany Department, Hansraj College, University of Delhi, New Delhi, India
| | - S N Raina
- Amity institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Pawan Kumar
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Anand Sonkar
- Botany Department, Hansraj College, University of Delhi, New Delhi, India
| | - Lata Joshi
- Amity institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
13
|
Linghu KG, Xiong SH, Zhao GD, Zhang T, Xiong W, Zhao M, Shen XC, Xu W, Bian Z, Wang Y, Yu H. Sigesbeckia orientalis L. Extract Alleviated the Collagen Type II-Induced Arthritis Through Inhibiting Multi-Target-Mediated Synovial Hyperplasia and Inflammation. Front Pharmacol 2020; 11:547913. [PMID: 32982752 PMCID: PMC7485472 DOI: 10.3389/fphar.2020.547913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Excessive proliferation and inflammation of synovial fibroblasts accelerate and decorate the pathological process of rheumatoid arthritis (RA). Sigesbeckia orientalis L. (SO) is one of the main plant sources for Sigesbeckiae Herba (SH) which has been used traditionally in treating various forms of arthritis and rheumatic pain. However, the anti-arthritic mechanisms of SO are still not clearly understood. In this study, we investigated the therapeutic effects and the underlying mechanisms of SO against collagen type II (C II)-induced RA in rats as well as the interleukin (IL)-1β-induced human synovial SW982 and MH7A cells. For the in vivo studies, thirty-six Wistar male rats were randomly arranged to six groups based on the body weight, and then C II-induced to RA model for 15 days, followed by treatment with the 50% ethanolic extract of SO (SOE, 0.16, 0.78, and 1.56 g/kg) for 35 days. The results suggested that SOE significantly inhibited the formation of pannus (synovial hyperplasia to the articular cavity) and attenuated the cartilage damaging and bone erosion in the CIA-induced rats' hind paw joints. Moreover, SOE decreased the production of C-reactive protein (CRP) in the serum and the expression of IL-6 and IL-1β in the joint muscles, as well as recovered the decreased regulatory T lymphocytes. The results obtained from the in vitro studies showed that SOE (50, 100, and 200 µg/ml) not only inhibited the proliferation, migration, and invasion of human synovial SW982 cells but also decreased the IL-1β-induced expression of IL-6 and IL-8 both in SW982 and MH7A cells. Besides, SOE reduced the expression of COX-2, NLRP3, and MMP9, and increased the expression of MMP2 in the IL-1β-induced SW982 cells. Furthermore, SOE blocked the activation of NF-κB and reduced the phosphorylation of MAPKs and the expression of AP-1. In conclusion, SOE attenuated the C II-induced RA through inhibiting of MAPKs/NF-κB/AP-1-mediated synovial hyperplasia and inflammation.
Collapse
Affiliation(s)
- Ke-Gang Linghu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shi Hang Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Guan Ding Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Tian Zhang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Wei Xiong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Xiang-Chun Shen
- The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Wei Xu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.,College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,HKBU Shenzhen Research Center, Shenzhen, China
| |
Collapse
|
14
|
Sytar O, Zivcak M, Neugart S, Brestic M. Assessment of hyperspectral indicators related to the content of phenolic compounds and multispectral fluorescence records in chicory leaves exposed to various light environments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:429-438. [PMID: 32912483 DOI: 10.1016/j.plaphy.2020.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 05/20/2023]
Abstract
Hyperspectral analysis represents a powerful technique for diagnostics of morphological and chemical information from aboveground parts of the plants, but the real potential of the method in pre-screening of phenolics in leaves is still insufficiently explored. In this study, assessment of the sensitivity and reliability of non-invasive methods of various phenolic compounds, also analyzed by HPLC in chicory plants (Cichorium intybus L.) exposed to various color light pretreatments was done. The hyperspectral records in visible and near infrared (VNIR) spectra were recorded using a handheld spectrometer and relationships between the specific hyperspectral parameters and the contents of tested phenolic compounds in chicory leaves were analyzed. Moreover, the correlations between the hyperspectral parameters and related parameters derived from the multispectral fluorescence records were assessed to compare the sensitivity of both techniques. The results indicated a relatively high correlation of anthocyanin-related parameters (ARI, mARI, mACI indices) with the content of some of tested phenolic compounds (quercetin-3-gluconuride, isorhamnetine-3-gluconuride, etc.), as well as with fluorescence ANTH index. Similar trends were observed in flavonoid parameter based on the near infra-red spectral bands (700, 760 nm), which expressed a high correlation with chlorogenic acid. On the other hand, the most frequently used flavonoid (FLAVI) indices based on UV-to-blue band reflectance showed very weak correlations with phenolic compounds, as well as with fluorescence FLAV index. The detailed analysis of the correlation between reflectance and fluorescence flavonoid parameters has shown that the parameters based on spectral reflectance are sensitive to increase of UV-absorbing compounds from low to moderate values, but, unlike the fluorescence parameter, they are not useful to recognize a further increase from middle to high or very high contents. Thus, our results outlined the possibilities, but also the limits of the use of hyperspectral analysis for rapid screening phenolic content, providing a practical evidence towards more efficient production of bioactive compounds for pharmaceutical or nutraceutical use.
Collapse
Affiliation(s)
- Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976, Nitra, Slovak Republic; Plant Physiology and Ecology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrskya Str., 64, Kyiv, 01033, Ukraine.
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976, Nitra, Slovak Republic.
| | - Susanne Neugart
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany; Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, Wilhelmsplatz 1, 37073, Göttingen, Germany
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976, Nitra, Slovak Republic
| |
Collapse
|
15
|
Gaynor ML, Lim-Hing S, Mason CM. Impact of genome duplication on secondary metabolite composition in non-cultivated species: a systematic meta-analysis. ANNALS OF BOTANY 2020; 126:363-376. [PMID: 32504537 PMCID: PMC7424755 DOI: 10.1093/aob/mcaa107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/02/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Whole-genome duplication is known to influence ecological interactions and plant physiology; however, despite abundant case studies, much is still unknown about the typical impact of genome duplication on plant secondary metabolites (PSMs). In this study, we assessed the impact of polyploidy events on PSM characteristics in non-cultivated plants. METHODS We conducted a systematic review and meta-analysis to compare composition and concentration of PSMs among closely related plant species or species complexes differing in ploidy level. KEY RESULTS We assessed 53 studies that focus on PSMs among multiple cytotypes, of which only 14 studies compared concentration quantitatively among cytotypes. We found that whole-genome duplication can have a significant effect on PSM concentration; however, these effects are highly inconsistent. CONCLUSION Overall, there was no consistent effect of whole-genome duplication on PSM concentrations or profiles.
Collapse
Affiliation(s)
- Michelle L Gaynor
- Department of Biology, University of Central Florida, Orlando, FL, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Simone Lim-Hing
- Department of Biology, University of Central Florida, Orlando, FL, USA
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Chase M Mason
- Department of Biology, University of Central Florida, Orlando, FL, USA
- For correspondence. E-mail
| |
Collapse
|
16
|
Wu M, Ge Y, Xu C, Wang J. Metabolome and Transcriptome Analysis of Hexaploid Solidago canadensis Roots Reveals its Invasive Capacity Related to Polyploidy. Genes (Basel) 2020; 11:genes11020187. [PMID: 32050732 PMCID: PMC7074301 DOI: 10.3390/genes11020187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 12/29/2022] Open
Abstract
Polyploid plants are more often invasive species than their diploid counterparts. As the invasiveness of a species is often linked to its production of allelopathic compounds, we hypothesize that differences in invasive ability between cytotypes may be due to their different ability to synthesize allelopathic metabolites. We test this using two cytotypes of Solidago canadensis as the model and use integrated metabolome and transcriptome data to resolve the question. Metabolome analysis identified 122 metabolites about flavonoids, phenylpropanoids and terpenoids, of which 57 were differentially accumulated between the two cytotypes. Transcriptome analysis showed that many differentially expressed genes (DEGs) were enriched in ‘biosynthesis of secondary metabolites’, ‘plant hormone signal transduction’, and ‘MAPK signaling’, covering most steps of plant allelopathic metabolite synthesis. Importantly, the differentially accumulated flavonoids, phenylpropanoids and terpenoids were closely correlated with related DEGs. Furthermore, 30 miRNAs were found to be negatively associated with putative targets, and they were thought to be involved in target gene expression regulation. These miRNAs probably play a vital role in the regulation of metabolite synthesis in hexaploid S. canadensis. The two cytotypes of S. canadensis differ in the allelopathic metabolite synthesis and this difference is associated with regulation of expression of a range of genes. These results suggest that changes in gene expression may underlying the increased invasive potential of the polyploidy.
Collapse
|
17
|
Niazian M. Application of genetics and biotechnology for improving medicinal plants. PLANTA 2019; 249:953-973. [PMID: 30715560 DOI: 10.1007/s00425-019-03099-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/25/2019] [Indexed: 05/25/2023]
Abstract
Plant tissue culture has been used for conservation, micropropagation, and in planta overproduction of some pharma molecules of medicinal plants. New biotechnology-based breeding methods such as targeted genome editing methods are able to create custom-designed medicinal plants with different secondary metabolite profiles. For a long time, humans have used medicinal plants for therapeutic purposes and in food and other industries. Classical biotechnology techniques have been exploited in breeding medicinal plants. Now, it is time to apply faster biotechnology-based breeding methods (BBBMs) to these valuable plants. Assessment of the genetic diversity, conservation, proliferation, and overproduction are the main ways by which genetics and biotechnology can help to improve medicinal plants faster. Plant tissue culture (PTC) plays an important role as a platform to apply other BBBMs in medicinal plants. Agrobacterium-mediated gene transformation and artificial polyploidy induction are the main BBBMs that are directly dependent on PTC. Manageable regulation of endogens and/or transferred genes via engineered zinc-finger proteins or transcription activator-like effectors can help targeted manipulation of secondary metabolite pathways in medicinal plants. The next-generation sequencing techniques have great potential to study the genetic diversity of medicinal plants through restriction-site-associated DNA sequencing (RAD-seq) technique and also to identify the genes and enzymes that are involved in the biosynthetic pathway of secondary metabolites through precise transcriptome profiling (RNA-seq). The sequence-specific nucleases of transcription activator-like effector nucleases (TALENs), zinc-finger nucleases, and clustered regularly interspaced short palindromic repeats-associated (Cas) are the genome editing methods that can produce user-designed medicinal plants. These current targeted genome editing methods are able to manage plant synthetic biology and open new gates to medicinal plants to be introduced into appropriate industries.
Collapse
Affiliation(s)
- Mohsen Niazian
- Department of Tissue and Cell Culture, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, 3135933151, Iran.
| |
Collapse
|