1
|
Ruggieri F, Compagne N, Antraygues K, Eveque M, Flipo M, Willand N. Antibiotics with novel mode of action as new weapons to fight antimicrobial resistance. Eur J Med Chem 2023; 256:115413. [PMID: 37150058 DOI: 10.1016/j.ejmech.2023.115413] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023]
Abstract
Antimicrobial resistance (AMR) is a major public health issue, causing 5 million deaths per year. Without any action plan, AMR will be in a near future the leading cause of death ahead of cancer. AMR comes from the ability of bacteria to rapidly develop and share resistance mechanisms towards current antibiotics, rendering them less effective. To circumvent this issue and avoid the phenomenon of cross-resistance, new antibiotics acting on novel targets or with new modes of action are required. Today, the pipeline of potential new treatments with these characteristics includes promising compounds such as gepotidacin, zoliflodacin, ibezapolstat, MGB-BP-3, CRS-3123, afabicin and TXA-709, which are currently in clinical trials, and lefamulin, which has been recently approved by FDA and EMA. In this review, we report the chemical synthesis, mode of action, structure-activity relationships, in vitro and in vivo activities as well as clinical data of these eight small molecules listed above.
Collapse
Affiliation(s)
- Francesca Ruggieri
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nina Compagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Kevin Antraygues
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Maxime Eveque
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France.
| |
Collapse
|
2
|
Deng Y, Zhang Y, Chen XH, Li CH. Antibacterial activity evaluation of pleuromutilin derivatives with 4(3H)-quinazolinone scaffold against methicillin-resistant Staphylococcusaureus. Eur J Med Chem 2023; 246:114960. [PMID: 36462445 DOI: 10.1016/j.ejmech.2022.114960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Growing antibiotic resistance is causing a health care crisis, leading to an urgent need for new antibiotics to tackle serious hospital and community infections. Pleuromutilin, a naturally occurring product with moderate antibacterial activity, has a unique structure that has attracted great efforts to modify its scaffold to obtain lead compounds. Herein, we report the synthesis of a series of novel pleuromutilin derivatives with a scaffold of 4(3H)-quinazolinone or its analogues at the C-14 side chain and investigated their in vitro activity against Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative bacteria (Escherichia coli and Salmonella enterica subsp. enterica serovar pullorum). Structure-activity relationship (SAR) studies showed that the substituents on the benzene ring of 4(3H)-quinazolinone was not as important as the substituted position to improve antibacterial activity while the substituted groups on the N-3 position of 4(3H)-quinazolinone had strong impact on the efficacy. The replacement of the benzene moiety of 4(3H)-quinazolinone with other rings (pyridine, pyrrole, thiophene, or cyclopentyl) also showed high antibacterial efficacy, meaning the benzene ring was dispensable for exerting powerful antibacterial properties. In vitro pharmacokinetics investigations and cytotoxicity assays indicated that 2-mercapto-4(3H)-quinazolinone scaffold was superior to 2-(piperazin-1-yl)quinazolin-4(3H)-one. Among this series of pleuromutilin analogues, compound 23 with a structure of 2-mercapto-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one displayed the best in vitro antibacterial activity against MRSA (MIC = 0.063 μg/mL) and low cytotoxicity to RAW 264.7 cells (IC50>100 μM) and was demonstrated to inhibit MRSA effectively in a mouse thigh infection model, outperforming the comparator, tiamulin.
Collapse
Affiliation(s)
- Yu Deng
- Institute of Veterinary Sciences & Medicines, Chongqing Academy of Animal Sciences, Rongchang, 402460, China; National Pig Technology Innovation Center, Rongchang, 402460, China
| | - Yang Zhang
- National Pig Technology Innovation Center, Rongchang, 402460, China
| | - Xiao-Hu Chen
- Department of Clinical Laboratory, Rongchang District People's Hospital, Rongchang, 402460, China
| | - Cheng-Hong Li
- Institute of Veterinary Sciences & Medicines, Chongqing Academy of Animal Sciences, Rongchang, 402460, China; National Pig Technology Innovation Center, Rongchang, 402460, China.
| |
Collapse
|
3
|
Xu Z, Eichler B, Klausner EA, Duffy-Matzner J, Zheng W. Lead/Drug Discovery from Natural Resources. Molecules 2022; 27:8280. [PMID: 36500375 PMCID: PMC9736696 DOI: 10.3390/molecules27238280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Natural products and their derivatives have been shown to be effective drug candidates against various diseases for many years. Over a long period of time, nature has produced an abundant and prosperous source pool for novel therapeutic agents with distinctive structures. Major natural-product-based drugs approved for clinical use include anti-infectives and anticancer agents. This paper will review some natural-product-related potent anticancer, anti-HIV, antibacterial and antimalarial drugs or lead compounds mainly discovered from 2016 to 2022. Structurally typical marine bioactive products are also included. Molecular modeling, machine learning, bioinformatics and other computer-assisted techniques that are very important in narrowing down bioactive core structural scaffolds and helping to design new structures to fight against key disease-associated molecular targets based on available natural products are considered and briefly reviewed.
Collapse
Affiliation(s)
- Zhihong Xu
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
- Institute of Interventional & Vascular Surgery, Tongji University, Shanghai 200072, China
- Department of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody’s Lane, Knoxville, TN 37922, USA
| | - Barrett Eichler
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
| | - Eytan A. Klausner
- Department of Pharmaceutical Sciences, South College School of Pharmacy, 400 Goody’s Lane, Knoxville, TN 37922, USA
| | - Jetty Duffy-Matzner
- Department of Chemistry and Biochemistry, Augustana University, 2001 S Summit Ave., Sioux Falls, SD 57197, USA
| | - Weifan Zheng
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, 1801 Fayetteville St., Durham, NC 27707, USA
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Adhikary S, Duggal MK, Nagendran S, Chintamaneni M, Tuli HS, Kaur G. Lefamulin: a New Hope in the Field of Community-Acquired Bacterial Pneumonia. CURRENT PHARMACOLOGY REPORTS 2022; 8:418-426. [PMID: 35811574 PMCID: PMC9257118 DOI: 10.1007/s40495-022-00297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Purpose of Review Community-acquired bacterial pneumonia (CABP) continues to be a worldwide health concern since it is the major cause of mortality and hospitalisation worldwide. Increased macrolide resistance among Streptococcus pneumoniae and other infections has resulted in a significantly larger illness burden, which has been exacerbated by evolving demography and a higher prevalence of comorbid disorders. Owing to such circumstances, the creation of new antibiotic classes is critical. Recent Findings Lefamulin, also referred to as BC-3781, is the primary pleuromutilin antibiotic which has been permitted for both intravenous and oral use in humans for the remedy of bacterial infections. It has shown activity against gram-positive bacteria including methicillin-resistant strains as well as atypical organisms which as often implicated in CABP. It has a completely unique mechanism of action that inhibits protein synthesis via way of means of stopping the binding of tRNA for peptide transfer. The C(14) side chain is responsible for its pharmacodynamic and antimicrobial properties, together with supporting in overcoming bacterial ribosomal resistance and mutations improvement amplifying the number of hydrogen bonds to the target site. Summary This review aims to highlight the pre-existing treatment options and specific purposes to shed some light upon the development of a new drug lefamulin and its specifications and explore this novel drug's superior efficacy to already existing treatment strategies.
Collapse
Affiliation(s)
- Shubham Adhikary
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vileparle-West, Mumbai-56, India
| | - Meher Kaur Duggal
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vileparle-West, Mumbai-56, India
| | - Saraswathy Nagendran
- Department of Botany, SVKM’s Mithibai College of Arts Chauhan Institute of Science and Amrutben Jivanlal College Of Commerce and Economics, Vile Parle (W), 400056 Mumbai, India
| | - Meena Chintamaneni
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vileparle-West, Mumbai-56, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana Ambala, 133207 Haryana India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vileparle-West, Mumbai-56, India
| |
Collapse
|
5
|
Kaur R, Rani P, Atanasov AG, Alzahrani Q, Gupta R, Kapoor B, Gulati M, Chawla P. Discovery and Development of Antibacterial Agents: Fortuitous and Designed. Mini Rev Med Chem 2021; 22:984-1029. [PMID: 34939541 DOI: 10.2174/1570193x19666211221150119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
Today, antibacterial drug resistance has turned into a significant public health issue. Repeated intake, suboptimal and/or unnecessary use of antibiotics, and, additionally, the transfer of resistance genes are the critical elements that make microorganisms resistant to conventional antibiotics. A substantial number of antibacterials that were successfully utilized earlier for prophylaxis and therapeutic purposes have been rendered inadequate due to this phenomenon. Therefore, the exploration of new molecules has become a continuous endeavour. Many such molecules are at various stages of investigation. A surprisingly high number of new molecules are currently in the stage of phase 3 clinical trials. A few new agents have been commercialized in the last decade. These include solithromycin, plazomicin, lefamulin, omadacycline, eravacycline, delafloxacin, zabofloxacin, finafloxacin, nemonoxacin, gepotidacin, zoliflodacin, cefiderocol, BAL30072, avycaz, zerbaxa, vabomere, relebactam, tedizolid, cadazolid, sutezolid, triclosan and afabiacin. This article aims to review the investigational and recently approved antibacterials with a focus on their structure, mechanisms of action/resistance, and spectrum of activity. Delving deep, their success or otherwise in various phases of clinical trials is also discussed while attributing the same to various causal factors.
Collapse
Affiliation(s)
- Ravleen Kaur
- Department of Health Sciences, Cape Breton University, Sydney, Nova Scotia. Canada
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara. India
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute of Digital Health and Patient Safety, Medical University of Vienna, Vienna. Austria
| | - Qushmua Alzahrani
- Department of Pharmacy/Nursing/Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) volunteer researcher, Joinville. Brazil
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan Moga, Punjab 142001. India
| |
Collapse
|
6
|
Retapamulin: Current Status and Future Perspectives. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2021. [DOI: 10.5812/archcid.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
: Retapamulin is one of the antibiotics recently developed semi-synthetically to inhibit protein synthesis in a specific manner different from other antibiotics. This pleuromutilin derivative shows magnificent anti-bacterial activity in Gram-positive pathogens, especially Staphylococcus aureus and Streptococcus pyogenes, and now it is available in ointment formulations (1%) for clinical use with negligible side effects. Despite the low potential for resistance development, antimicrobial susceptibility rates are significantly high. This is especially important when the prevalence of mupirocin-resistant strains is increasing, and the need for new alternatives is urgent. Unfortunately, due to its oxidation by cytochrome p450, this drug cannot be used systemically. However, another pleuromutilin derivative with systemic use, lefamulin, was approved in August 2019 by the US Food and Drug Administration. In addition to pharmacokinetic features, financial issues are also barriers to consider in the progress of new antimicrobials. In this review, we attempt to take a brief look at the derivatives usable in humans and explore their structures, action mode, metabolism, possible ways of resistance, resistance rates, and their clinical use to explain and highlight the valuable points of these antibiotics.
Collapse
|
7
|
Zhang Z, Zhang ZS, Wang X, Xi GL, Jin Z, Tang YZ. A click chemistry approach to pleuromutilin derivatives, evaluation of anti-MRSA activity and elucidation of binding mode by surface plasmon resonance and molecular docking. J Enzyme Inhib Med Chem 2021; 36:2087-2103. [PMID: 34823417 PMCID: PMC8635623 DOI: 10.1080/14756366.2021.1977931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 10/29/2022] Open
Abstract
Novel series of pleuromutilin analogs containing substituted 1,2,3-triazole moieties were designed, synthesised and assessed for their in vitro antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA). Initially, the in vitro antibacterial activities of these derivatives against 4 strains of S. aureus (MRSA ATCC 43300, ATCC 29213, AD3, and 144) were tested by the broth dilution method. Most of the synthesised pleuromutilin analogs displayed potent activities. Among them, compounds 50, 62, and 64 (MIC = 0.5∼1 µg/mL) showed the most effective antibacterial activity and their anti-MRSA activity were further studied by the time-killing kinetics approach. Binding mode investigations by surface plasmon resonance (SPR) with 50S ribosome revealed that the selected compounds all showed obvious affinity for 50S ribosome (KD = 2.32 × 10-8∼5.10 × 10-5 M). Subsequently, the binding of compounds 50 and 64 to the 50S ribosome was further investigated by molecular modelling. Compound 50 had a superior docking mode with 50S ribosome, and the binding free energy of compound 50 was calculated to be -12.0 kcal/mol.
Collapse
Affiliation(s)
- Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhao-Sheng Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Gao-Lei Xi
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
8
|
Potential role of new-generation antibiotics in acute bacterial skin and skin structure infections. Curr Opin Infect Dis 2021; 34:109-117. [PMID: 33395093 DOI: 10.1097/qco.0000000000000708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To summarize the available results of primary analyses from high-quality randomized studies of either recently approved or possible future agents for the treatment of acute bacterial skin and skin structure infections (ABSSSI). RECENT FINDINGS In the last 2 decades, several novel agents have been approved for the treatment of ABSSSI, that are also active against methicillin-resistant Staphylococcus aureus (MRSA). In addition to already available agents, further molecules are in clinical development that could become available for treating ABSSSI in the forthcoming future. SUMMARY The current and future availability of several new-generation antibiotics will allow to modulate therapeutic choices not only on efficacy but also on other relevant factors such as the combination of the drug safety profile and the comorbidities of any given patient, the expected adherence to outpatient therapy, and the possibilities of early discharge or avoiding hospitalization by means of oral formulations, early switch from intravenous to oral therapy, or single-dose administration of long-acting intravenous agents. With the advent of new-generation antibiotics, all these factors are becoming increasingly essential for tailoring treatment to individual patients in line with the principles of personalized medicine, and for optimizing the use of healthcare resources.
Collapse
|
9
|
McCarthy MW. Clinical Pharmacokinetics and Pharmacodynamics of Lefamulin. Clin Pharmacokinet 2021; 60:1387-1394. [PMID: 34254252 DOI: 10.1007/s40262-021-01056-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Lefamulin (Xenleta) has been approved by the US FDA for the treatment of community-acquired bacterial pneumonia (CABP). It may be taken intravenously or orally and has activity against a broad range of pulmonary pathogens, including Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, Legionella pneumophila, and Chlamydophila pneumonia, as well as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Lefamulin has an adverse effect profile that is similar to other antimicrobial agents commonly used to treat CABP. Despite these promising features, the use of lefamulin remains limited in clinical practice. However, given the rise of antibiotic-resistant organisms, this may soon change. This review examines what is known about the pharmacokinetics and pharmacodynamics of lefamulin and looks ahead to its potential applications in clinical practice, including the treatment of sexually transmitted infections such as multidrug-resistant Mycoplasma genitalium, as well as its role as a synergistic agent used in combination with other antimicrobials in the treatment of drug-resistant organisms.
Collapse
Affiliation(s)
- Matthew William McCarthy
- Weill Cornell Medicine and NewYork-Presbyterian Hospital, 525 E. 68th Street, New York, NY, 10065, USA.
| |
Collapse
|
10
|
Taylor RM, Karlowsky JA, Baxter MR, Adam HJ, Walkty A, Lagacé-Wiens P, Zhanel GG. In vitro susceptibility of common bacterial pathogens causing respiratory tract infections in Canada to lefamulin, a new pleuromutilin. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2021; 6:149-162. [PMID: 36341032 PMCID: PMC9608697 DOI: 10.3138/jammi-2020-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/09/2021] [Indexed: 06/16/2023]
Abstract
Background Community-acquired pneumonia (CAP) is a significant global health concern. Pathogens causing CAP demonstrate increasing resistance to commonly prescribed empiric treatments. Resistance in Streptococcus pneumoniae, the most prevalent bacterial cause of CAP, has been increasing worldwide, highlighting the need for improved antibacterial agents. Lefamulin, a novel pleuromutilin, is a recently approved therapeutic agent highly active against many lower respiratory tract pathogens. However, to date minimal data are available to describe the in vitro activity of lefamulin against bacterial isolates associated with CAP. Methods Common bacterial causes of CAP obtained from both lower respiratory and blood specimen isolates cultured by hospital laboratories across Canada were submitted to the annual CANWARD study's coordinating laboratory in Winnipeg, Canada, from January 2015 to October 2018. A total of 876 bacterial isolates were tested against lefamulin and comparator agents using the Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution method, and minimum inhibitory concentrations (MICs) were interpreted using accepted breakpoints. Results All S. pneumoniae isolates tested from both respiratory (n = 315) and blood specimens (n = 167) were susceptible to lefamulin (MIC ≤0.5 μg/mL), including isolates resistant to penicillins, clarithromycin, doxycycline, and trimethoprim-sulfamethoxazole. Lefamulin also inhibited 99.0% of Haemophilus influenzae isolates (regardless of β-lactamase production) (99 specimens; MIC ≤2 μg/mL) and 95.7% of methicillin-susceptible Staphylococcus aureus (MSSA) (MIC ≤0.25 μg/mL; 70 specimens) at their susceptible breakpoints. Conclusions: Lefamulin demonstrated potent in vitro activity against all respiratory isolates tested and may represent a significant advancement in empiric treatment options for CAP.
Collapse
Affiliation(s)
- Robert M Taylor
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A Karlowsky
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Melanie R Baxter
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Heather J Adam
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Walkty
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Philippe Lagacé-Wiens
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - George G Zhanel
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Tummanapalli SS, Willcox MD. Antimicrobial resistance of ocular microbes and the role of antimicrobial peptides. Clin Exp Optom 2021; 104:295-307. [PMID: 32924208 DOI: 10.1111/cxo.13125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Isolation of antimicrobial-resistant microbes from ocular infections may be becoming more frequent. Infections caused by these microbes can be difficult to treat and lead to poor outcomes. However, new therapies are being developed which may help improve clinical outcomes. This review examines recent reports on the isolation of antibiotic-resistant microbes from ocular infections. In addition, an overview of the development of some new antibiotic therapies is given. The recent literature regarding antibiotic use and resistance, isolation of antibiotic-resistant microbes from ocular infections and the development of potential new antibiotics that can be used to treat these infections was reviewed. Ocular microbial infections are a global public health issue as they can result in vision loss which compromises quality of life. Approximately 70 per cent of ocular infections are caused by bacteria including Chlamydia trachomatis, Staphylococcus aureus, and Pseudomonas aeruginosa and fungi such as Candida albicans, Aspergillus spp. and Fusarium spp. Resistance to first-line antibiotics such as fluoroquinolones and azoles has increased, with resistance of S. aureus isolates from the USA to fluoroquinolones reaching 32 per cent of isolates and 35 per cent being methicillin-resistant (MRSA). Lower levels of MRSA (seven per cent) were isolated by an Australian study. Antimicrobial peptides, which are broad-spectrum alternatives to antibiotics, have been tested as possible new drugs. Several have shown promise in animal models of keratitis, especially treating P. aeruginosa, S. aureus or C. albicans infections. Reports of increasing resistance of ocular isolates to mainstay antibiotics are a concern, and there is evidence that for ocular surface disease this resistance translates into worse clinical outcomes. New antibiotics are being developed, but not by large pharmaceutical companies and mostly in university research laboratories and smaller biotech companies. Antimicrobial peptides show promise in treating keratitis.
Collapse
Affiliation(s)
| | - Mark Dp Willcox
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| |
Collapse
|
12
|
Zhang L, Zhao SQ, Zhang J, Sun Y, Xie YL, Liu YB, Ma CC, Jiang BG, Liao XY, Li WF, Cheng XJ, Wang ZL. Proteomic Analysis of Vesicle-Producing Pseudomonas aeruginosa PAO1 Exposed to X-Ray Irradiation. Front Microbiol 2020; 11:558233. [PMID: 33384665 PMCID: PMC7770229 DOI: 10.3389/fmicb.2020.558233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023] Open
Abstract
Ionizing irradiation kills pathogens by destroying nucleic acids without protein structure destruction. However, how pathogens respond to irradiation stress has not yet been fully elucidated. Here, we observed that Pseudomonas aeruginosa PAO1 could release nucleic acids into the extracellular environment under X-ray irradiation. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray irradiation was observed to induce outer membrane vesicle (OMV) formation in P. aeruginosa PAO1. The size distribution of the OMVs of the irradiated PAO1 was similar to that of the OMVs of the non-irradiated PAO1 according to nanoparticle tracking analysis (NTA). The pyocin-related proteins are involved in OMV production in P. aeruginosa PAO1 under X-ray irradiation conditions, and that this is regulated by the key SOS gene recA. The OMV production was significantly impaired in the irradiated PAO1 Δlys mutant, suggesting that Lys endolysin is associated with OMV production in P. aeruginosa PAO1 upon irradiation stress. Meanwhile, no significant difference in OMV production was observed between PAO1 lacking the pqsR, lasR, or rhlR genes and the parent strain, demonstrating that the irradiation-induced OMV biosynthesis of P. aeruginosa was independent of the Pseudomonas quinolone signal (PQS).
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shi-Qiao Zhao
- Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jie Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Sun
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Liu Xie
- Department of Otolaryngology, The Seventh People's Hospital of Chengdu, Chengdu, China
| | - Yan-Bin Liu
- Infectious Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cui-Cui Ma
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bo-Guang Jiang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Yuan Liao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wen-Fang Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xing-Jun Cheng
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Ling Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Lefamulin: A Novel Oral and Intravenous Pleuromutilin for the Treatment of Community-Acquired Bacterial Pneumonia. Drugs 2020; 81:233-256. [PMID: 33247830 DOI: 10.1007/s40265-020-01443-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lefamulin is a novel oral and intravenous (IV) pleuromutilin developed as a twice-daily treatment for community-acquired bacterial pneumonia (CABP). It is a semi-synthetic pleuromutilin with a chemical structure that contains a tricyclic core of five-, six-, and eight-membered rings and a 2-(4-amino-2-hydroxycyclohexyl)sulfanylacetate side chain extending from C14 of the tricyclic core. Lefamulin inhibits bacterial protein synthesis by binding to the 50S bacterial ribosomal subunit in the peptidyl transferase center (PTC). The pleuromutilin tricyclic core binds to a pocket close to the A site, while the C14 side chain extends to the P site causing a tightening of the rotational movement in the binding pocket referred to as an induced-fit mechanism. Lefamulin displays broad-spectrum antibacterial activity against Gram-positive and Gram-negative aerobic and anaerobic bacteria as well as against atypical bacteria that commonly cause CABP. Pleuromutilin antibiotics exhibit low rates of resistance development and lack cross-resistance to other antimicrobial classes due to their unique mechanism of action. However, pleuromutilin activity is affected by mutations in 23S rRNA, 50S ribosomal subunit proteins rplC and rplD, ATP-binding cassette (ABC)-F transporter proteins such as vga(A), and the methyltransferase cfr. The pharmacokinetic properties of lefamulin include: volume of distribution (Vd) ranging from 82.9 to 202.8 L, total clearance (CLT) of 19.5 to 21.4 L/h, and terminal elimination half-life (t1/2) of 6.9-13.2 h; protein binding of lefamulin is high and non-linear. The oral bioavailability of lefamulin has been estimated as 24% in fasted subjects and 19% in fed subjects. A single oral dose of lefamulin 600 mg administered in fasted patients achieved a maximum plasma concentration (Cmax) of 1.2-1.5 mg/L with a time of maximum concentration (Tmax) ranging from 0.8 to 1.8 h, and an area under the plasma concentration-time curve from 0 to infinity (AUC0-∞) of 8.5-8.8 mg h/L. The pharmacodynamic parameter predictive of lefamulin efficacy is the free plasma area under the concentration-time curve divided by the minimum inhibitory concentration (fAUC24h/MIC). Lefamulin efficacy has been demonstrated using various animal models including neutropenic murine thigh infection, pneumonia, lung infection, and bacteremia. Lefamulin clinical safety and efficacy was investigated through a Phase II clinical trial of acute bacterial skin and skin structure infection (ABSSSI), as well as two Phase III clinical trials of CABP. The Phase III trials, LEAP 1 and LEAP 2 established non-inferiority of lefamulin to moxifloxacin in both oral and IV formulations in the treatment of CABP. The United States Food and Drug Administration (FDA), European Medicines Agency (EMA), and Health Canada have each approved lefamulin for the treatment of CABP. A Phase II clinical trial has been completed for the treatment of ABSSSI, while the pediatric program is in Phase I. The most common adverse effects of lefamulin include mild-to-moderate gastrointestinal-related events such as nausea and diarrhea. Lefamulin represents a safe and effective option for treating CABP in cases of antimicrobial resistance to first-line therapies, clinical failure, or intolerance/adverse effects to currently used agents. Clinical experience and ongoing clinical investigation will allow clinicians and antimicrobial stewardship programs to optimally use lefamulin in the treatment of CABP.
Collapse
|
14
|
Lodise T, Colman S, Stein DS, Fitts D, Goldberg L, Alexander E, Scoble PJ, Schranz J. Post Hoc Assessment of Time to Clinical Response Among Adults Hospitalized with Community-Acquired Bacterial Pneumonia Who Received Either Lefamulin or Moxifloxacin in 2 Phase III Randomized, Double-Blind, Double-Dummy Clinical Trials. Open Forum Infect Dis 2020; 7:ofaa145. [PMID: 32462049 PMCID: PMC7240345 DOI: 10.1093/ofid/ofaa145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/22/2020] [Indexed: 11/13/2022] Open
Abstract
Time to clinical response, a proxy for hospital "discharge readiness," was compared between CABP inpatients who received lefamulin or moxifloxacin in the Lefamulin Evaluation Against Pneumonia (LEAP) trials. The analysis included 926 inpatients. A short and comparable median time to clinical response (4 days) was observed in both treatment groups.
Collapse
Affiliation(s)
- Thomas Lodise
- Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Sam Colman
- Covance Market Access Services Inc., Gaithersburg, Maryland, USA
| | - Daniel S Stein
- Nabriva Therapeutics US, Inc., King of Prussia, Pennsylvania, USA
| | - David Fitts
- Nabriva Therapeutics US, Inc., King of Prussia, Pennsylvania, USA
| | - Lisa Goldberg
- Nabriva Therapeutics US, Inc., King of Prussia, Pennsylvania, USA
| | | | - Patrick J Scoble
- Nabriva Therapeutics US, Inc., King of Prussia, Pennsylvania, USA
| | - Jennifer Schranz
- Nabriva Therapeutics US, Inc., King of Prussia, Pennsylvania, USA
| |
Collapse
|
15
|
Bassetti M, Del Puente F, Magnasco L, Giacobbe DR. Innovative therapies for acute bacterial skin and skin-structure infections (ABSSSI) caused by methicillin-resistant Staphylococcus aureus: advances in phase I and II trials. Expert Opin Investig Drugs 2020; 29:495-506. [PMID: 32242469 DOI: 10.1080/13543784.2020.1750595] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is among the most frequent causative agents of acute bacterial skin and skin-structure infections (ABSSSI) and has been associated with increased risks of invasive disease and of treatment failure. AREAS COVERED In this review, we focus on those novel anti-MRSA agents currently in phase I or II of clinical development that may enrich the armamentarium against ABSSSI caused by MRSA in the future. EXPERT OPINION Promising agents belonging to either old or novel antibiotic classes are currently in early phases of clinical development and may become available in the future for the effective treatment of ABSSSI caused by MRSA. In particular, the future availability of agents belonging to novel classes will be important for guaranteeing an effective treatment and for allowing outpatient treatment/early discharge, with a consequent reduced impact on healthcare resources. However, this does not mean that we can relax our efforts directed toward improving the responsible use of already available agents. Indeed, preserving their activity in the long term is crucial for optimizing the use of healthcare resources.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS , Genoa, Italy.,Department of Health Sciences, University of Genoa , Genoa, Italy
| | - Filippo Del Puente
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS , Genoa, Italy.,Department of Health Sciences, University of Genoa , Genoa, Italy
| | - Laura Magnasco
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS , Genoa, Italy.,Department of Health Sciences, University of Genoa , Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS , Genoa, Italy.,Department of Health Sciences, University of Genoa , Genoa, Italy
| |
Collapse
|
16
|
Falcó V, Burgos J, Almirante B. An overview of lefamulin for the treatment of community acquired bacterial pneumonia. Expert Opin Pharmacother 2020; 21:629-636. [PMID: 31958020 DOI: 10.1080/14656566.2020.1714592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Lefamulin is a novel antibiotic that belongs to the pleuromutilin class with excellent activity against all microorganisms, including atypical pathogens, that cause community-acquired pneumonia (CAP). AREAS COVERED This article reviews the spectrum of activity, the main pharmacokinetic and pharmacodynamic characteristics of lefamulin as well as its clinical efficacy and safety in the treatment of CAP in adult patients. EXPERT OPINION The clinical efficacy of lefamulin in patients with non severe CAP has been demonstrated in 2 randomized clinical trials. Precisely one of the limitations of the phase 3 trials is that the proportion of severe CAP cases is very low. Its particular mechanism of action, affecting ribosomal protein synthesis, provides a low probability of cross-resistance to other commonly used antibiotics in CAP. These findings, together with the antimicrobial activity of lefamulin, its pharmacokinetic parameters and safety profile make it a good alternative for outpatient treatment of CAP. In patients hospitalized with CAP, lefamulin can be used as a potential oral step-down agent after an intravenous regimen with beta-lactams, or as a therapeutic alternative in patients with β-lactam allergies.
Collapse
Affiliation(s)
- Vicenç Falcó
- Infectious Diseases Department, University Hospital Vall d'Hebron, Autonomous University of Barcelona , Barcelona, Spain
| | - Joaquin Burgos
- Infectious Diseases Department, University Hospital Vall d'Hebron, Autonomous University of Barcelona , Barcelona, Spain
| | - Benito Almirante
- Infectious Diseases Department, University Hospital Vall d'Hebron, Autonomous University of Barcelona , Barcelona, Spain
| |
Collapse
|