1
|
Nury C, Merg C, Eb-Levadoux Y, Bovard D, Porchet M, Maranzano F, Loncarevic I, Tavalaei S, Lize E, Demenescu RL, Yepiskoposyan H, Hoeng J, Ivanov NV, Renggli K, Titz B. Toxicoproteomics reveals an effect of clozapine on autophagy in human liver spheroids. Toxicol Mech Methods 2022:1-10. [DOI: 10.1080/15376516.2022.2156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Catherine Nury
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Celine Merg
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Yvan Eb-Levadoux
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Matthieu Porchet
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Fabio Maranzano
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Isidora Loncarevic
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Shahrzad Tavalaei
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Eleonore Lize
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | | | - Hasmik Yepiskoposyan
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Kasper Renggli
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
2
|
Brandão SR, Carvalho F, Amado F, Ferreira R, Costa VM. Insights on the molecular targets of cardiotoxicity induced by anticancer drugs: A systematic review based on proteomic findings. Metabolism 2022; 134:155250. [PMID: 35809654 DOI: 10.1016/j.metabol.2022.155250] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 11/27/2022]
Abstract
Several anticancer agents have been associated with cardiac toxic effects. The currently proposed mechanisms to explain cardiotoxicity differ among anticancer agents, but in fact, the specific modulation is not completely elucidated. Thus, this systematic review aims to provide an integrative perspective of the molecular mechanisms underlying the toxicity of anticancer agents on heart muscle while using a high-throughput technology, mass spectrometry (MS)-based proteomics. A literature search using PubMed database led to the selection of 27 studies, of which 13 reported results exclusively on animal models, 13 on cardiomyocyte-derived cell lines and only one included both animal and a cardiomyocyte line. The reported anticancer agents were the proteasome inhibitor carfilzomib, the anthracyclines daunorubicin, doxorubicin, epirubicin and idarubicin, the antimicrotubule agent docetaxel, the alkylating agent melphalan, the anthracenedione mitoxantrone, the tyrosine kinase inhibitors (TKIs) erlotinib, lapatinib, sorafenib and sunitinib, and the monoclonal antibody trastuzumab. Regarding the MS-based proteomic approaches, electrophoretic separation using two-dimensional (2D) gels coupled with tandem MS (MS/MS) and liquid chromatography-MS/MS (LC-MS/MS) were the most common. Overall, the studies highlighted 1826 differentially expressed proteins across 116 biological processes. Most of them were grouped in larger processes and critically analyzed in the present review. The selection of studies using proteomics on heart muscle allowed to obtain information about the anticancer therapy-induced modulation of numerous proteins in this tissue and to establish connections that have been disregarded in other studies. This systematic review provides interesting points for a comprehensive understanding of the cellular cardiotoxicity mechanisms of different anticancer drugs.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal.
| |
Collapse
|
3
|
Chi LH, Burrows AD, Anderson RL. Can preclinical drug development help to predict adverse events in clinical trials? Drug Discov Today 2021; 27:257-268. [PMID: 34469805 DOI: 10.1016/j.drudis.2021.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/03/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022]
Abstract
The development of novel therapeutics is associated with high rates of attrition, with unexpected adverse events being a major cause of failure. Serious adverse events have led to organ failure, cancer development and deaths that were not expected outcomes in clinical trials. These life-threatening events were not identified during therapeutic development due to the lack of preclinical safety tests that faithfully represented human physiology. We highlight the successful application of several novel technologies, including high-throughput screening, organs-on-chips, microbiome-containing drug-testing platforms and humanised mouse models, for mechanistic studies and prediction of toxicity. We propose the incorporation of similar preclinical tests into future drug development to reduce the likelihood of hazardous therapeutics entering later-stage clinical trials.
Collapse
Affiliation(s)
- Lap Hing Chi
- Translational Breast Cancer Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia; School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Allan D Burrows
- Translational Breast Cancer Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia; School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Robin L Anderson
- Translational Breast Cancer Program, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia; School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Kogel U, Wong ET, Szostak J, Tan WT, Lucci F, Leroy P, Titz B, Xiang Y, Low T, Wong SK, Guedj E, Ivanov NV, Schlage WK, Peitsch MC, Kuczaj A, Vanscheeuwijck P, Hoeng J. Impact of whole-body versus nose-only inhalation exposure systems on systemic, respiratory, and cardiovascular endpoints in a 2-month cigarette smoke exposure study in the ApoE -/- mouse model. J Appl Toxicol 2021; 41:1598-1619. [PMID: 33825214 PMCID: PMC8519037 DOI: 10.1002/jat.4149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/09/2022]
Abstract
Cigarette smoking is one major modifiable risk factor in the development and progression of chronic obstructive pulmonary disease and cardiovascular disease. To characterize and compare cigarette smoke (CS)-induced disease endpoints after exposure in either whole-body (WB) or nose-only (NO) exposure systems, we exposed apolipoprotein E-deficient mice to filtered air (Sham) or to the same total particulate matter (TPM) concentration of mainstream smoke from 3R4F reference cigarettes in NO or WB exposure chambers (EC) for 2 months. At matching TPM concentrations, we observed similar concentrations of carbon monoxide, acetaldehyde, and acrolein, but higher concentrations of nicotine and formaldehyde in NOEC than in WBEC. In both exposure systems, CS exposure led to the expected adaptive changes in nasal epithelia, altered lung function, lung inflammation, and pronounced changes in the nasal epithelial transcriptome and lung proteome. Exposure in the NOEC caused generally more severe histopathological changes in the nasal epithelia and a higher stress response as indicated by body weight decrease and lower blood lymphocyte counts compared with WB exposed mice. Erythropoiesis, and increases in total plasma triglyceride levels and atherosclerotic plaque area were observed only in CS-exposed mice in the WBEC group but not in the NOEC group. Although the composition of CS in the breathing zone is not completely comparable in the two exposure systems, the CS-induced respiratory disease endpoints were largely confirmed in both systems, with a higher magnitude of severity after NO exposure. CS-accelerated atherosclerosis and other pro-atherosclerotic factors were only significant in WBEC.
Collapse
Affiliation(s)
- Ulrike Kogel
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Ee Tsin Wong
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Justyna Szostak
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Wei Teck Tan
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Francesco Lucci
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Patrice Leroy
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Bjoern Titz
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Yang Xiang
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Tiffany Low
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Sin Kei Wong
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Emmanuel Guedj
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, Bergisch Gladbach, Germany
| | - Manuel C Peitsch
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Arkadiusz Kuczaj
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Patrick Vanscheeuwijck
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchatel, Switzerland
| |
Collapse
|
5
|
A proteomic view of cellular responses of macrophages to copper when added as ion or as copper-polyacrylate complex. J Proteomics 2021; 239:104178. [PMID: 33662612 DOI: 10.1016/j.jprot.2021.104178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
Copper is an essential metal for life, but is toxic at high concentrations. In mammalian cells, two copper transporters are known, CTR1 and CTR2. In order to gain insights on the possible influence of the import pathway on cellular responses to copper, two copper challenges were compared: one with copper ion, which is likely to use preferentially CTR1, and one with a copper-polyacrylate complex, which will be internalized via the endosomal pathway and is likely to use preferentially CTR2. A model system consisting in the J774A1 mouse macrophage system, with a strong endosomal/lysosomal pathway, was used. In order to gain wide insights into the cellular responses to copper, a proteomic approach was used. The proteomic results were validated by targeted experiments, and showed differential effects of the import mode on cellular physiology parameters. While the mitochondrial transmembrane potential was kept constant, a depletion in the free glutahione content was observed with copper (ion and polylacrylate complex). Both copper-polyacrylate and polyacrylate induced perturbations in the cytoskeleton and in phagocytosis. Inflammatory responses were also differently altered by copper ion and copper-polyacrylate. Copper-polyacrylate also perturbed several metabolic enzymes. Lastly, enzymes were used as a test set to assess the predictive value of proteomics. SIGNIFICANCE: Proteomic profiling provides an in depth analysis of the alterations induced on cells by copper under two different exposure modes to this metal, namely as the free ion or as a complex with polyacrylate. The cellular responses were substantially different between the two exposure modes, although some cellular effects are shared, such as the depletion in free glutathione. Targeted experiments were used to confirm the proteomic results. Some metabolic enzymes showed altered activities after exposure to the copper-polyacrylate complex. The basal inflammatory responses were different for copper ion and for the copper-polyacrylate complex, while the two forms of copper inhibited lipopolysaccharide-induced inflammatory responses.
Collapse
|
6
|
Wang Z, Karkossa I, Großkopf H, Rolle-Kampczyk U, Hackermüller J, von Bergen M, Schubert K. Comparison of quantitation methods in proteomics to define relevant toxicological information on AhR activation of HepG2 cells by BaP. Toxicology 2020; 448:152652. [PMID: 33278487 DOI: 10.1016/j.tox.2020.152652] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
The application of quantitative proteomics provides a new and promising tool for standardized toxicological research. However, choosing a suitable quantitative method still puzzles many researchers because the optimal method needs to be determined. In this study, we investigated the advantages and limitations of two of the most commonly used global quantitative proteomics methods, namely label-free quantitation (LFQ) and tandem mass tags (TMT). As a case study, we exposed hepatocytes (HepG2) to the environmental contaminant benzo[a]pyrene (BaP) using a concentration of 2 μM. Our results revealed that both methods yield a similar proteome coverage, in which for LFQ a wider range of fold changes was observed but with less significant p-values compared to TMT. We detected 37 and 47 significantly enriched pathways by LFQ and TMT, respectively, with 17 overlapping pathways. To define the minimally required effort in proteomics as a benchmark, we artificially reduced the LFQ, and TMT data sets stepwise and compared the pathway enrichment. Thereby, we found that fewer proteins are necessary for detecting significant enrichment of pathways in TMT compared to LFQ, which might be explained by the higher reproducibility of the TMT data that was observed. In summary, we showed that the TMT approach is the preferable one when investigating toxicological questions because it offers a high reproducibility and sufficient proteome coverage in a comparably short time.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Henning Großkopf
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jörg Hackermüller
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
7
|
Man Q, Deng Y, Li P, Ma J, Yang Z, Yang X, Zhou Y, Yan X. Licorice Ameliorates Cisplatin-Induced Hepatotoxicity Through Antiapoptosis, Antioxidative Stress, Anti-Inflammation, and Acceleration of Metabolism. Front Pharmacol 2020; 11:563750. [PMID: 33240085 PMCID: PMC7683576 DOI: 10.3389/fphar.2020.563750] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin (CP) is one of the most effective antitumor drugs in the clinic, but has serious adverse reactions, and its hepatotoxicity has not been fully investigated. Licorice (GC), a traditional herbal medicine, has been commonly used as a detoxifier for poisons and drugs, and may be an effective drug for CP-induced hepatotoxicity. However, its mechanism and the effector molecules remain ambiguous. Therefore, in this study, a network pharmacology and proteomics-based approach was established, and a panoramic view of the detoxification of GC on CP-induced hepatotoxicity was provided. The experimental results indicated that GC can recover functional indices and pathological liver injury, inhibit hepatocyte apoptosis, upregulate B-cell lymphoma/leukemia 2 (Bcl-2) and superoxide dismutase (SOD) levels, and downregulate cellular tumor antigen p53 (p53), caspase-3, malondialdehyde high mobility group protein B1 (HMGB1), tumor necrosis factor alpha (TNF-α), and interleukin 1β (IL-1β) levels. Proteomics indicated that GC regulates phosphatidylcholine translocator ABCB1 (ABCB1B), canalicular multispecific organic anion transporter 1 (ABCC2), cytochrome P450 4A2 (CYP4A2), cytochrome P450 1A1 (CYP1A1), cytochrome P450 1A2 (CYP1A2), estrogen receptor (ESR1), and DNA topoisomerase 2-alpha (TOP2A), inhibits oxidative stress, apoptosis, and inflammatory responses, and accelerates drug metabolism. In this study, we provide the investigation of the efficacy of GC against CP-induced hepatotoxicity, and offer a promising alternative for the clinic.
Collapse
Affiliation(s)
- Qiong Man
- School of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yi Deng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Pharmacology and Toxicology of Traditional Chinese Medicine of Gansu Province, Lanzhou, China
| | - Pengjie Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Ma
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhijun Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiujuan Yang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Zhou
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.,Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao Yan
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
8
|
Das Saha N, Sasmal R, Meethal SK, Vats S, Gopinathan PV, Jash O, Manjithaya R, Gagey-Eilstein N, Agasti SS. Multichannel DNA Sensor Array Fingerprints Cell States and Identifies Pharmacological Effectors of Catabolic Processes. ACS Sens 2019; 4:3124-3132. [PMID: 31763818 DOI: 10.1021/acssensors.9b01009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells at disease onset are often associated with subtle changes in the expression level of a single or few molecular components, making traditionally used biomarker-driven clinical diagnosis a challenging task. We demonstrate here the design of a DNA nanosensor array with multichannel output that identifies the normal or pathological state of a cell based on the alteration of its global proteomic signature. Fluorophore-encoded single-stranded DNA (ssDNA) strands were coupled via supramolecular interaction with a surface-functionalized gold nanoparticle quencher to generate this integrated sensor array. In this design, ssDNA sequences exhibit dual roles, where they provide differential affinities with the receptor gold nanoparticle as well as act as transducer elements. The unique interaction mode of the analyte molecules disrupts the noncovalent supramolecular complexation, generating simultaneous multichannel fluorescence output to enable signature-based analyte identification via a linear discriminant analysis-based machine learning algorithm. Different cell types, particularly normal and cancerous cells, were effectively distinguished using their fluorescent fingerprints. Additionally, this DNA sensor array displayed excellent sensitivity to identify cellular alterations associated with chemical modulation of catabolic processes. Importantly, pharmacological effectors, which could modulate autophagic flux, have been effectively distinguished by generating responses from their global protein signatures. Taken together, these studies demonstrate that our multichannel DNA nanosensor is well suited for rapid identification of subtle changes in a complex mixture and thus can be readily expanded for point-of-care clinical diagnosis, high-throughput drug screening, or predicting the therapeutic outcome from a limited sample volume.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nathalie Gagey-Eilstein
- UMR-S 1139, INSERM, 3PHM, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Sorbonne Paris Cité, 4 avenue de l’Observatoire, 75006 Paris, France
| | | |
Collapse
|
9
|
McColl ER, Asthana R, Paine MF, Piquette‐Miller M. The Age of Omics‐Driven Precision Medicine. Clin Pharmacol Ther 2019; 106:477-481. [DOI: 10.1002/cpt.1532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Eliza R. McColl
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario Canada
| | - Rashi Asthana
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario Canada
| | - Mary F. Paine
- Department of Pharmaceutical Sciences College of Pharmacy and Pharmaceutical Sciences Washington State University Spokane Washington USA
| | - Micheline Piquette‐Miller
- Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario Canada
| |
Collapse
|
10
|
Schmitz-Spanke S. Toxicogenomics - What added Value Do These Approaches Provide for Carcinogen Risk Assessment? ENVIRONMENTAL RESEARCH 2019; 173:157-164. [PMID: 30909101 DOI: 10.1016/j.envres.2019.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
It is still a major challenge to protect humans at workplaces and in the environment. To cope with this task, it is a prerequisite to obtain detailed information on the extent of chemical perturbations of biological pathways, in particular, adaptive vs. adverse effects and the dose-response relationships. This knowledge serves as the basis for the classification of non-carcinogens and carcinogens and for further distinguishing carcinogens in genotoxic (DNA damaging) or non-genotoxic compounds. Basing on quantitative dose-response relationships, points of departures can be derived for chemical risk assessment. In recent years, new methods have shown their capability to support the established rodent models of carcinogenicity testing. In vitro high throughput screening assays assess more comprehensively cell response. In addition, omics technologies were applied to study the mode of action of chemicals whereby the term "toxicogenomics" comprises various technologies such as transcriptomics, epigenomics, or metabolomics. This review aims to summarize the current state of toxicogenomic approaches in risk science and to compare them with established ones. For example, measurement of global transcriptional changes generates meaningful information for toxicological risk assessment such as accurate classification of genotoxic/non-genotoxic carcinogens. Alteration in mRNA expression offers previously unknown insights in the mode of action and enables the definition of key events. Based on these, benchmark doses can be calculated for the transition from an adaptive to an adverse state. In short, this review assesses the potential and challenges of transcriptomics and addresses the impact of other omics technologies on risk assessment in terms of hazard identification and dose-response assessment.
Collapse
Affiliation(s)
- Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany.
| |
Collapse
|
11
|
Pan L, Lee YM, Lim TK, Lin Q, Xu X. Quantitative Proteomics Study Reveals Changes in the Molecular Landscape of Human Embryonic Stem Cells with Impaired Stem Cell Differentiation upon Exposure to Titanium Dioxide Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800190. [PMID: 29741810 DOI: 10.1002/smll.201800190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/27/2018] [Indexed: 06/08/2023]
Abstract
The increasing number of nanoparticles (NPs) being used in various industries has led to growing concerns of potential hazards that NP exposure can incur on human health. However, its global effects on humans and the underlying mechanisms are not systemically studied. Human embryonic stem cells (hESCs), with the ability to differentiate to any cell types, provide a unique system to assess cellular, developmental, and functional toxicity in vitro within a single system highly relevant to human physiology. Here, the quantitative proteomics approach is adopted to evaluate the molecular consequences of titanium dioxide NPs (TiO2 NPs) exposure in hESCs. The study identifies ≈328 unique proteins significantly affected by TiO2 NPs exposure. Proteomics analysis highlights that TiO2 NPs can induce DNA damage, elevated oxidative stress, apoptotic responses, and cellular differentiation. Furthermore, in vivo analysis demonstrates remarkable reduction in the ability of hESCs in teratoma formation after TiO2 NPs exposure, suggesting impaired pluripotency. Subsequently, it is found that TiO2 NPs can disrupt hESC mesoderm differentiation into cardiomyocytes. The study unveils comprehensive changes in the molecular landscape of hESCs by TiO2 NPs and identifies the impact which TiO2 NPs can have on the pluripotency and differentiation properties of human stem cells.
Collapse
Affiliation(s)
- Lei Pan
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Chengzhi Building, Xiang'an Campus, Xiamen, Fujian Province, 361100, P. R. China
| | - Yew Mun Lee
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Xiuqin Xu
- Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Chengzhi Building, Xiang'an Campus, Xiamen, Fujian Province, 361100, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong Province, 518000, P. R. China
| |
Collapse
|
12
|
Li YH, Tai WCS, Khan I, Lu C, Lu Y, Wong WY, Chan WY, Wendy Hsiao WL, Lin G. Toxicoproteomic assessment of liver responses to acute pyrrolizidine alkaloid intoxication in rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:65-83. [PMID: 29667502 DOI: 10.1080/10590501.2018.1450186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A toxicoproteomic study was performed on liver of rats treated with retrorsine (RTS), a representative hepatotoxic pyrrolizidine alkaloid at a toxic dose (140 mg/kg) known to cause severe acute hepatotoxicity. By comparing current data with our previous findings in mild liver lesions of rats treated with a lower dose of RTS, seven proteins and three toxicity pathways of vascular endothelial cell death, which was further verified by observed sinusoidal endothelial cell losses, were found uniquely associated with retrorsine-induced hepatotoxicity. This toxicoproteomic study of acute pyrrolizidine alkaloid intoxication lays a foundation for future investigation to delineate molecular mechanisms of pyrrolizidine alkaloid-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yan-Hong Li
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
- b School of Medicine , South China University of Technology , Guangzhou , China
| | - William Chi-Shing Tai
- c Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Imran Khan
- d State Key Laboratory of Quality Research in Chinese Medicines , Macau University of Science and Technology , Macau SAR, China
| | - Cheng Lu
- e Institute of Basic Research in Clinical Medicine , China Academic of Chinese Medical Sciences , Beijing , China
| | - Yao Lu
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Wing-Yan Wong
- c Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Wood-Yee Chan
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Wen-Luan Wendy Hsiao
- d State Key Laboratory of Quality Research in Chinese Medicines , Macau University of Science and Technology , Macau SAR, China
| | - Ge Lin
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
13
|
Technological advances and proteomic applications in drug discovery and target deconvolution: identification of the pleiotropic effects of statins. Drug Discov Today 2017; 22:848-869. [PMID: 28284830 DOI: 10.1016/j.drudis.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 01/05/2023]
Abstract
Proteomic-based techniques provide a powerful tool for identifying the full spectrum of protein targets of a drug, elucidating its mechanism(s) of action, and identifying biomarkers of its efficacy and safety. Herein, we outline the technological advancements in the field, and illustrate the contribution of proteomics to the definition of the pharmacological profile of statins, which represent the cornerstone of the prevention and treatment of cardiovascular diseases (CVDs). Statins act by inhibiting 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, thus reducing cholesterol biosynthesis and consequently enhancing the clearance of low-density lipoproteins from the blood; however, HMG-CoA reductase inhibition can result in a multitude of additional effects beyond lipid lowering, known as 'pleiotropic effects'. The case of statins highlights the unique contribution of proteomics to the target profiling of a drug molecule.
Collapse
|