1
|
Leanse LG, Marasini S, dos Anjos C, Dai T. Antimicrobial Resistance: Is There a 'Light' at the End of the Tunnel? Antibiotics (Basel) 2023; 12:1437. [PMID: 37760734 PMCID: PMC10525303 DOI: 10.3390/antibiotics12091437] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, with the increases in microorganisms that express a multitude of antimicrobial resistance (AMR) mechanisms, the threat of antimicrobial resistance in the global population has reached critical levels. The introduction of the COVID-19 pandemic has further contributed to the influx of infections caused by multidrug-resistant organisms (MDROs), which has placed significant pressure on healthcare systems. For over a century, the potential for light-based approaches targeted at combatting both cancer and infectious diseases has been proposed. They offer effective killing of microbial pathogens, regardless of AMR status, and have not typically been associated with high propensities of resistance development. To that end, the goal of this review is to describe the different mechanisms that drive AMR, including intrinsic, phenotypic, and acquired resistance mechanisms. Additionally, the different light-based approaches, including antimicrobial photodynamic therapy (aPDT), antimicrobial blue light (aBL), and ultraviolet (UV) light, will be discussed as potential alternatives or adjunct therapies with conventional antimicrobials. Lastly, we will evaluate the feasibility and requirements associated with integration of light-based approaches into the clinical pipeline.
Collapse
Affiliation(s)
- Leon G. Leanse
- Health and Sports Sciences Hub, University of Gibraltar, Europa Point Campus, Gibraltar GX11 1AA, Gibraltar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (C.d.A.); (T.D.)
| | - Sanjay Marasini
- New Zealand National Eye Centre, Department of Ophthalmology, The University of Auckland, Auckland 1142, New Zealand;
| | - Carolina dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (C.d.A.); (T.D.)
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (C.d.A.); (T.D.)
| |
Collapse
|
2
|
Fabbri C, Quaresma Ramos G, Clarys Baia-da-Silva D, Oliveira Trindade A, Carlos Salazar-Alvarez L, Costa Ferreira Neves J, dos Santos Bastos I, Guimarães Costa A, Vinicius Guimarães Lacerda M, Marcelo Monteiro W, Trindade Maranhão Costa F, Costa Pinto Lopes S. The activity of methylene blue against asexual and sexual stages of Plasmodium vivax. Front Cell Infect Microbiol 2023; 13:1108366. [PMID: 37143740 PMCID: PMC10152470 DOI: 10.3389/fcimb.2023.1108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
Methylene blue (MB) is an alternative for combating drug-resistant malaria parasites. Its transmission-blocking potential has been demonstrated in vivo in murine models, in vitro, and in clinical trials. MB shows high efficacy against Plasmodium vivax asexual stages; however, its efficacy in sexual stages is unknown. In this study, we evaluated the potential of MB against asexual and sexual forms of P. vivax isolated from the blood of patients residing in the Brazilian Amazon. An ex vivo schizont maturation assay, zygote to ookinete transformation assay, direct membrane feed assay (DMFA), and standard membrane feed assay (SMFA) using P. vivax gametocytes with MB exposure were performed. A cytotoxicity assay was also performed on freshly collected peripheral blood mononuclear cells (PBMCs) and the hepatocyte carcinoma cell line HepG2. MB inhibited the P. vivax schizont maturation and demonstrated an IC50 lower than that of chloroquine (control drug). In the sexual forms, the MB demonstrated a high level of inhibition in the transformation of the zygotes into ookinetes. In the DMFA, MB did not considerably affect the infection rate and showed low inhibition, but it demonstrated a slight decrease in the infection intensity in all tested concentrations. In contrast, in the SMFA, MB was able to completely block the transmission at the highest concentration (20 µM). MB demonstrated low cytotoxicity to fresh PBMCs but demonstrated higher cytotoxicity to the hepatocyte carcinoma cell line HepG2. These results show that MB may be a potential drug for vivax malaria treatment.
Collapse
Affiliation(s)
- Camila Fabbri
- Instituto Leônidas & Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- *Correspondence: Camila Fabbri, ; Stefanie Costa Pinto Lopes,
| | - Glenda Quaresma Ramos
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Escola Superior de Ciências da Saúde, Centro Multiusuário para Análise de Fenômenos Biomédicos da Universidade do Estado do Amazonas, Universidade do Estado do Amazonas, Manaus, Brazil
- Departamento de Morfologia, Universidade Federal do Amazonas, Manaus, Brazil
| | - Djane Clarys Baia-da-Silva
- Instituto Leônidas & Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Departamento de Saúde Coletiva, Universidade Federal do Amazonas, Manaus, Brazil
- Faculdade de Farmácia, Universidade Nilton Lins, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | - Luis Carlos Salazar-Alvarez
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Juliana Costa Ferreira Neves
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Ivanildes dos Santos Bastos
- Instituto Leônidas & Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Allyson Guimarães Costa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Marcus Vinicius Guimarães Lacerda
- Instituto Leônidas & Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | - Stefanie Costa Pinto Lopes
- Instituto Leônidas & Maria Deane, Fiocruz Amazônia, Manaus, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- *Correspondence: Camila Fabbri, ; Stefanie Costa Pinto Lopes,
| |
Collapse
|
3
|
Le MN, Wuertz BR, Biel MA, Thompson RL, Ondrey FG. Effects of methylene blue photodynamic therapy on oral carcinoma and leukoplakia cells. Laryngoscope Investig Otolaryngol 2022; 7:982-987. [PMID: 36000031 PMCID: PMC9392394 DOI: 10.1002/lio2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Methylene blue (MB) is a readily available and affordable substrate that can be used as a photosensitizer for photodynamic therapy (PDT). The objective of this study was to determine if PDT with MB can downregulate matrix metalloproteinases (MMPs) related to oral carcinoma. Methods Cell cultures of oral squamous cell carcinoma (CA-9-22), oral leukoplakia (MSK-Leuk1), and immortalized keratinocytes (Rhek-1A) were photosensitized with MB and treated with PDT. MMP-9 gene expression was interrogated via qRT-PCR. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to confirm the efficacy of MB PDT. Results MMP-9 gene expression was found to be significantly decreased in oral carcinoma, leukoplakia, and immortalized keratinocytes with use of MB PDT. Conclusion This work demonstrates that MB-mediated PDT can downregulate MMPs which are critical to the invasion and metastasis of oral cancer. These results suggest that MB PDT could be a clinically significant and cost-effective treatment for oral leukoplakia and carcinoma. Level of Evidence NA.
Collapse
Affiliation(s)
- Mina N. Le
- Department of Otolaryngology – Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Beverly R. Wuertz
- Department of Otolaryngology – Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Merrill A. Biel
- Department of Otolaryngology – Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Rachel L. Thompson
- Department of Otolaryngology – Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Frank G. Ondrey
- Department of Otolaryngology – Head and Neck SurgeryUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
4
|
Arentz J, von der Heide HJ. Evaluation of methylene blue based photodynamic inactivation (PDI) against intracellular B-CoV and SARS-CoV2 viruses under different light sources in vitro as a basis for new local treatment strategies in the early phase of a Covid19 infection. Photodiagnosis Photodyn Ther 2022; 37:102642. [PMID: 34863949 PMCID: PMC8635689 DOI: 10.1016/j.pdpdt.2021.102642] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/23/2022]
Abstract
The local antiviral photodynamic inactivation (PDI) may prove to be a helpful tool reducing the viral load in the nose and throat area in the early phase of a Covid19 infection. Both the infectivity and the prognosis of SARS-CoV-2 infections in the early phase can depend on the viral load in this area. The aim of our study was to find a simplified PDI therapy option against corona viruses in this region with low dose methylene blue (MB) as photosensitizer and use of LED light instead of laser. As a substitute for SARS-CoV2 viruses we started with BCoV infected U373 cells first. We used an 810nm diode laser with 300mW/cm2 and 100J/cm2 light dose as well as a 590 nm LED and a broadband LED with irradiation intensity of 10,000 lx each (irradiation time 2.5 and 10 min) and concentrations of the sensitizer of 0.001% and 0.0001%. The 0.001% MB sensitizer experiments showed similar results with all exposures. The logarithmic reduction factor varied between ≥ 5.29 and ≥ 5.31, (0.001% MB sensitizer) and ≥ 4.6 and ≥ 5.31 (0.0001% MB) respectively. Extending the LED irradiation time from 2 to 5 and 10 minutes did not change these results. In contrast approaches of BCoV-infected cells in the dark, treated with 0.001% and 0.0001% MB sensitizer alone, a lot of residual viruses could be detected after 10 minutes of incubation (RF 0.9 and RF 1.23 for 0.001% MB and 0.0001% MB respectively) In our SARS-CoV-2 experiments with VERO E6 infected cells the irradiation time was reduced to 1, 2 and 3 minutes for both concentrations with increasing broadband LED radiation intensity from 20 to 50 and 100.000 lx. (RF 4.67 for 0.001% and 0.0001% respectively). This showed a minimum concentration of 0.0001%MB and a minimum radiation intensity of 20,000 lx leads to a 99.99% reduction of intracellular and extracellular viruses after one minute exposure.
Collapse
Affiliation(s)
- J Arentz
- Initiator and coordinator of the study, Hamburg, Germany.
| | | |
Collapse
|
5
|
Giovannini J, Smeralda W, Jouanne M, Sopkova-de Oliveira Santos J, Catto M, Sophie Voisin-Chiret A. Tau protein aggregation: key features to improve drug discovery screening. Drug Discov Today 2022; 27:1284-1297. [DOI: 10.1016/j.drudis.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
|
6
|
Venancio-Brochi JC, Pereira LM, Calil FA, Teixeira O, Baroni L, Abreu-Filho PG, Braga GÚL, Nonato MC, Yatsuda AP. Glutathione reductase: A cytoplasmic antioxidant enzyme and a potential target for phenothiazinium dyes in Neospora caninum. Int J Biol Macromol 2021; 187:964-975. [PMID: 34310993 DOI: 10.1016/j.ijbiomac.2021.07.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/21/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022]
Abstract
Neospora caninum causes heavy losses related to abortions in bovine cattle. This parasite developed a complex defense redox system, composed of enzymes as glutathione reductase (GR). Methylene blue (MB) impairs the activity of recombinant form of Plasmodium GR and inhibits the parasite proliferation in vivo and in vitro. Likewise, MB and its derivatives inhibits Neospora caninum proliferation, however, whether the MB mechanism of action is correlated to GR function remains unclear. Therefore, here, N. caninum GR (NcGR) was characterized and its potential inhibitors were determined. NcGR was found in the tachyzoite cytosol and has a similar structure and sequence compared to its homologs. We verified the in vitro activity of rNcGR (875 nM) following NADPH absorbance at 340 nM (100 mM KH2PO4, pH 7.5, 1 mM EDTA, ionic strength: 600 mM, 25 °C). rNcGR exhibited a Michaelian behavior (Km(GSSG):0.10 ± 0.02 mM; kcat(GSSG):0.076 ± 0.003 s-1; Km(NADPH):0.006 ± 0.001 mM; kcat(NADPH): 0.080 ± 0.003 s-1). The IC50 of MB,1,9-dimethyl methylene blue, new methylene blue, and toluidine blue O on rNcGR activity were 2.1 ± 0.2 μM, 11 ± 2 μM, 0.7 ± 0.1 μM, and 0.9 ± 0.2 μM, respectively. Our results suggest the importance of NcGR in N. caninum biology and antioxidant mechanisms. Moreover, data presented here strongly suggest that NcGR is an important target of phenothiazinium dyes in N. caninum proliferation inhibition.
Collapse
Affiliation(s)
- Jade Cabestre Venancio-Brochi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Felipe Antunes Calil
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil; Ludwig Institute for Cancer Research, University of California, School of Medicine, 92093-0669 La Jolla, CA, USA
| | - Olívia Teixeira
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Péricles Gama Abreu-Filho
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Gilberto Úbida Leite Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, Ribeirão Preto, Brazil.
| |
Collapse
|
7
|
Gendrot M, Madamet M, Mosnier J, Fonta I, Amalvict R, Benoit N, Briolant S, Pradines B. Baseline and multinormal distribution of ex vivo susceptibilities of Plasmodium falciparum to methylene blue in Africa, 2013-18. J Antimicrob Chemother 2021; 75:2141-2148. [PMID: 32407538 DOI: 10.1093/jac/dkaa174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Plasmodium falciparum resistance to most antimalarial compounds has emerged in Southeast Asia and spread to Africa. In this context, the development of new antimalarial drugs is urgent. OBJECTIVES To determine the baseline in vitro activity of methylene blue (Proveblue®) on African isolates and to determine whether parasites have different phenotypes of susceptibility to methylene blue. METHODS Ex vivo susceptibility to methylene blue was measured for 609 P. falciparum isolates of patients hospitalized in France for malaria imported from Africa. A Bayesian statistical analysis was designed to describe the distribution of median effective concentration (EC50) estimates. RESULTS The EC50 ranged from 0.16 to 87.2 nM with a geometric mean of 7.17 nM (95% CI = 6.21-8.13). The 609 EC50 values were categorized into four components: A (mean = 2.5 nM; 95% CI = 2.28-2.72), B (mean = 7.44 nM; 95% CI = 7.07-7.81), C (mean = 16.29 nM; 95% CI = 15.40-17.18) and D (mean = 38.49 nM; 95% CI = 34.14-42.84). The threshold value for in vitro reduced susceptibility to methylene blue was estimated at 35 nM using the geometric mean of EC50 plus 2 SDs of the 609 isolates. This cut-off also corresponds to the lower limit of the 95% CI of the methylene blue EC50 of component D. Thirty-five isolates (5.7%) displayed EC50 values above this threshold. CONCLUSIONS Methylene blue exerts a promising efficacy against P. falciparum and is a potential partner for triple combinations.
Collapse
Affiliation(s)
- Mathieu Gendrot
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Marylin Madamet
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Joel Mosnier
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Isabelle Fonta
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Rémy Amalvict
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Nicolas Benoit
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| | - Sébastien Briolant
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Bruno Pradines
- Unite Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.,Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre National de Référence du Paludisme, Marseille, France
| |
Collapse
|
8
|
Antoszczak M, Markowska A, Markowska J, Huczyński A. Antidepressants and Antipsychotic Agents as Repurposable Oncological Drug Candidates. Curr Med Chem 2021; 28:2137-2174. [PMID: 32895037 DOI: 10.2174/0929867327666200907141452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022]
Abstract
Drug repurposing, also known as drug repositioning/reprofiling, is a relatively new strategy for the identification of alternative uses of well-known therapeutics that are outside the scope of their original medical indications. Such an approach might entail a number of advantages compared to standard de novo drug development, including less time needed to introduce the drug to the market, and lower costs. The group of compounds that could be considered as promising candidates for repurposing in oncology include the central nervous system drugs, especially selected antidepressant and antipsychotic agents. In this article, we provide an overview of some antidepressants (citalopram, fluoxetine, paroxetine, sertraline) and antipsychotics (chlorpromazine, pimozide, thioridazine, trifluoperazine) that have the potential to be repurposed as novel chemotherapeutics in cancer treatment, as they have been found to exhibit preventive and/or therapeutic action in cancer patients. Nevertheless, although drug repurposing seems to be an attractive strategy to search for oncological drugs, we would like to clearly indicate that it should not replace the search for new lead structures, but only complement de novo drug development.
Collapse
Affiliation(s)
- Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Anna Markowska
- \Department of Perinatology and Women's Diseases, Poznań University of Medical Sciences, Poznan, Poland
| | - Janina Markowska
- Department of Oncology, Poznań University of Medical Sciences, Poznan, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
9
|
Influence of Various Model Compounds on the Rheological Properties of Zein-Based Gels. Molecules 2020; 25:molecules25143174. [PMID: 32664560 PMCID: PMC7397198 DOI: 10.3390/molecules25143174] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
The controlled release of a compound entrapped in a biocompatible formulation is a sought-after goal in modern pharmaceutical technology. Zein is a hydrophobic protein which has several advantageous properties that make it suitable for use as a biocompatible and degradable material under physiological conditions. It is, therefore, proposed for different biomedical and pharmaceutical applications. In particular, due to its gelling properties, it can be used to form a polymeric network able to preserve biomolecules from harsh environments. The current study was designed to investigate the influence of different probes on the rheological properties of gels made up of zein, in order to characterize the systems as a function of the polymer concentration. Four model compounds characterized by different physico-chemical properties were entrapped in zein gels, and different behaviors (viscoelastic or pronounced solid-like characteristics) of the systems were observed. Zein-based gels showed various release profiles of the encapsulated compounds, suggesting that there are different interaction rates between the probes and the polymeric matrix.
Collapse
|
10
|
Qu JZ, Alston TA. Aerobic life is a tough exercise. Minerva Anestesiol 2019; 86:9-11. [PMID: 31820878 DOI: 10.23736/s0375-9393.19.14196-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jason Z Qu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodore A Alston
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA -
| |
Collapse
|