1
|
Meng Q, Xie Z, Xu H, Guo J, Peng Q, Li Y, Yang J, Dong D, Gao T, Zhang F. Genome assembly of M. spongiola and comparative genomics of the genus Morchella provide initial insights into taxonomy and adaptive evolution. BMC Genomics 2024; 25:518. [PMID: 38802743 PMCID: PMC11129363 DOI: 10.1186/s12864-024-10418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Morchella spongiola is a highly prized mushroom for its delicious flavor and medical value and is one of the most flourishing, representative, and dominant macrofungi in the Qilian Mountains of the Qinghai-Tibet Plateau subkingdoms (QTPs). However, the understanding of M. spongiola remains largely unknown, and its taxonomy is ambiguous. In this study, we redescribed a unique species of M. spongiola, i.e., micromorphology, molecular data, genomics, and comparative genomics, and the historical biogeography of M. spongiola were estimated for 182 single-copy homologous genes. A high-quality chromosome-level reference genome of M. spongiola M12-10 was obtained by combining PacBio HiFi data and Illumina sequencing technologies; it was approximately 57.1 Mb (contig N50 of 18.14 Mb) and contained 9775 protein-coding genes. Comparative genome analysis revealed considerable conservation and unique characteristics between M. spongiola M12-10 and 32 other Morchella species. Molecular phylogenetic analysis indicated that M. spongiola M12-10 is similar to the M. prava/Mes-7 present in sandy soil near rivers, differentiating from black morels ~ 43.06 Mya (million years ago), and diverged from M. parva/Mes-7 at approximately 12.85 Mya (in the Miocene epoch), which is closely related to the geological activities in the QTPs (in the Neogene). Therefore, M. spongiola is a unique species rather than a synonym of M. vulgaris/Mes-5, which has a distinctive grey-brown sponge-like ascomata. This genome of M. spongiola M12-10 is the first published genome sequence of the species in the genus Morchella from the QTPs, which could aid future studies on functional gene identification, germplasm resource management, and molecular breeding efforts, as well as evolutionary studies on the Morchella taxon in the QTPs.
Collapse
Affiliation(s)
- Qing Meng
- Qinghai University, 251 Ningda Road, Xining, Qinghai, 810016, China
| | - Zhanling Xie
- Qinghai University, 251 Ningda Road, Xining, Qinghai, 810016, China.
| | - Hongyan Xu
- Qinghai University, 251 Ningda Road, Xining, Qinghai, 810016, China
| | - Jing Guo
- Qinghai University of Technology, 15 Twenty-fourth Road, Xining, Qinghai, 810016, China
| | - Qingqing Peng
- Qinghai University, 251 Ningda Road, Xining, Qinghai, 810016, China
| | - Yanyan Li
- Qinghai University, 251 Ningda Road, Xining, Qinghai, 810016, China
| | - Jiabao Yang
- Qinghai University, 251 Ningda Road, Xining, Qinghai, 810016, China
| | - Deyu Dong
- Qinghai University, 251 Ningda Road, Xining, Qinghai, 810016, China
| | - Taizhen Gao
- State-owned forest farms of Tianjun County, Delingha, Qinghai, 817299, China
| | - Fan Zhang
- Forestry and grassland station of Tianjun County, Delingha, Qinghai, 817299, China
| |
Collapse
|
2
|
Dong W, Chen B, Zhang R, Dai H, Han J, Lu Y, Zhao Q, Liu X, Liu H, Sun J. Identification and Characterization of Peptaibols as the Causing Agents of Pseudodiploöspora longispora Infecting the Edible Mushroom Morchella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18385-18394. [PMID: 37888752 DOI: 10.1021/acs.jafc.3c05783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Pseudodiploöspora longispora (previously known as Diploöspora longispora) is a pathogenic fungus of Morchella mushrooms. The molecular mechanism underlying the infection of P. longispora in fruiting bodies remains unknown. In this study, three known peptaibols, alamethicin F-50, polysporin B, and septocylindrin B (1-3), and a new analogue, longisporin A (4), were detected and identified in the culture of P. longispora and the fruiting bodies of M. sextelata infected by P. longispora. The primary amino sequence of longisporin A is defined as Ac-Aib1-Pro2-Aib3-Ala4-Aib5-Aib6-Gln7-Aib8-Val9-Aib10-Glu11-Leu12-Aib13-Pro14-Val15-Aib16-Aib17-Gln18-Gln19-Phaol20. The peptaibols 1-4 greatly suppressed the mycelial growth of M. sextelata. In addition, treatment with alamethicin F-50 produced damage on the cell wall and membrane of M. sextelata. Compounds 1-4 also exhibited inhibitory activities against human pathogens including Aspergillus fumigatus, Candida albicans, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, and plant pathogen Verticillium dahlia. Herein, peptaibols are confirmed as virulence factors involved in the invasion of P. longispora on Morchella, providing insights into the interaction between pathogenic P. longispora and mushrooms.
Collapse
Affiliation(s)
- Wang Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Rui Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Yongzhong Lu
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang550003 ,China
| | - Qi Zhao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Xingzhong Liu
- Department of Microbiology, College of Life Science, Nankai University, Jinnan District, Tianjin 300350, China
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
3
|
Li X, Fu T, Li H, Zhang B, Li W, Zhang B, Wang X, Wang J, Chen Q, He X, Chen H, Zhang Q, Zhang Y, Yang R, Peng Y. Safe Production Strategies for Soil-Covered Cultivation of Morel in Heavy Metal-Contaminated Soils. J Fungi (Basel) 2023; 9:765. [PMID: 37504753 PMCID: PMC10381497 DOI: 10.3390/jof9070765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Morel is a popular edible mushroom with considerable medicinal and economic value which has garnered global popularity. However, the increasing heavy metal (HM) pollution in the soil presents a significant challenge to morels cultivation. Given the susceptibility of morels to HM accumulation, the quality and output of morels are at risk, posing a serious food safety concern that hinders the development of the morel industry. Nonetheless, research on the mechanism of HM enrichment and mitigation strategies in morel remains scarce. The morel, being cultivated in soil, shows a positive correlation between HM content in its fruiting body and the HM content in the soil. Therefore, soil remediation emerges as the most practical and effective approach to tackle HM pollution. Compared to physical and chemical remediation, bioremediation is a low-cost and eco-friendly approach that poses minimal threats to soil composition and structure. HMs easily enriched during morels cultivation were examined, including Cd, Cu, Hg, and Pb, and we assessed soil passivation technology, microbial remediation, strain screening and cultivation, and agronomic measures as potential approaches for HM pollution prevention. The current review underscores the importance of establishing a comprehensive system for preventing HM pollution in morels.
Collapse
Affiliation(s)
- Xue Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
- Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Tianhong Fu
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
- Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Hongzhao Li
- Faculty of Food Science and Engineering, Foshan University, Foshan 258000, China
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Bangxi Zhang
- Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Wendi Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaomin Wang
- Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jie Wang
- Qiandongnan Academy of Agricultural Sciences, Kaili 556000, China
| | - Qing Chen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xuehan He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Chen
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| | - Qinyu Zhang
- Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yujin Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Rende Yang
- Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
4
|
Li DX, Cheng X, Ma FP, Chen JY, Chen YP, Zhao XS, Luo Q. Identification of metabolites from edible mushroom Morchella sextelata and their biological evaluation. Nat Prod Res 2022; 37:1774-1781. [PMID: 36054761 DOI: 10.1080/14786419.2022.2119389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
To identify bioactive metabolites from the fruiting body of Morchella sextelata, fourteen metabolites (1-14) including one undescribed morchesexten A (1) were isolated. Their structures including absolute configurations were assigned on the basis of spectroscopic data and quantum chemical computational methods. Furthermore, the anti-inflammatory and antioxidant activities of the isolated compounds were evaluated. Compounds 10-12 showed inhibitory effects on nitric oxide (NO) production with IC50 values of 15.2 ± 2.7, 10.2 ± 1.9 and 35.3 ± 10.5 μM, respectively. Compounds 7 and 9 exhibited strong antioxidant effect with IC50 values of 6.7 ± 0.4 and 7.3 ± 0.8 μM compared with Vit C (IC50 15.4 ± 0.2 μM).
Collapse
Affiliation(s)
- De-Xian Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xia Cheng
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fo-Pei Ma
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jie-Yu Chen
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi-Ping Chen
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiao-Shan Zhao
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qi Luo
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China
| |
Collapse
|