1
|
Balla N, Jakab Á, Kovács F, Ragyák Á, Tóth Z, Balázsi D, Forgács L, Bozó A, Al Refai F, Borman AM, Majoros L, Kovács R. Total transcriptome analysis of Candida auris planktonic cells exposed to tyrosol. AMB Express 2023; 13:81. [PMID: 37532970 PMCID: PMC10397170 DOI: 10.1186/s13568-023-01586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Tyrosol, a secondary metabolite of Candida species, regulates fungal morphogenesis, and its application may represent a novel innovative therapy against emerging multi-resistant fungal superbug such as Candida auris. In the current study, the effects of tyrosol on growth, redox homeostasis, intracellular microelement contents and activities of virulence-related enzymes released by C. auris were examined. To gain further information about the effect of tyrosol exposure, we revealed gene transcriptional changes using total transcriptome sequencing (RNA-Seq). At a concentration of 15 mM, tyrosol significantly decrease the growth of fungal cells within 2 h of its addition (5.6 × 107±1.2 × 107 and 2.5 × 107±0.6 × 107 colony forming unit/mL for control and tyrosol-treated cells, respectively). Furthermore, it enhanced the release of reactive oxygen species as confirmed by a dichlorofluorescein (DCF) assay (7.3 ± 1.8 [nmol DCF (OD640)-1] versus 16.8 ± 3.9 [nmol DCF (OD640)-1]), which was coincided with elevated superoxide dismutase, catalase and glutathione peroxidase activities. Tyrosol exerted in a 37%, 25%, 34% and 55% decrease in intracellular manganese, iron, zinc and copper contents, respectively, compared to control cells. The tyrosol treatment led to a 142 and 108 differentially transcripted genes with at least a 1.5-fold increase or decrease in transcription, respectively. Genes related to iron and fatty acid metabolism as well as nucleic acid synthesis were down-regulated, whereas those related to the antioxidative defence, adhesion and oxoacid metabolic processes were up-regulated. This study shows that tyrosol significantly influences growth, intracellular physiological processes and gene transcription in C. auris, which could highly support the development of novel treatment approaches against this important pathogen.
Collapse
Affiliation(s)
- Noémi Balla
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Ágnes Jakab
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Ágota Ragyák
- Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Dávid Balázsi
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Lajos Forgács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Aliz Bozó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Farah Al Refai
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Andrew M Borman
- UK National Mycology Reference Laboratory, Public Health England, Science Quarter, Southmead Hospital, Bristol, BS10 5NB, UK
- Medical Research Council Centre for Medical Mycology (MRCCMM), University of Exeter, Exeter, EX4 4QD, UK
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary.
| |
Collapse
|
2
|
Kaki R. Risk factors and mortality of the newly emerging Candida auris in a university hospital in Saudi Arabia. Mycology 2023; 14:256-263. [PMID: 37583454 PMCID: PMC10424598 DOI: 10.1080/21501203.2023.2227218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/14/2023] [Indexed: 08/17/2023] Open
Abstract
Candida auris presents a global health threat. We investigated risk factors and mortality of Candida auris infections in a retrospective study in Saudi Arabia. We included 27 patients ≥14 with invasive Candida auris from 2015-2022, with median age 58, and 66.7% males. All patients had indwelling devices. The most common infection sources were central line-associated bloodstream infection in 17 (63.0%), and urinary tract infections in four (12%). Fever and shock were observed in nine patients (33.3%) each, and 22 (81%) were admitted to the intensive care unit. Common comorbidities were diabetes and heart disease in 13 (48.1%) patients each. The median hospital stay was 78 days, and the median Charlson index was 4. The C. auris cultures were 100% susceptible to voriconazole, caspofungin, and amphotericin, while three were fully susceptible to fluconazole (11.1%). Despite treatment, 18 (66.7%) patients died. In conclusion, invasive C. auris infection had varied presentations. All patients had indwelling devices, and many had lengthy hospital stays. All isolates were susceptible to amphotericin and echinocandins, while few were fully susceptible to fluconazole.
Collapse
Affiliation(s)
- Reham Kaki
- Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Infectious Disease & Infection Control and Environmental Health, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Izadi A, Aghaei Gharehbolagh S, Sadeghi F, Talebi M, Darmiani K, Zarrinnia A, Zarei F, Peymaeei F, Khojasteh S, Borman AM, Mahmoudi S. Drug repurposing against Candida auris: A systematic review. Mycoses 2022; 65:784-793. [PMID: 35665544 DOI: 10.1111/myc.13477] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Candida auris is a drug-resistant pathogen with several reported outbreaks. The treatment of C. auris infections is difficult due to a limited number of available antifungal drugs. Thus, finding alternative drugs through repurposing approaches would be clinically beneficial. A systematic search in PubMed, Scopus and Web of Science databases, as well as Google Scholar up to 1 November 2021, was conducted to find all articles with data regarding the antifungal activity of non-antifungal drugs against the planktonic and biofilm forms of C. auris. During database and hand searching, 290 articles were found, of which 13 were eligible for inclusion in the present study. Planktonic and biofilm forms have been studied in 11 and 8 articles (with both forms examined in 6 articles), respectively. In total, 22 and 12 drugs/compounds have been reported as repositionable against planktonic and biofilm forms of C. auris, respectively. Antiparasitic drugs, with the dominance of miltefosine, were the most common repurposed drugs against both forms of C. auris, followed by anticancer drugs (e.g. alexidine dihydrochloride) against the planktonic form and anti-inflammatory drugs (e.g. ebselen) against the biofilm form of the fungus. A collection of other drugs from various classes have also shown promising activity against C. auris. Following drug repurposing approaches, a number of drugs/compounds from various classes have been found to inhibit the planktonic and biofilm forms of C. auris. Accordingly, drug repurposing is an encouraging approach for discovering potential alternatives to conventional antifungal agents to combat drug resistance in fungi, especially C. auris.
Collapse
Affiliation(s)
- Alireza Izadi
- Department of Medical Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Aghaei Gharehbolagh
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadeghi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meysam Talebi
- Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Darmiani
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zarrinnia
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Zarei
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Peymaeei
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Khojasteh
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Andrew M Borman
- Public Health England UK National Mycology Reference Laboratory, Southmead Hospital Bristol, Bristol, UK.,Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, UK
| | - Shahram Mahmoudi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Adler-Moore J, Lewis RE, Brüggemann RJM, Rijnders BJA, Groll AH, Walsh TJ. Preclinical Safety, Tolerability, Pharmacokinetics, Pharmacodynamics, and Antifungal Activity of Liposomal Amphotericin B. Clin Infect Dis 2020; 68:S244-S259. [PMID: 31222254 PMCID: PMC6495008 DOI: 10.1093/cid/ciz064] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The improved safety profile and antifungal efficacy of liposomal amphotericin B (LAmB) compared to conventional amphotericin B deoxycholate (DAmB) is due to several factors including, its chemical composition, rigorous manufacturing standards, and ability to target and transit through the fungal cell wall. Numerous preclinical studies have shown that LAmB administered intravenously distributes to tissues frequently infected by fungi at levels above the minimum inhibitory concentration (MIC) for many fungi. These concentrations can be maintained from one day to a few weeks, depending upon the tissue. Tissue accumulation is dose-dependent with drug clearance occurring most rapidly from the brain and slowest from the liver and spleen. LAmB localizes in lung epithelial lining fluid, within liver and splenic macrophages and in kidney distal tubules. LAmB has been used successfully in therapeutic and prophylactic animal models to treat many different fungal pathogens, significantly increasing survival and reducing tissue fungal burden.
Collapse
Affiliation(s)
- Jill Adler-Moore
- Department of Biological Sciences, California State Polytechnic University, Pomona
| | - Russell E Lewis
- Unit of Infectious Diseases, Policlinico Sant'Orsola-Malpighi, Department of Medical Sciences and Surgery, University of Bologna, Italy
| | - Roger J M Brüggemann
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andreas H Groll
- Infectious Disease Research Program, Department of Pediatric Hematology and Oncology and Center for Bone Marrow Transplantation, University Children's Hospital Muenster, Germany
| | - Thomas J Walsh
- Departments of Medicine, Pediatrics, and Microbiology & Immunology, Weill Cornell Medicine of Cornell University, New York, New York
| |
Collapse
|
5
|
Hoenigl M, Gangneux JP, Segal E, Alanio A, Chakrabarti A, Chen SCA, Govender N, Hagen F, Klimko N, Meis JF, Pasqualotto AC, Seidel D, Walsh TJ, Lagrou K, Lass-Flörl C, Cornely OA. Global guidelines and initiatives from the European Confederation of Medical Mycology to improve patient care and research worldwide: New leadership is about working together. Mycoses 2018; 61:885-894. [PMID: 30086186 DOI: 10.1111/myc.12836] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/21/2022]
Abstract
Invasive mycoses present a global challenge with expansion into new hosts, emergence of new pathogens, and development of multidrug resistance. In parallel, new antifungal agents and advanced laboratory diagnostic systems are being developed. In response to these evolving challenges, the European Confederation of Medical Mycology (ECMM) is committed to providing international expertise, guidance, and leadership with the key objectives of improving diagnosis, treatment, outcome, and survival of persons with invasive fungal diseases. Representing 25 affiliated National Medical Mycology Societies, the ECMM has developed several major ways to achieving these critical objectives: (a) tasking specific medical mycology working groups; (b) founding the ECMM Academy and Fellow program (FECMM); (c) expanding the goals of ECMM beyond the European region; (d) implementing the ECMM Excellence Centre Initiative in Europe; and (e) the ECMM Global Guidelines and Neglected Orphan Disease Guidance Initiatives focusing on mucormycosis, rare mould diseases, rare yeast diseases, and endemic mycoses. We believe that these important initiatives and other strategies of the ECMM will advance the field of medical mycology and improve the outcome of patients with invasive mycoses worldwide.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Department of Medicine, University of California-San Diego, San Diego, California.,Section of Infectious Diseases and Tropical Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Jean-Pierre Gangneux
- CHU de Rennes, Univ Rennes, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Esther Segal
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Institut Pasteur, Molecular Mycology Unit, Département de Mycologie, CNRS UMR2000, Paris, France.,Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Department of Infectious Diseases, Westmead Hospital & School of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Nelesh Govender
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses) & Division of the National Health Laboratory Service & School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Center, Utrecht, The Netherlands
| | - Nikolaj Klimko
- Department of Clinical Mycology, Allergy and Immunology, I. Mechnikov North-Western State Medical University, Saint-Petersburg, Russia
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ) and Center of Expertise in Mycology Radboudumc/CWZ (ECMM Diamond Excellence Center), Nijmegen, The Netherlands
| | - Alessandro C Pasqualotto
- Santa Casa de Misericordia de Porto Alegre, Porto Alegre, Brazil.,Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, Brazil
| | - Danila Seidel
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.,Department of Internal Medicine, Infectious Diseases (ECMM Diamond Excellence Center), University Hospital Cologne, Cologne, Germany.,Clinical Trial Unit Cologne, University Hospital Cologne, Cologne, Germany
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, New York.,Departments of Pediatrics and Microbiology & Immunology, Weill Cornell Medicine of Cornell University, New York, New York
| | - Katrien Lagrou
- Department of Microbiology and Immunology, ECMM Diamond Excellence Center, KU Leuven, Leuven, Belgium.,Clinical Department of Laboratory Medicine and National Reference Centre for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, ECMM Diamond Excellence Center, Medical University of Innsbruck, Innsbruck, Austria
| | - Oliver A Cornely
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.,Department of Internal Medicine, Infectious Diseases (ECMM Diamond Excellence Center), University Hospital Cologne, Cologne, Germany.,Clinical Trial Unit Cologne, University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|
6
|
Gamaletsou MN, Walsh TJ, Sipsas NV. Invasive Fungal Infections in Patients with Hematological Malignancies: Emergence of Resistant Pathogens and New Antifungal Therapies. Turk J Haematol 2018; 35:1-11. [PMID: 29391334 PMCID: PMC5843768 DOI: 10.4274/tjh.2018.0007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Invasive fungal infections caused by drug-resistant organisms are an emerging threat to heavily immunosuppressed patients with hematological malignancies. Modern early antifungal treatment strategies, such as prophylaxis and empirical and preemptive therapy, result in long-term exposure to antifungal agents, which is a major driving force for the development of resistance. The extended use of central venous catheters, the nonlinear pharmacokinetics of certain antifungal agents, neutropenia, other forms of intense immunosuppression, and drug toxicities are other contributing factors. The widespread use of agricultural and industrial fungicides with similar chemical structures and mechanisms of action has resulted in the development of environmental reservoirs for some drug-resistant fungi, especially azole-resistant Aspergillus species, which have been reported from four continents. The majority of resistant strains have the mutation TR34/L98H, a finding suggesting that the source of resistance is the environment. The global emergence of new fungal pathogens with inherent resistance, such as Candida auris, is a new public health threat. The most common mechanism of antifungal drug resistance is the induction of efflux pumps, which decrease intracellular drug concentrations. Overexpression, depletion, and alteration of the drug target are other mechanisms of resistance. Mutations in the ERG11 gene alter the protein structure of C-demethylase, reducing the efficacy of antifungal triazoles. Candida species become echinocandin-resistant by mutations in FKS genes. A shift in the epidemiology of Candida towards resistant non-albicans Candida spp. has emerged among patients with hematological malignancies. There is no definite association between antifungal resistance, as defined by elevated minimum inhibitory concentrations, and clinical outcomes in this population. Detection of genes or mutations conferring resistance with the use of molecular methods may offer better predictive values in certain cases. Treatment options for resistant fungal infections are limited and new drugs with novel mechanisms of actions are needed. Prevention of resistance through antifungal stewardship programs is of paramount importance.
Collapse
Affiliation(s)
- Maria N Gamaletsou
- The Leeds Teaching Hospitals NHS Trust, St James University Hospital, Department of Infection and Travel Medicine, Leeds, United Kingdom
| | - Thomas J Walsh
- Weill Cornell Medicine of Cornell University, Department of Medicine, Pediatrics, and Microbiology and Immunology, New York, United States of America
| | - Nikolaos V Sipsas
- National and Kapodistrian University of Athens Faculty of Medicine, Department of Pathophysiology, Athens, Greece
| |
Collapse
|