1
|
Zhou C, Yu S, Zhang H, Li F. Physiological and biochemical responses of Isatis indigotica to deficit irrigation in a cold and arid environment. FRONTIERS IN PLANT SCIENCE 2023; 13:1094158. [PMID: 36714710 PMCID: PMC9878612 DOI: 10.3389/fpls.2022.1094158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Water shortage and wastage are critical challenges to sustainable agricultural development, especially in arid and semiarid regions worldwide. Isatis indigotica (woad), as a traditional Chinese herb, was planted in a large area in a cold and arid environment of Hexi. Regulated deficit irrigation can reduce the growth of some vegetative organs by changing the accumulation and distribution of photosynthetic products in crops, thus increasing the economic yield of crops. In agricultural production, crop productivity may be improved by mulched drip irrigation and deficit irrigation. Hence, a field experiment was conducted to investigate the responses of photosynthesis, malondialdehyde, osmotic regulators, antioxidant enzyme activities, and the yield of woad to water deficit at different growth stages. The growth stage of woad was divided in four stages: seedling, vegetative growth, fleshy root growth, and fleshy root maturity. During vegetative growth, fleshy root growth, and fleshy root maturity, three water gradients were set for plants with mild (65-75% in field water capacity, FC), moderate (55-65% in FC), and severe (45-55% in FC) deficits, respectively. In contrast, an adequate water supply (75-85% in FC) during the growth period was designed as the control (CK). The net photosynthetic rate (Pn), transpiration rate, and stomatal conductance of woad significantly decreased (P< 0.05) by moderate and severe water deficits. Still, rehydration after the water deficit could produce a noticeable compensation effect. In contrast, malondialdehyde and proline accumulation significantly increased under moderate and severe water deficits. At the same time, the superoxide dismutase, peroxidase, and catalase all had high activities (increased significantly by 19.87-39.28%, 19.91-34.26%, and 10.63-16.13% compared with CK, respectively), but yields were substantially lower, compared to CK. Additionally, the net photosynthetic rate was negatively correlated with antioxidant enzyme activity. The economic yield of plants subjected to continuous mild water deficit during both vegetative and fleshy root growth was not significantly different from that in CK. Still, the water use efficiency improved significantly. Therefore, the continuous mild water deficit during vegetative and fleshy root growth could improve the physiological and biochemical mechanisms of the plant, representing an optimal irrigation strategy for woad in cold and arid areas.
Collapse
Affiliation(s)
- Chenli Zhou
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
- College of Water Conservation and Hydropower Engineering, Gansu Agricultural University, Lanzhou, China
| | - Shouchao Yu
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
| | - Hengjia Zhang
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, China
- College of Water Conservation and Hydropower Engineering, Gansu Agricultural University, Lanzhou, China
| | - Fuqiang Li
- College of Water Conservation and Hydropower Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Nukulkit S, Jantimaporn A, Poldorn P, Khongkow M, Rungrotmongkol T, Chang HS, Suttisri R, Chansriniyom C. Eight Indole Alkaloids from the Roots of Maerua siamensis and Their Nitric Oxide Inhibitory Effects. Molecules 2022; 27:7558. [PMID: 36364385 PMCID: PMC9656735 DOI: 10.3390/molecules27217558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 04/14/2024] Open
Abstract
Maerua siamensis (Capparaceae) roots are used for treating pain and inflammation in traditional Thai medicine. Eight new indole alkaloids, named maeruanitriles A and B, maeroximes A-C, and maeruabisindoles A-C, were isolated from them. Spectroscopic methods and computational analysis were applied to determine the structure of the isolated compounds. Maeroximes A-C possesses an unusual O-methyloxime moiety. The bisindole alkaloid maeruabisindoles A and B possess a rare azete ring, whereas maeruabisindole C is the first indolo[3,2-b]carbazole derivative found in this plant family. Five compounds [maeruanitriles A and B, maeroxime C, maeruabisindoles B, and C] displayed anti-inflammatory activity by inhibiting nitric oxide (NO) production in the lipopolysaccharide-induced RAW 264.7 cells. Maeruabisindole B was the most active inhibitor of NO production, with an IC50 of 31.1 ± 1.8 μM compared to indomethacin (IC50 = 150.0 ± 16.0 μM) as the positive control.
Collapse
Affiliation(s)
- Sasiwimon Nukulkit
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products and Nanoparticles Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Jantimaporn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Preeyaporn Poldorn
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Rutt Suttisri
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaisak Chansriniyom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products and Nanoparticles Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Zhou C, Zhang H, Li F, Wang Y, Wang Y, Wang Z. Deficit mulched drip irrigation improved yield and quality while reduced water consumption of isatis indigotica in a cold and arid environment. FRONTIERS IN PLANT SCIENCE 2022; 13:1013131. [PMID: 36247605 PMCID: PMC9563244 DOI: 10.3389/fpls.2022.1013131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Deficit irrigation is an effective alternative to traditional irrigation, as it improves crop productivity and conserves water. However, crops may be sensitive to deficit irrigation-induced water stress at different periods. To access the effect of deficit irrigation on the growth, water consumption characteristics, yield, and quality of Isatis indigotica (woad), we performed a three-year (2017-2019) mulched drip irrigation field experiment. Woad plants were provided adequate water supply at the seedling stage but were subjected to mild (65-75% field water capacity FC), moderate (55-65% FC), and severe (45-55% FC) water deficit at the vegetative growth, fleshy root growth and fleshy root maturity stages, respectively; plants supplied with adequate water throughout the growth period served as a control (CK, 75-85% FC). The water consumption characteristics, agronomic traits, dry matter content and distribution, yield, and quality of these plants were measured at various growth stages. The results showed that the total water consumption in water deficit was significantly less than that in CK by 4.44-10.21% (P< 0.05). The dry matter content of plants treated with moderate (WT2 and WT5) and severe (WT3) water deficit was reduced by 12.83-28.75%. The economic yield of mild water deficit-treated plants was higher during vegetative growth (WT1) and fleshy root growth (WT4), while the water use efficiency of these plants was significantly increased by 7.84% and 6.92% at the two growth stages, respectively. Continuous mild water deficit (WT4) enhanced the contents of indigo, indirubin, (R,S)-goitrin, polysaccharides, and soluble proteins during vegetative growth and fleshy root growth, while moderate and severe water deficit were detrimental to the quality of woad plants. Thus, continuous mild water deficit during vegetative and fleshy root growth periods (WT4) is optimal for the cultivation of woad in the cold and cool irrigation district of the Hexi Oasis region.
Collapse
|
4
|
Wong LW, Goh CBS, Tan JBL. A Systemic Review for Ethnopharmacological Studies on Isatis indigotica Fortune: Bioactive Compounds and their Therapeutic Insights. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:161-207. [PMID: 35139772 DOI: 10.1142/s0192415x22500069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Isatis indigotica Fortune is a biennial Chinese woad of the Cruciferae family. It is primarily cultivated in China, where it was a staple in indigo dye manufacture till the end of the 17th century. Today, I. indigotica is used primarily as a therapeutic herb in traditional Chinese medicine (TCM). The medicinal use of the plant is separated into its leaves (Da-Qing-Ye) and roots (Ban-Lan-Gen), whereas its aerial components can be processed into a dried bluish-spruce powder (Qing-Dai), following dehydration for long-term preservation. Over the past several decades, I. indigotica has been generally utilized for its heat-clearing effects and bodily detoxification in TCM, attributed to the presence of several classes of bioactive compounds, including organic acids, alkaloids, terpenoids, and flavonoids, as well as lignans, anthraquinones, glucosides, glucosinolates, sphingolipids, tetrapyrroles, and polysaccharides. This paper aims to delineate I. indigotica from its closely-related species (Isatis tinctoria and Isatis glauca) while highlighting the ethnomedicinal uses of I. indigotica from the perspectives of modern and traditional medicine. A systematic search of PubMed, Embase, PMC, Web of Science, and Google Scholar databases was done for articles on all aspects of the plant, emphasizing those analyzing the bioactivity of constituents of the plant. The various key bioactive compounds of I. indigotica that have been found to exhibit anti-inflammatory, antimicrobial, anticancer, and anti-allergic properties, along with the protective effects against neuronal injury and bone fracture, will be discussed. Collectively, the review hopes to draw attention to the therapeutic potential of I. indigotica not only as a TCM, but also as a potential source of bioactive compounds for disease management and treatment.
Collapse
Affiliation(s)
- Li Wen Wong
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| | - Calvin Bok Sun Goh
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| |
Collapse
|
5
|
Chen J, Zhu Z, Gao T, Chen Y, Yang Q, Fu C, Zhu Y, Wang F, Liao W. Isatidis Radix and Isatidis Folium: A systematic review on ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114648. [PMID: 34543684 DOI: 10.1016/j.jep.2021.114648] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Isatidis Radix (called Banlangen, BLG in Chinese) and Isatidis Folium (called Daqingye, DQY in Chinese) are common traditional edible-medicinal herbs in detoxifying for thousands of years, have been traditionally applied in traditional Chinese medicine for centuries. Both of them are bitter in taste, coolness in nature, acting on the heart and stomach channels. They are often used to treat influenza and other viral infectious diseases in clinic, as well as could treat fever, dizziness, and cough and sore throat caused by lung heat. AIMS OF THE REVIEW This review aimed at summarizing the latest and comprehensive information of BLG and DQY on the ethnopharmacology, phytochemistry, pharmacology, toxicity and clinical application to explore the therapeutic potential of them. In addition, outlooks and perspective for possible future researches that related are also discussed. MATERIALS AND METHODS Related information concerning BLG and DQY were gathered from the internet database of Google Scholar, PubMed, Baidu Scholar, GeenMedical, CNKI and Web of Science, as well as other relevant textbooks, reviews, and documents (e.g., Chinese Pharmacopoeia, 2020 edition, Chinese herbal classic books and PhD and MSc thesis, etc.). Among of them with the keywords including "Isatis indigotica" "Isatidis Radix", "Isatidis Folium", "phytochemistry", "pharmacology", "toxicology", "clinical application" etc. and their combinations. RESULTS To date, 39 Chinese patent medicines containing BLG and/or DQY have been developed on basis of the data of NMPA. Besides, 304 and 142 compounds have been found in BLG and DQY, respectively. The main chemical differences between BLG and DQY were concentrated on alkaloids and lignans, such as indican, indirubin, (R, S)-epigoitrin, 4(3H)-quinazolinone, clemastanin B and isatindigotindolines A-D. In 2020 Edition ChP, (R, S)-goitrin and indirubin are now used as the official marker to monitor the quality of BLG and DQY, respectively. Modern pharmacology has mainly studied some monomer components such as 4(3H)-quinazolinone, clemastanin B, erucic acid and adenosine, etc., all of which have shown good effects. These active compounds can resist various viruses, such as influenza virus, respiratory syncytial virus, herpes simplex virus, etc.. By regulating the level of immunity and a variety of inflammatory factors, inhibit the growth and reproduction of the virus. At the same time, it is worth noting that different components of BLG and DQY lead to BLG is more powerful in antiviral and immunomodulatory activity than DQY, while DQY possesses a higher intensity than BLG in anti-oxidant activity. CONCLUSION By collecting and collating a large number of literature and various data websites, we concluded that the common compounds are mainly alkaloids. Recent findings regarding the phytochemical and pharmacological properties of BLG and DQY have confirmed their traditional uses in antiviral, antibacterial and treatment immune diseases. Without doubt, their significant differences on ethnopharmacology, phytochemistry and pharmacology can be used as evidence of separate list of BLG and DQY. For shortcomings, some comprehensive studies should be well designed for further utilization of BLG and DQY.
Collapse
Affiliation(s)
- Jiao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Zongping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Tianhui Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Qingsong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yaning Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Fang Wang
- Key Laboratory of Modern Preparation of Chinese Medicine Under Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
6
|
Zheng Z, Zha D, Cui P, Ye C, Jin L, Han B. Preparation of Tetrasubstituted Bis(3-indolyl)methanes from Indoles and Acetophenes Using 1,3-Dibromo-5,5-dimehtylhydantoin as an Efficient Catalyst. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220111122536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
A new process that could efficiently prepare tetrasubstituted bis(3-indolyl)methanes from various indoles and acetophenones with 1,3-Dibromo-5,5-dimehtylhydantoin(DBDMH) as a catalyst was reported. The effects of catalysts, solvents, and reaction temperature were investigated. Under the optimal condition, most of the tetrasubstituted bis(3-indolyl)methanes were obtained in 90–99% yields.
Collapse
Affiliation(s)
- Zubiao Zheng
- Department of Chemistry, Huangshan University, AnHui 245041, China
- Department of Chemistry, Huangshan University, AnHui 245041, China
| | - Daoxin Zha
- Department of Chemistry, Huangshan University, AnHui 245041, China
- Huangshan Jinshimu Plastic Technology Co., LTD, Anhui 245041, China
| | - Peng Cui
- Department of Chemistry, Huangshan University, AnHui 245041, China
| | - Caixia Ye
- Department of Chemistry, Huangshan University, AnHui 245041, China
- Huangshan Jinshimu Plastic Technology Co., LTD, Anhui 245041, China
| | - Lei Jin
- Department of Chemistry, Huangshan University, AnHui 245041, China
- Huangshan Jinshimu Plastic Technology Co., LTD, Anhui 245041, China
| | - Bingbing Han
- Department of Chemistry, Huangshan University, AnHui 245041, China
| |
Collapse
|
7
|
Speranza J, Miceli N, Taviano MF, Ragusa S, Kwiecień I, Szopa A, Ekiert H. Isatis tinctoria L. (Woad): A Review of its Botany, Ethnobotanical Uses, Phytochemistry, Biological Activities, and Biotechnological Studies. PLANTS (BASEL, SWITZERLAND) 2020; 9:E298. [PMID: 32121532 PMCID: PMC7154893 DOI: 10.3390/plants9030298] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Isatis tinctoria L. (Brassicaceae), which is commonly known as woad, is a species with an ancient and well-documented history as an indigo dye and medicinal plant. Currently, I. tinctoria is utilized more often as medicinal remedy and also as a cosmetic ingredient. In 2011, I. tinctoria root was accepted in the official European phytotherapy by introducing its monograph in the European Pharmacopoeia. The biological properties of raw material have been known from Traditional Chinese Medicine (TCM). Over recent decades, I. tinctoria has been investigated both from a phytochemical and a biological point of view. The modern in vitro and in vivo scientific studies proved anti-inflammatory, anti-tumour, antimicrobial, antiviral, analgesic, and antioxidant activities. The phytochemical composition of I. tinctoria has been thoroughly investigated and the plant was proven to contain many valuable biologically active compounds, including several alkaloids, among which tryptanthrin, indirubin, indolinone, phenolic compounds, and polysaccharides as well as glucosinolates, carotenoids, volatile constituents, and fatty acids. This article provides a general botanical and ethnobotanical overview that summarizes the up-to-date knowledge on the phytochemistry and biological properties of this valuable plant in order to support its therapeutic potential. Moreover, the biotechnological studies on I. tinctoria, which mainly focused on hairy root cultures for the enhanced production of flavonoids and alkaloids as well as on the establishment of shoot cultures and micropropagation protocols, were reviewed. They provide input for future research prospects.
Collapse
Affiliation(s)
- Jasmine Speranza
- Foundation “Prof. Antonio Imbesi”, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy;
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy;
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy;
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy;
| | - Salvatore Ragusa
- Department of Health Sciences, University ‘Magna Graecia’ of Catanzaro, V. Europa, IT-88100 Catanzaro, Italy;
| | - Inga Kwiecień
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (I.K.); (A.S.); (H.E.)
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (I.K.); (A.S.); (H.E.)
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland; (I.K.); (A.S.); (H.E.)
| |
Collapse
|
8
|
Zhang D, Shi Y, Li J, Ruan D, Jia Q, Zhu W, Chen K, Li Y, Wang R. Alkaloids with Nitric Oxide Inhibitory Activities from the Roots of Isatis tinctoria. Molecules 2019; 24:molecules24224033. [PMID: 31703370 PMCID: PMC6891263 DOI: 10.3390/molecules24224033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
As our ongoing research project on Ban Lan Gen (Isatis tinctoria roots), a total of 23 alkaloids were obtained. Compounds 1 and 2 contain an unusual C–C bond between the 2(1H)-quinolinone moiety and the phenol moiety and between the 2(1H)-quinolinone moiety and the 1H-indole moiety, respectively. Compound 3 possesses an unusual carbon skeleton and its putative biosynthetic pathway was discussed, and Compound 23 was deduced as a new indole alkaloid glycoside. Compounds 4–7 were identified as four new natural products by extensive spectroscopic experiments. Additionally, the anti-inflammatory activity was assessed based on nitric oxide (NO) production using Lipopolysaccharide-stimulated RAW264.7 macrophages. Compounds 9, 15, and 17 showed inhibitory effects with IC50 values of 1.2, 5.0, and 74.4 μM.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.Z.); (J.L.); (D.R.); (Q.J.); (K.C.)
| | - Yanhong Shi
- Institute of TCM International Standardization of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Jingyi Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.Z.); (J.L.); (D.R.); (Q.J.); (K.C.)
| | - Deqing Ruan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.Z.); (J.L.); (D.R.); (Q.J.); (K.C.)
| | - Qi Jia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.Z.); (J.L.); (D.R.); (Q.J.); (K.C.)
| | - Weiliang Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China;
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.Z.); (J.L.); (D.R.); (Q.J.); (K.C.)
- Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China;
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.Z.); (J.L.); (D.R.); (Q.J.); (K.C.)
- Correspondence: (Y.L.); (R.W.); Tel.: +86-21-5132-2191 (Y.L.); +86-21-5132-2181 (R.W.); Fax: +86-21-5132-2193 (Y.L. & R.W.)
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (D.Z.); (J.L.); (D.R.); (Q.J.); (K.C.)
- Correspondence: (Y.L.); (R.W.); Tel.: +86-21-5132-2191 (Y.L.); +86-21-5132-2181 (R.W.); Fax: +86-21-5132-2193 (Y.L. & R.W.)
| |
Collapse
|
9
|
Alkaloid Enantiomers from the Roots of Isatis indigotica. Molecules 2019; 24:molecules24173140. [PMID: 31470525 PMCID: PMC6749297 DOI: 10.3390/molecules24173140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 02/03/2023] Open
Abstract
Five pairs of alkaloid enantiomers (1a/1b–5a/5b) were obtained from Isatis indigotica (I. indigotica) roots. Among them, 1a/1b, 2a/2b and 3a/3b were determined as three pairs of new alkaloid enantiomers. Their structures were elucidated by physicochemical properties and spectroscopic methods. The absolute configurations were deduced by comparison of their experimental circular dichroism (CD) and calculated electronic circular dichroism (ECD) spectra, as well as by single-crystal X-ray crystallography using anomalous scattering of Cu Kα radiation. Alkaloids 1a and 1b possess an unpresented carbon skeleton and their putative biosynthetic pathways are discussed. Moreover, all of the alkaloids were tested for their nitric oxide (NO) inhibitory effects in RAW 264.7 cells, and 4a and 4b showed inhibitory effects with IC50 values of 76.97 μM and 65.88 μM, respectively.
Collapse
|
10
|
Zhang D, Shi Y, Shi S, Wu X, Zhang L, Chen K, Li Y, Wang R. Isatisindigoticanine A, a novel indole alkaloid with an unpresented carbon skeleton from the roots of Isatis tinctoria. Nat Prod Res 2019; 35:1249-1255. [PMID: 31328551 DOI: 10.1080/14786419.2019.1644632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Isatisindigoticanine A (1), a new indole alkaloid with an unusual carbon skeleton of a benzofuran-3-one unit connected with a 1H-indole-3-yl unit and a 4-(1,2-dihydroxyethyl)-6-oxa-3-azabicyclo[3.1.0]hexan-2-one unit via a C-3-C-8'' bond and a C-4'-C-8'' bond, was obtained from the roots of Isatis tinctoria. Its structure was determined by physicochemical properties and spectroscopic methods including 1 D, 2 D NMR, IR, HRESIMS data. The absolutely configurations were deduced by comparison of its experimental CD and calculated ECD spectra. Nitric oxide (NO) inhibitory activities of isatisindigoticanine A was also evaluated in the LPS-stimulated RAW 264.7 cells, however, no inhibitory effect was presented.
Collapse
Affiliation(s)
- Dongdong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanhong Shi
- Institute of TCM International Standardization of Shanghai, University of Traditional Chinese Medicine, Shanghai, China
| | - Songshan Shi
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ximin Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liuqiang Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|