1
|
Wu R, Cui X, Pan R, Li N, Zhang Y, Shu J, Liu Y. Pathogenic characterization and drug resistance of neonatal sepsis in China: a systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis 2025; 44:779-788. [PMID: 39853642 DOI: 10.1007/s10096-025-05048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/19/2025] [Indexed: 01/26/2025]
Abstract
OBJECTIVES Neonatal sepsis is one of the causes of neonatal mortality and bacterial resistance to antibiotics is one of the challenges facing NICU. The aim of this study was to provide a basis for empirical antibiotic selection by comprehensively searching Chinese and non-Chinese databases for studies related to neonatal sepsis pathogenesis conducted in China and synthesizing all the results of the studies conducted in hospitals in China during the period under study METHODS: In this study, we conducted extensive searches of Pubmed, Web of Science, Cochrane, China Biology Medicine disc (SinoMed), China National Knowledge Infrastructure (CNKI) and Wanfang Data. We screened studies published from 2014 to 2023 that were conducted in hospitals in mainland China and involved bacterial blood cultures and susceptibility tests in neonates with neonatal sepsis and extracted the data, which were summarized using Stata 18.0 software to determine the bacterial characteristics of NS and its antimicrobial resistance in China. RESULTS A total of 97 articles were finally included in the study, involving 27 provinces, municipalities and autonomous regions, and a total of 18,796 bacterial strains were isolated. Among them, Gram-positive bacteria (G+) accounted for 63.4% (95% CI 59.6%~67.3% ), and Gram-negative bacteria (G-) accounted for 36.6% (95% CI 32.7%~40.4%). The most common bacteria were, in order, Coagulase-negative Staphylococcus (43.6%, 95% CI 37.9-49.3%), Enterobacter (16.4%, 95% CI 14.8-18.1%), and Klebsiella (12.4%, 95% CI 10.8-14.0%). More than 80% of G + were resistant to penicillin, ampicillin, and benzathine, and no strains resistant to minocycline or daptomycin were found. More than 80% of G- were resistant to benzoxicillin, ampicillin, and cefotaxime, and no strains resistant to vancomycin, clindamycin, tigecycline, teicoplanin, and linezolid were identified. CONCLUSION Coagulase-negative Staphylococcus is still the main causative agent for children with neonatal sepsis in China, followed by Enterobacter and Klebsiella. In addition, Group B Streptococcus is no longer in the top three common causative agents. Resistance to penicillin antibiotics is evident among the causative organisms of neonatal sepsis in China.
Collapse
Affiliation(s)
- Ruixue Wu
- Graduate College, Tianjin Medical University, Tianjin, China
- Neonatal Department of Longyan Division, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China
| | - Xiaoyu Cui
- Neonatal Department of Longyan Division, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China
| | - Rui Pan
- Laboratory Department of Longyan Division, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China
| | - Na Li
- Neonatal Department of Longyan Division, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China
| | - Ying Zhang
- Neonatal Department of Longyan Division, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China
| | - Jianbo Shu
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China.
| | - Yang Liu
- Neonatal Department of Longyan Division, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China.
- The Pediatric Clinical College in Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Carles L, Gibaja A, Scheper V, Alvarado JC, Almodovar C, Lenarz T, Juiz JM. Efficacy and Mechanisms of Antioxidant Compounds and Combinations Thereof against Cisplatin-Induced Hearing Loss in a Rat Model. Antioxidants (Basel) 2024; 13:761. [PMID: 39061830 PMCID: PMC11273477 DOI: 10.3390/antiox13070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cisplatin is an election chemotherapeutic agent used for many cancer treatments. Its cytotoxicity against neoplastic cells is mirrored by that taking place in healthy cells and tissues, resulting in serious adverse events. A very frequent one is ototoxicity, causing hearing loss which may permanently affect quality of life after successful oncologic treatments. Exacerbated oxidative stress is a main cytotoxic mechanism of cisplatin, including ototoxicity. Previous reports have shown antioxidant protection against cisplatin ototoxicity, but there is a lack of comparative studies on the otoprotectant activity and mechanism of antioxidant formulations. Here, we show evidence that a cocktail of vitamins A, C, and E along with Mg++ (ACEMg), previously shown to protect against noise-induced hearing loss, reverses auditory threshold shifts, promotes outer hair cell survival, and attenuates oxidative stress in the cochlea after cisplatin treatment, thus protecting against extreme cisplatin ototoxicity in rats. The addition of 500 mg N-acetylcysteine (NAC), which, administered individually, also shows significant attenuation of cisplatin ototoxicity, to the ACEMg formulation results in functional degradation of ACEMg otoprotection. Mg++ administered alone, as MgSO4, also prevents cisplatin ototoxicity, but in combination with 500 mg NAC, otoprotection is also greatly degraded. Increasing the dose of NAC to 1000 mg also results in dramatic loss of otoprotection activity compared with 500 mg NAC. These findings support that single antioxidants or antioxidant combinations, particularly ACEMg in this experimental series, have significant otoprotection efficacy against cisplatin ototoxicity. However, an excess of combined antioxidants and/or elevated doses, above a yet-to-be-defined "antioxidation threshold", results in unrecoverable redox imbalance with loss of otoprotectant activity.
Collapse
Grants
- PID2020-117266RB-C22-1, EXC 2177/1, ID:390895286, SBPLY/17/180501/000544. Ministerio de Ciencia Innovación, MCINN, Gobierno de España, Plan Estatal de I+D+i, PID2020-117266RB-C22-1, Cluster of Excellence "Hearing4All" EXC 2177/1, ID:390895286, part of the Germany´s Excellence Strategy of the German Research Foundation, DFG. Co
Collapse
Affiliation(s)
- Liliana Carles
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
- Department of Otolaryngology, University Hospital “Doce de Octubre”, 28041 Madrid, Spain;
| | - Alejandro Gibaja
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
| | - Verena Scheper
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.)
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, 26111 Oldenburg, Germany
| | - Juan C. Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
| | - Carlos Almodovar
- Department of Otolaryngology, University Hospital “Doce de Octubre”, 28041 Madrid, Spain;
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.)
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, 26111 Oldenburg, Germany
| | - José M. Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.)
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, 26111 Oldenburg, Germany
| |
Collapse
|
3
|
Pasdelou MP, Byelyayeva L, Malmström S, Pucheu S, Peytavy M, Laullier H, Hodges DB, Tzafriri AR, Naert G. Ototoxicity: a high risk to auditory function that needs to be monitored in drug development. Front Mol Neurosci 2024; 17:1379743. [PMID: 38756707 PMCID: PMC11096496 DOI: 10.3389/fnmol.2024.1379743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Hearing loss constitutes a major global health concern impacting approximately 1.5 billion people worldwide. Its incidence is undergoing a substantial surge with some projecting that by 2050, a quarter of the global population will experience varying degrees of hearing deficiency. Environmental factors such as aging, exposure to loud noise, and the intake of ototoxic medications are implicated in the onset of acquired hearing loss. Ototoxicity resulting in inner ear damage is a leading cause of acquired hearing loss worldwide. This could be minimized or avoided by early testing of hearing functions in the preclinical phase of drug development. While the assessment of ototoxicity is well defined for drug candidates in the hearing field - required for drugs that are administered by the otic route and expected to reach the middle or inner ear during clinical use - ototoxicity testing is not required for all other therapeutic areas. Unfortunately, this has resulted in more than 200 ototoxic marketed medications. The aim of this publication is to raise awareness of drug-induced ototoxicity and to formulate some recommendations based on available guidelines and own experience. Ototoxicity testing programs should be adapted to the type of therapy, its indication (targeting the ear or part of other medications classes being potentially ototoxic), and the number of assets to test. For multiple molecules and/or multiple doses, screening options are available: in vitro (otic cell assays), ex vivo (cochlear explant), and in vivo (in zebrafish). In assessing the ototoxicity of a candidate drug, it is good practice to compare its ototoxicity to that of a well-known control drug of a similar class. Screening assays provide a streamlined and rapid method to know whether a drug is generally safe for inner ear structures. Mammalian animal models provide a more detailed characterization of drug ototoxicity, with a possibility to localize and quantify the damage using functional, behavioral, and morphological read-outs. Complementary histological measures are routinely conducted notably to quantify hair cells loss with cochleogram. Ototoxicity studies can be performed in rodents (mice, rats), guinea pigs and large species. However, in undertaking, or at the very least attempting, all preclinical investigations within the same species, is crucial. This encompasses starting with pharmacokinetics and pharmacology efficacy studies and extending through to toxicity studies. In life read-outs include Auditory Brainstem Response (ABR) and Distortion Product OtoAcoustic Emissions (DPOAE) measurements that assess the activity and integrity of sensory cells and the auditory nerve, reflecting sensorineural hearing loss. Accurate, reproducible, and high throughput ABR measures are fundamental to the quality and success of these preclinical trials. As in humans, in vivo otoscopic evaluations are routinely carried out to observe the tympanic membrane and auditory canal. This is often done to detect signs of inflammation. The cochlea is a tonotopic structure. Hair cell responsiveness is position and frequency dependent, with hair cells located close to the cochlea apex transducing low frequencies and those at the base transducing high frequencies. The cochleogram aims to quantify hair cells all along the cochlea and consequently determine hair cell loss related to specific frequencies. This measure is then correlated with the ABR & DPOAE results. Ototoxicity assessments evaluate the impact of drug candidates on the auditory and vestibular systems, de-risk hearing loss and balance disorders, define a safe dose, and optimize therapeutic benefits. These types of studies can be initiated during early development of a therapeutic solution, with ABR and otoscopic evaluations. Depending on the mechanism of action of the compound, studies can include DPOAE and cochleogram. Later in the development, a GLP (Good Laboratory Practice) ototoxicity study may be required based on otic related route of administration, target, or known potential otic toxicity.
Collapse
|
4
|
Teraoka M, Hato N, Inufusa H, You F. Role of Oxidative Stress in Sensorineural Hearing Loss. Int J Mol Sci 2024; 25:4146. [PMID: 38673731 PMCID: PMC11050000 DOI: 10.3390/ijms25084146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Hearing is essential for communication, and its loss can cause a serious disruption to one's social life. Hearing loss is also recognized as a major risk factor for dementia; therefore, addressing hearing loss is a pressing global issue. Sensorineural hearing loss, the predominant type of hearing loss, is mainly due to damage to the inner ear along with a variety of pathologies including ischemia, noise, trauma, aging, and ototoxic drugs. In addition to genetic factors, oxidative stress has been identified as a common mechanism underlying several cochlear pathologies. The cochlea, which plays a major role in auditory function, requires high-energy metabolism and is, therefore, highly susceptible to oxidative stress, particularly in the mitochondria. Based on these pathological findings, the potential of antioxidants for the treatment of hearing loss has been demonstrated in several animal studies. However, results from human studies are insufficient, and future clinical trials are required. This review discusses the relationship between sensorineural hearing loss and reactive oxidative species (ROS), with particular emphasis on age-related hearing loss, noise-induced hearing loss, and ischemia-reperfusion injury. Based on these mechanisms, the current status and future perspectives of ROS-targeted therapy for sensorineural hearing loss are described.
Collapse
Affiliation(s)
- Masato Teraoka
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan;
| | - Naohito Hato
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan;
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
| | - Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
| |
Collapse
|
5
|
Hsieh CY, Tsai CY, Chou YF, Hsu CJ, Wu HP, Wu CC. Otoprotection against aminoglycoside- and cisplatin-induced ototoxicity focusing on the upstream drug uptake pathway. J Chin Med Assoc 2024; 87:17-24. [PMID: 37962398 DOI: 10.1097/jcma.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Aminoglycoside- and cisplatin-induced ototoxicity, which is a significant issue owing to the widespread use of these drugs in clinical practice, involves the entry of aminoglycosides and cisplatin into the endolymph and hair cells via specific channels or transporters, followed by reactive oxygen species (ROS) generation and hair cells apoptosis. Current strategies focalize primarily on interference with downstream ROS effects; however, recent evidence has demonstrated that inhibiting the uptake of aminoglycosides and cisplatin by hair cells is another promising strategy for tackling the upstream drug uptake pathway. With advances in structural biology, the conformations of certain aminoglycoside and cisplatin channels and transporters, such as the mechanoelectrical transduction channel and organic cation transporter-2, have been largely elucidated. These channels and transporters may become potential targets for the introduction of new otoprotective strategies. This review focuses on the strategies for inhibiting ototoxic drugs uptake by auditory hair cells and provides potential targets for recent developments in the field of otoprotection. Molecular dynamics (MD) simulations of these proteins could help identify the molecules that inhibit the uptake of aminoglycosides and cisplatin by hair cells. Integrating upstream drug uptake pathway targets and MD simulations may help dissect molecular mechanisms and develop novel otoprotective strategies for aminoglycoside- and cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Cheng-Yu Hsieh
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Cheng-Yu Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Fan Chou
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chuan-Jen Hsu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hung-Pin Wu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan, ROC
| |
Collapse
|
6
|
Tan WJT, Vlajkovic SM. Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int J Mol Sci 2023; 24:16545. [PMID: 38003734 PMCID: PMC10671929 DOI: 10.3390/ijms242216545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent with proven efficacy in treating various malignancies, including testicular, ovarian, cervical, breast, bladder, head and neck, and lung cancer. Cisplatin is also used to treat tumors in children, such as neuroblastoma, osteosarcoma, and hepatoblastoma. However, its clinical use is limited by severe side effects, including ototoxicity, nephrotoxicity, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, and retinal toxicity. Cisplatin-induced ototoxicity manifests as irreversible, bilateral, high-frequency sensorineural hearing loss in 40-60% of adults and in up to 60% of children. Hearing loss can lead to social isolation, depression, and cognitive decline in adults, and speech and language developmental delays in children. Cisplatin causes hair cell death by forming DNA adducts, mitochondrial dysfunction, oxidative stress, and inflammation, culminating in programmed cell death by apoptosis, necroptosis, pyroptosis, or ferroptosis. Contemporary medical interventions for cisplatin ototoxicity are limited to prosthetic devices, such as hearing aids, but these have significant limitations because the cochlea remains damaged. Recently, the U.S. Food and Drug Administration (FDA) approved the first therapy, sodium thiosulfate, to prevent cisplatin-induced hearing loss in pediatric patients with localized, non-metastatic solid tumors. Other pharmacological treatments for cisplatin ototoxicity are in various stages of preclinical and clinical development. This narrative review aims to highlight the molecular mechanisms involved in cisplatin-induced ototoxicity, focusing on cochlear inflammation, and shed light on potential antioxidant and anti-inflammatory therapeutic interventions to prevent or mitigate the ototoxic effects of cisplatin. We conducted a comprehensive literature search (Google Scholar, PubMed) focusing on publications in the last five years.
Collapse
Affiliation(s)
- Winston J. T. Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Srdjan M. Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
7
|
Kempfle JS, Jung DH. Experimental drugs for the prevention or treatment of sensorineural hearing loss. Expert Opin Investig Drugs 2023; 32:643-654. [PMID: 37598357 DOI: 10.1080/13543784.2023.2242253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Sensorineural hearing loss results in irreversible loss of inner ear hair cells and spiral ganglion neurons. Reduced sound detection and speech discrimination can span all ages, and sensorineural hearing rehabilitation is limited to amplification with hearing aids or cochlear implants. Recent insights into experimental drug treatments for inner ear regeneration and otoprotection have paved the way for clinical trials in order to restore a more physiological hearing experience. Paired with the development of innovative minimally invasive approaches for drug delivery to the inner ear, new, emerging treatments for hearing protection and restoration are within reach. AREAS COVERED This expert opinion provides an overview of the latest experimental drug therapies to protect from and to restore sensorineural hearing loss. EXPERT OPINION The degree and type of cellular damage to the cochlea, the responsiveness of remaining, endogenous cells to regenerative treatments, and the duration of drug availability within cochlear fluids will determine the success of hearing protection or restoration.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, UMass Memorial Medical Center, Worcester, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - David H Jung
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Tan WJT, Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear Res 2023; 434:108783. [PMID: 37167889 DOI: 10.1016/j.heares.2023.108783] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Sensorineural hearing loss (SNHL) can either be genetically inherited or acquired as a result of aging, noise exposure, or ototoxic drugs. Although the precise pathophysiological mechanisms underlying SNHL remain unclear, an overwhelming body of evidence implicates mitochondrial dysfunction and oxidative stress playing a central etiological role. With its high metabolic demands, the cochlea, particularly the sensory hair cells, stria vascularis, and spiral ganglion neurons, is vulnerable to the damaging effects of mitochondrial reactive oxygen species (ROS). Mitochondrial dysfunction and consequent oxidative stress in cochlear cells can be caused by inherited mitochondrial DNA (mtDNA) mutations (hereditary hearing loss and aminoglycoside-induced ototoxicity), accumulation of acquired mtDNA mutations with age (age-related hearing loss), mitochondrial overdrive and calcium dysregulation (noise-induced hearing loss and cisplatin-induced ototoxicity), or accumulation of ototoxic drugs within hair cell mitochondria (drug-induced hearing loss). In this review, we provide an overview of our current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of SNHL caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs. We also explore the advancements in antioxidant therapies for the different forms of acquired SNHL that are being evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand.
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Otolaryngology - Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
9
|
Lewkowicz M, Jones M, Kovacevic B, Ionescu CM, Wagle SR, Foster T, Mikov M, Mooranian A, Al-Salami H. Potentials and limitations of pharmaceutical and pharmacological applications of bile acids in hearing loss treatment. Ther Deliv 2023; 13:477-488. [PMID: 36803017 DOI: 10.4155/tde-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Hearing loss is a worldwide epidemic, with approximately 1.5 billion people currently struggling with hearing-related conditions. Currently, the most wildly used and effective treatments for hearing loss are primarily focus on the use of hearing aids and cochlear implants. However, these have many limitations, highlighting the importance of developing a pharmacological solution that may be used to overcome barriers associated with such devices. Due to the challenges of delivering therapeutic agents to the inner ear, bile acids are being explored as potential drug excipients and permeation enhancers. This review, therefore, aims to explore the pathophysiology of hearing loss, the challenges in treatment and the manners in which bile acids could potentially aid in overcoming these challenges.
Collapse
Affiliation(s)
- Michael Lewkowicz
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Melissa Jones
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| |
Collapse
|
10
|
Hsieh CY, Lin JN, Kang TY, Wen YH, Yu SH, Wu CC, Wu HP. Otoprotective Effects of Fucoidan Reduce Cisplatin-Induced Ototoxicity in Mouse Cochlear UB/OC-2 Cells. Int J Mol Sci 2023; 24:ijms24043561. [PMID: 36834972 PMCID: PMC9959567 DOI: 10.3390/ijms24043561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Cisplatin is a widely used standard chemotherapy for various cancers. However, cisplatin treatment is associated with severe ototoxicity. Fucoidan is a complex sulfated polysaccharide mainly derived from brown seaweeds, and it shows multiple bioactivities such as antimicrobial, anti-inflammatory, anticancer, and antioxidant activities. Despite evidence of the antioxidant effects of fucoidan, research on its otoprotective effects remains limited. Therefore, the present study investigated the otoprotective effects of fucoidan in vitro using the mouse cochlear cell line UB/OC-2 to develop new strategies to attenuate cisplatin-induced ototoxicity. We quantified the cell membrane potential and analyzed regulators and cascade proteins in the apoptotic pathway. Mouse cochlear UB/OC-2 cells were pre-treated with fucoidan before cisplatin exposure. The effects on cochlear hair cell viability, mitochondrial function, and apoptosis-related proteins were determined via flow cytometry, Western blot analysis, and fluorescence staining. Fucoidan treatment reduced cisplatin-induced intracellular reactive oxygen species production, stabilized mitochondrial membrane potential, inhibited mitochondrial dysfunction, and successfully protected hair cells from apoptosis. Furthermore, fucoidan exerted antioxidant effects against oxidative stress by regulating the Nrf2 pathway. Therefore, we suggest that fucoidan may represent a potential therapeutic agent for developing a new otoprotective strategy.
Collapse
Affiliation(s)
- Cheng-Yu Hsieh
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Jia-Ni Lin
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Ting-Ya Kang
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Yu-Hsuan Wen
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Department of Otolaryngology, Head and Neck Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970473, Taiwan
| | - Szu-Hui Yu
- Department of Music, Tainan University of Technology, Tainan 710302, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300195, Taiwan
| | - Hung-Pin Wu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Campbell KCM, Cosenza N, Meech R, Buhnerkempe M, Qin J, Rybak L, Fox DJ. D-methionine administered as late as 36 hours post-noise exposure rescues from permanent threshold shift and dose-dependently increases serum antioxidant levels. Int J Audiol 2023; 62:151-158. [PMID: 35015962 DOI: 10.1080/14992027.2021.2022790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To elucidate D-methionine's (D-met) dose and time rescue parameters from steady-state or impulse noise-induced permanent threshold shift (PTS) and determine D-met rescue's influence on serum and cochlear antioxidant levels. DESIGN Five D-met doses at 0, 50, 100, or 200 mg/kg/dose administered starting at 1, 24, or 36 hours post steady-state or impulse noise exposure. Auditory brainstem responses at baseline and 21 days post-noise measured PTS. Serum (superoxide dismutase [SOD], catalase [CAT],, glutathione reductaseand glutathione peroxidase [GPx]) and cochlear (Glutathione [GSH] and glutathione disulphide [GSSG]) antioxidant levels measured physiological impact. STUDY SAMPLE Chinchillas (10/study group; 6-8/confirmatory groups). RESULTS D-met significantly reduced PTS for impulse noise (100 mg [2, 6, 14 and 20 kHz]; 200 mg [2, 14 and 20 kHz]) and steady-state noise (all dosing groups, time parameters and tested frequencies). PTS reduction did not significantly vary by rescue time. D-met significantly increased serum SOD (100 and 200 mg for 24 hour rescue) and GPx (50 mg/kg at 24 hour rescue) at 21 days post-noise. Cochlear GSH and GSSG levels were unaffected relative to control. CONCLUSION D-met rescues from steady-state and impulse noise-induced PTS even when administered up to 36 hours post-noise and dose-dependently influences serum antioxidant levels even 21 days post-noise. D-met's broad and effective dose/time window renders it a promising antioxidant rescue agent.
Collapse
Affiliation(s)
- Kathleen C M Campbell
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Nicole Cosenza
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Robert Meech
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Michael Buhnerkempe
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Jun Qin
- Department of Computer and Electrical Engineering, Southern Illinois University Carbondale, IL, USA
| | - Leonard Rybak
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Daniel J Fox
- Department of Clinical Research, Springfield Clinic, Springfield, IL, USA
| |
Collapse
|
12
|
Barrallo-Gimeno A, Llorens J. Hair cell toxicology: With the help of a little fish. Front Cell Dev Biol 2022; 10:1085225. [PMID: 36582469 PMCID: PMC9793777 DOI: 10.3389/fcell.2022.1085225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Hearing or balance loss are disabling conditions that have a serious impact in those suffering them, especially when they appear in children. Their ultimate cause is frequently the loss of function of mechanosensory hair cells in the inner ear. Hair cells can be damaged by environmental insults, like noise or chemical agents, known as ototoxins. Two of the most common ototoxins are life-saving medications: cisplatin against solid tumors, and aminoglycoside antibiotics to treat infections. However, due to their localization inside the temporal bone, hair cells are difficult to study in mammals. As an alternative animal model, zebrafish larvae have hair cells similar to those in mammals, some of which are located in a fish specific organ on the surface of the skin, the lateral line. This makes them easy to observe in vivo and readily accessible for ototoxins or otoprotective substances. These features have made possible advances in the study of the mechanisms mediating ototoxicity or identifying new potential ototoxins. Most importantly, the small size of the zebrafish larvae has allowed screening thousands of molecules searching for otoprotective agents in a scale that would be highly impractical in rodent models. The positive hits found can then start the long road to reach clinical settings to prevent hearing or balance loss.
Collapse
Affiliation(s)
- Alejandro Barrallo-Gimeno
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Jordi Llorens
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
13
|
Park JE, Kim WC, Kim SK, Ahn Y, Ha SM, Kim G, Choi S, Yun WS, Kong TH, Lee SH, Park DJ, Choi JS, Key J, Seo YJ. Protection of Hearing Loss in Ototoxic Mouse Model Through SPIONs and Dexamethasone-Loaded PLGA Nanoparticle Delivery by Magnetic Attraction. Int J Nanomedicine 2022; 17:6317-6334. [DOI: 10.2147/ijn.s380810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022] Open
|
14
|
Le Prell CG. Prevention of Noise-Induced Hearing Loss Using Investigational Medicines for the Inner Ear: Previous Trial Outcomes Should Inform Future Trial Design. Antioxid Redox Signal 2022; 36:1171-1202. [PMID: 34346254 PMCID: PMC9221155 DOI: 10.1089/ars.2021.0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/13/2022]
Abstract
Significance: Noise-induced hearing loss (NIHL) is an important public health issue resulting in decreased quality of life for affected individuals, and significant costs to employers and governmental agencies. Recent Advances: Advances in the mechanistic understanding of NIHL have prompted a growing number of proposed, in-progress, and completed clinical trials for possible protections against NIHL via antioxidants and other drug agents. Thirty-one clinical trials evaluating prevention of either temporary or permanent NIHL were identified and are reviewed. Critical Issues: This review revealed little consistency in the noise-exposed populations in which drugs are evaluated or the primary outcomes used to measure NIHL prevention. Changes in pure-tone thresholds were the most common primary outcomes; specific threshold metrics included both average hearing loss and incidence of significant hearing loss. Changes in otoacoustic emission (OAE) amplitude were relatively common secondary outcomes. Extended high-frequency (EHF) hearing and speech-in-noise perception are commonly adversely affected by noise exposure but are not consistently included in clinical trials assessing prevention of NIHL. Future Directions: Multiple criteria are available for monitoring NIHL, but the specific criterion to be used to define clinically significant otoprotection remains a topic of discussion. Audiogram-based primary outcome measures can be combined with secondary outcomes, including OAE amplitude, EHF hearing, speech-in-noise testing, tinnitus surveys, and patient-reported outcomes. Standardization of test protocols for the above primary and secondary outcomes, and associated reporting criterion for each, would facilitate clinical trial design and comparison of results across investigational drug agents. Antioxid. Redox Signal. 36, 1171-1202.
Collapse
Affiliation(s)
- Colleen G. Le Prell
- Department of Speech, Language, and Hearing Science, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
15
|
ASK1 is a novel molecular target for preventing aminoglycoside-induced hair cell death. J Mol Med (Berl) 2022; 100:797-813. [PMID: 35471608 PMCID: PMC9110505 DOI: 10.1007/s00109-022-02188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 10/31/2022]
Abstract
Aminoglycoside antibiotics are lifesaving medicines, crucial for the treatment of chronic or drug resistant infections. However, aminoglycosides are toxic to the sensory hair cells in the inner ear. As a result, aminoglycoside-treated individuals can develop permanent hearing loss and vestibular impairment. There is considerable evidence that reactive oxygen species (ROS) production and the subsequent phosphorylation of c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (P38) drives apoptosis in aminoglycoside-treated hair cells. However, treatment strategies that directly inhibit ROS, JNK, or P38 are limited by the importance of these molecules for normal cellular function. Alternatively, the upstream regulator apoptosis signal-regulating kinase 1 (ASK1/MAP3K5) is a key mediator of ROS-induced JNK and P38 activation under pathologic but not homeostatic conditions. We investigated ASK1 as a mediator of drug-induced hair cell death using cochlear explants from Ask1 knockout mice, demonstrating that Ask1 deficiency attenuates neomycin-induced hair cell death. We then evaluated pharmacological inhibition of ASK1 with GS-444217 as a potential otoprotective therapy. GS-444217 significantly attenuated hair cell death in neomycin-treated explants but did not impact aminoglycoside efficacy against P. aeruginosa in the broth dilution test. Overall, we provide significant pre-clinical evidence that ASK1 inhibition represents a novel strategy for preventing aminoglycoside ototoxicity. KEY MESSAGES: • ASK1 is an upstream, redox-sensitive regulator of P38 and JNK, which are known mediators of hair cell death. • Ask1 knockout does not affect hair cell development in vivo, but significantly reduces aminoglycoside-induced hair cell death in vitro. • A small-molecule inhibitor of ASK1 attenuates neomycin-induced hair cell death, and does not impact antibiotic efficacy in vitro. • ASK1 may be a novel molecular target for preventing aminoglycoside-induced hearing loss.
Collapse
|
16
|
Physiopathological effects of noise: Recent approaches to the treatment of hearing loss. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.906773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Le Prell CG. Investigational Medicinal Products for the Inner Ear: Review of Clinical Trial Characteristics in ClinicalTrials.gov. J Am Acad Audiol 2021; 32:670-694. [PMID: 35609594 PMCID: PMC9129919 DOI: 10.1055/s-0041-1735522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The previous 30 years have provided information on the mechanisms of cell death in the inner ear after noise exposure, ototoxic drug injury, and during aging, and clinical trials have emerged for all of these acquired forms of hearing loss. Sudden hearing loss is less well understood, but restoration of hearing after sudden hearing loss is also a long-standing drug target, typically using steroids as an intervention but with other agents of interest as well. PURPOSE The purpose of this review was to describe the state of the science regarding clinical testing of investigational medicinal products for the inner ear with respect to treatment or prevention of acquired hearing loss. DATA COLLECTION AND ANALYSIS Comprehensive search and summary of clinical trials listed in the National Library of Medicine (www. CLINICALTRIALS gov) database identified 61 clinical trials. RESULTS Study phase, status, intervention, and primary, secondary, and other outcomes are summarized for studies assessing prevention of noise-induced hearing loss, prevention of drug-induced hearing loss, treatment of stable sensorineural hearing loss, and treatment of sudden sensorineural hearing loss. CONCLUSION This review provides a comprehensive summary of the state of the science with respect to investigational medicinal products for the inner ear evaluated in human clinical trials, and the current challenges for the field.
Collapse
MESH Headings
- Cell Death/drug effects
- Cell Death/physiology
- Deafness/chemically induced
- Deafness/drug therapy
- Deafness/prevention & control
- Ear, Inner/pathology
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/prevention & control
- Hearing Loss, Sensorineural/chemically induced
- Hearing Loss, Sensorineural/drug therapy
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/prevention & control
- Hearing Loss, Sudden/chemically induced
- Hearing Loss, Sudden/drug therapy
- Hearing Loss, Sudden/pathology
- Hearing Loss, Sudden/prevention & control
- Humans
- United States
Collapse
Affiliation(s)
- Colleen G. Le Prell
- Department of Speech, Language, and Hearing, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
18
|
Campbell KC, Rehemtulla A, Sunkara P, Hamstra D, Buhnerkempe M, Ross B. Oral D-methionine protects against cisplatin-induced hearing loss in humans: phase 2 randomized clinical trial in India. Int J Audiol 2021; 61:621-631. [PMID: 34622731 DOI: 10.1080/14992027.2021.1983215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: This exploratory Phase 2 clinical trial is the first determining safety and efficacy of oral D-methionine (D-met) in reducing cisplatin-induced ototoxicity.Design: Randomised parallel double-blind placebo-controlled exploratory Phase 2 study.Study samples: Fifty adult cancer patients received oral D-met or placebo before each cisplatin dose. Physical examination, blood collection and audiometry occurred at baseline and subsequent visits plus post-treatment audiometry. After attrition, final analysis included 27 patients.Results: Significant treatment group by ear and time (baseline vs. post-treatment) interactions occurred at 10 kHz and 11.2 kHz. Placebo and D-met groups differed in threshold shift for left ear at 11.2 kHz (mean difference = 22.97 dB [9.59, 36.35]). Averaging across ears, placebo group showed significant threshold shifts from baseline to post-treatment at 10 kHz (mean shift= -13.65 dB [-21.32,-5.98]), 11.2 kHz (-16.15 dB [-25.19,-7.12]), and 12.5 kHz (-11.46 dB [-19.18,-3.74]) but not 8 kHz (-8.65 dB [-17.86, 0.55]). The D-met group showed no significant threshold shifts (8 kHz: -1.25 dB [-7.75, 5.25]; 10 kHz:-3.93 dB [-8.89, 1.03]; 11.2 kHz:-4.82 dB [-11.21, 1.57]; 12.5 kHz:-3.68 dB [-11.57, 4.21]). Side effects did not significantly differ between groups.Conclusion: Oral D-met reduces cisplatin-induced ototoxicity in humans.
Collapse
Affiliation(s)
- Kathleen C Campbell
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Alnawez Rehemtulla
- Molecular Therapeutics, Molecular Cancer Therapeutics, Ann Arbor, MI, USA
| | | | - Daniel Hamstra
- Department of Radiation Oncology, William Beaumont Oakland University Medical School, Dearborn, MI, USA
| | - Michael Buhnerkempe
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Brian Ross
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Longenecker RJ, Gu R, Homan J, Kil J. Development of Tinnitus and Hyperacusis in a Mouse Model of Tobramycin Cochleotoxicity. Front Mol Neurosci 2021; 14:715952. [PMID: 34539342 PMCID: PMC8440845 DOI: 10.3389/fnmol.2021.715952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides (AG) antibiotics are a common treatment for recurrent infections in cystic fibrosis (CF) patients. AGs are highly ototoxic, resulting in a range of auditory dysfunctions. It was recently shown that the acoustic startle reflex (ASR) can assess behavioral evidence of hyperacusis and tinnitus in an amikacin cochleotoxicity mouse model. The goal of this study was to establish if tobramycin treatment led to similar changes in ASR behavior and to establish whether ebselen can prevent the development of these maladaptive neuroplastic symptoms. CBA/Ca mice were divided into three groups: Group 1 served as a control and did not receive tobramycin or ebselen, Group 2 received tobramycin (200 mg/kg/s.c.) and the vehicle (DMSO/saline/i.p.) daily for 14 continuous days, and Group 3 received the same dose/schedule of tobramycin as Group 2 and ebselen at (20 mg/kg/i.p.). Auditory brainstem response (ABR) and ASR hearing assessments were collected at baseline and 2, 6, 10, 14, and 18 weeks from the start of treatment. ASR tests included input/output (I/O) functions which assess general hearing and hyperacusis, and Gap-induced prepulse inhibition of the acoustic startle (GPIAS) to assess tinnitus. At 18 weeks, histologic analysis showed predominantly normal appearing hair cells and spiral ganglion neuron (SGN) synapses. Following 14 days of tobramycin injections, 16 kHz thresholds increased from baseline and fluctuated over the 18-week recovery period. I/O functions revealed exaggerated startle response magnitudes in 50% of mice over the same period. Gap detection deficits, representing behavioral evidence of tinnitus, were observed in a smaller subset (36%) of animals. Interestingly, increases in ABR wave III/wave I amplitude ratios were observed. These tobramycin data corroborate previous findings that AGs can result in hearing dysfunctions. We show that a 14-day course of tobramycin treatment can cause similar levels of hearing loss and tinnitus, when compared to a 14-day course of amikacin, but less hyperacusis. Evidence suggests that tinnitus and hyperacusis might be common side effects of AG antibiotics.
Collapse
Affiliation(s)
| | - Rende Gu
- Sound Pharmaceuticals Inc., Seattle, WA, United States
| | | | - Jonathan Kil
- Sound Pharmaceuticals Inc., Seattle, WA, United States
| |
Collapse
|
20
|
Kador PF, Salvi R. Multifunctional Redox Modulators Protect Auditory, Visual, and Cognitive Function. Antioxid Redox Signal 2021; 36:1136-1157. [PMID: 34162214 PMCID: PMC9221172 DOI: 10.1089/ars.2021.0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/26/2022]
Abstract
Significance: Oxidative stress contributes to vision, hearing and neurodegenerative disorders. Currently, no treatments prevent these disorders; therefore, there is an urgent need for redox modulators that can prevent these disorders. Recent Advances: Oxidative stress is associated with the generation of reactive oxygen species (ROS) and reactive nitrogen species, metal dyshomeostasis, and mitochondrial dysfunction. Here, we discuss the role that oxidative stress and metal dyshomeostasis play in hearing loss, visual impairments, and neurodegeneration and discuss the benefits of a new class of multifunctional redox modulators (MFRMs) that suppress sensory and neural degeneration. MFRMs not only reduce free radicals but also independently bind transition metals associated with the generation of hydroxyl radicals. The MFRMs redistribute zinc from neurotoxic amyloid beta zinc (Aβ:Zn) complexes to the cytoplasm, facilitating the degradation of Aβ plaques by matrix metalloprotease-2 (MMP-2). Although MFRMs bind copper (Cu1+, Cu2+), iron (Fe2+, Fe3+), zinc (Zn2+), and manganese (Mn2+), they do not deplete free cytoplasmic Zn+2 and they protect mitochondria from Mn+2-induced dysfunction. Oral administration of MFRMs reduce ROS-induced cataracts, protect the retina from light-induced degeneration, reduce neurotoxic Aβ:Zn plaque formation, and protect auditory hair cells from noise-induced hearing loss. Critical Issues: Regulation of redox balance is essential for clinical efficacy in maintaining sensory functions. Future Directions: Future use of these MFRMs requires additional pharmacokinetic, pharmacodynamics, and toxicological data to bring them into widespread clinical use. Additional animal studies are also needed to determine whether MFRMs can prevent neurodegeneration, dementia, and other forms of vision and hearing loss.
Collapse
Affiliation(s)
- Peter F. Kador
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
21
|
Chen CH, Huang CY, Lin HYH, Wang MC, Chang CY, Cheng YF. Association of Sodium Thiosulfate With Risk of Ototoxic Effects From Platinum-Based Chemotherapy: A Systematic Review and Meta-analysis. JAMA Netw Open 2021; 4:e2118895. [PMID: 34338793 PMCID: PMC8329743 DOI: 10.1001/jamanetworkopen.2021.18895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
IMPORTANCE Platinum-induced ototoxic effects are a significant issue because platinum-based chemotherapy is one of the most commonly used therapeutic medications. Sodium thiosulfate (STS) is considered a potential otoprotectant for the prevention of platinum-induced ototoxic effects that functions by binding the platinum-based agent, but its administration raises concerns regarding the substantial attenuation of the antineoplastic outcome associated with platinum. OBJECTIVE To evaluate the association between concurrent STS and reduced risk of ototoxic effects among patients undergoing platinum-based chemotherapy and to evaluate outcomes, including event-free survival, overall survival, and adverse outcomes. DATA SOURCES From inception through November 7, 2020, databases, including the Cochrane Library, PubMed, Embase, Web of Science, and Scopus, were searched. STUDY SELECTION Studies enrolling patients with cancer who were undergoing platinum-based chemotherapy that compared ototoxic effects development between patients who received STS and patients who did not and provided adequate information for meta-analysis were regarded as eligible. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. DATA EXTRACTION AND SYNTHESIS The data were extracted by 2 reviewers independently. A random-effects model was used to explore objectives. MAIN OUTCOMES AND MEASURES Relative risks (RRs) for ototoxic effects development and hemopoietic event development comparing the experimental group and the control group were estimated. Secondary outcomes were hazard ratios (HRs) for event-free survival and overall survival. Sensitivity analysis and trial sequential analysis were conducted to further consolidate pooled results. RESULTS Among 4 eligible studies that were included, there were 3 randomized clinical trials and 1 controlled study. A total of 278 patients were allocated to the experimental group (ie, platinum-based chemotherapy plus STS; 158 patients, including 13 patients using contralatral ears of the control group as samples) or the control group (ie, chemotherapy; 133 patients, including 13 patients using contralateral ears of the experimental group as samples). Overall, patients who received STS had a statistically significantly decreased risk of ototoxic effects during the course of platinum-based chemotherapy (RR, 0.61; 95% CI, 0.49-0.77; P < .001; I2 = 5.0%) without a statistically significant increase in the risk of poor event-free survival (HR, 1.13; 95% CI, 0.70-1.82; P = .61; I2 = 0%) or overall survival (HR, 1.90; 95% CI, 0.90-4.03; P = .09; I2 = 0%). In the trial sequential analysis of event-free survival (z = -0.52) and overall survival (z = -1.68), although the cumulative z curves did not surpass the traditional significance boundary (-1.96 to 1.96 for both) or sequential monitoring boundary (event-free survival: -8.0 to 8.0; overall survival boundary not renderable in the analysis because the information size was too small) of the adjusted CI, they did not reach the required information size. CONCLUSIONS AND RELEVANCE This meta-analysis found that concurrent STS delivery was associated with a decreased risk of platinum-induced ototoxic effects among patients treated with platinum-induced chemotherapy. These findings suggest that concurrent STS for protection against ototoxic effects should be considered for patients indicated for platinum-based chemotherapy.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chii-Yuan Huang
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Heng-Yu Haley Lin
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Mao-Che Wang
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yu Chang
- Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yen-Fu Cheng
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
22
|
Progressive and Degenerative Peripheral Vestibular Disorders. Otolaryngol Clin North Am 2021; 54:959-971. [PMID: 34301401 DOI: 10.1016/j.otc.2021.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Initial diagnosis of peripheral vestibulopathy requires a detailed history, physical examination, and, in some cases, audiovestibular testing, radiographic imaging, or serology. Differentiation of a peripheral vestibulopathy as progressive or degenerative is often nuanced and influenced by a characterization of a patient's symptoms or natural history over time. A diverse group of vestibular pathology may fit into this category, including Ménière's disease, autoimmune conditions, congenital pathologies, ototoxic medications, radiation therapy, and perilymphatic fistula. Differentiation among these entities may be guided by initial or subsequent symptomatology, with various combinations of audiovestibular testing, serology, and imaging. Treatment options are disparate and disease-specific, ranging from observation to medical management or surgical intervention, underscoring the need for astute investigation and diagnosis.
Collapse
|
23
|
Development of ebselen for the treatment of sensorineural hearing loss and tinnitus. Hear Res 2021; 413:108209. [PMID: 33678494 DOI: 10.1016/j.heares.2021.108209] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/29/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023]
Abstract
The global impact of hearing loss and related auditory dysfunction including tinnitus and hyperacusis on human health is significant and growing. A substantial body of literature has found that these hearing diseases and disorders result from significant number of genetic variations and molecular mechanisms. Investigational new drugs have been tested and several approved drugs have been repurposed in clinical trials, but no therapeutics for any auditory related indication have been FDA approved. A unique investigational new drug called ebselen (SPI-1005), that is anti-inflammatory and neuroprotective, has been shown to reduce noise-induced and aminoglycoside-induced hearing loss in animals. Multiple phase 2 clinical trials have demonstrated the safety and efficacy of SPI-1005 treatment in Meniere's disease and acute noise-induced hearing loss. SPI-1005 is currently being tested to prevent and treat tobramycin-induced ototoxicity in cystic fibrosis patients with acute lung infections. This review summarizes the published and presented data involving SPI-1005 and other drugs being tested to prevent or treat sensorineural hearing loss. Additionally, recent clinical data showing the relationship between pure tone audiometry and words-in-noise test results in a Meniere's disease are presented, which may have larger implications for the field of hearing research.
Collapse
|
24
|
Little C, Cosetti MK. A Narrative Review of Pharmacologic Treatments for COVID-19: Safety Considerations and Ototoxicity. Laryngoscope 2021; 131:1626-1632. [PMID: 33491234 PMCID: PMC8014300 DOI: 10.1002/lary.29424] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE/HYPOTHESIS The purpose of this review is to summarize evidence-based data regarding the ototoxic effects of potential COVID-19 therapeutics to treat patients suffering from SARS-CoV-2. METHODS Medications under investigation as novel therapeutics to treat COVID-19 were identified using the search term coronavirus therapeutics, COVID therapeutics, and SARS-CoV-2 therapeutics on ClinicalTrials.gov and the PubMed Database. A literature review was performed using the PubMed Database for each proposed COVID-19 therapeutic to identify relevant articles. Search criteria included Medical Subject Headings (MeSH) and key word search terms for ototoxicity, vestibulotoxicity, hearing disorders, and vertigo. RESULTS Six proposed COVID-19 therapeutics were identified as possessing ototoxic side effects including chloroquine and hydroxychloroquine, azithromycin, lopinavir-ritonavir, interferon, ribavirin, and ivermectin. CONCLUSIONS Available evidence suggests that ototoxic effects may be improved or mitigated by stopping the offending agent. Recognition of hearing loss, tinnitus, or imbalance/vertigo is therefore crucial to facilitate early intervention and prevent long-term damage. Hospitals should consider the inclusion of audiologic monitoring protocols for patients receiving COVID-19 therapeutics with known ototoxicity, especially in high-risk patient groups such as the elderly and hearing impaired. Laryngoscope, 131:1626-1632, 2021.
Collapse
Affiliation(s)
- Christine Little
- Department of Otolaryngology‐Head and Neck SurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkU.S.A.
| | - Maura K. Cosetti
- Department of Otolaryngology‐Head and Neck SurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkU.S.A.
- Ear InstituteNew York Eye and Ear Infirmary of Mount SinaiNew YorkNew YorkU.S.A.
| |
Collapse
|
25
|
Longenecker RJ, Gu R, Homan J, Kil J. A Novel Mouse Model of Aminoglycoside-Induced Hyperacusis and Tinnitus. Front Neurosci 2020; 14:561185. [PMID: 33041759 PMCID: PMC7530258 DOI: 10.3389/fnins.2020.561185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides (AG) such as amikacin are commonly used in cystic fibrosis patients with opportunistic pulmonary infections including multi-drug resistant mycobacterium tuberculous and non-tuberculous mycobacterium. Unfortunately, this class of drugs is known to cause peripheral damage to the cochlea leading to hearing loss that can fluctuate and become permanent over time or multiple exposures. However, whether amikacin can lead to central auditory dysfunction like hyperacusis (increased sensitivity to sound) or tinnitus (perception of sound in the absence of acoustic stimulation) is not well-described in the literature. Thus, an animal model needs to be developed that documents these side effects in order to develop therapeutic solutions to reduce AG-induced auditory dysfunction. Here we present pioneer work in mice which demonstrates that amikacin can lead to fluctuating behavioral evidence of hyperacusis and tinnitus as assessed by the acoustic startle reflex. Additionally, electrophysiological assessments of hearing via auditory brainstem response demonstrate increased central activity in the auditory brainstem. These data together suggest that peripheral AG-induced dysfunction can lead to central hyperactivity and possible behavioral manifestations of hyperacusis and tinnitus. Importantly, we demonstrate that ebselen, a novel investigational drug that acts as both an antioxidant and anti-inflammatory, can mitigate AG-induced hyperacusis.
Collapse
Affiliation(s)
| | - Rende Gu
- Sound Pharmaceuticals, Inc., Seattle, WA, United States
| | | | - Jonathan Kil
- Sound Pharmaceuticals, Inc., Seattle, WA, United States
| |
Collapse
|
26
|
Noise-Induced Hearing Loss and its Prevention: Current Issues in Mammalian Hearing. CURRENT OPINION IN PHYSIOLOGY 2020; 18:32-36. [PMID: 32984667 DOI: 10.1016/j.cophys.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Noise-induced hearing loss (NIHL) has been well investigated across diverse mammalian species and the potential for prevention of NIHL is of broad interest. To most efficiently develop novel therapeutic interventions, a good understanding of the current state of knowledge regarding mechanisms of injury is essential. The overarching goals of this review are to 1) concisely summarize the current state of knowledge, and 2) provide opinions on the most significant future trends and developments.
Collapse
|
27
|
Ju HJ, Park M, Park JH, Shin GR, Choi HS, Suh MW, Kim MS. In Vivo Imaging of Click-Crosslinked Hydrogel Depots Following Intratympanic Injection. MATERIALS 2020; 13:ma13143070. [PMID: 32660032 PMCID: PMC7412526 DOI: 10.3390/ma13143070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
In this study, we developed injectable intratympanic hyaluronic acid (HA) depots for the treatment of hearing loss. We prepared an injectable click-crosslinking formulation by modifying HA with tetrazine (HA-TET) and trans-cyclooctene (HA-TCO), which crosslinked to form an HA depot (Cx-HA). Preparation of the click-crosslinking HA formulation was facile, and Cx-HA depot formation was reproducible. Additionally, the Cx-HA hydrogel was significantly stiffer than HA hydrogel. To monitor the degradation pattern of hydrogels, we mixed a zwitterionic near-infrared (NIR) fluorophore (e.g., ZW800-1C) in the click-crosslinking HA formulation. Then, HA-TET and HA-TCO solutions containing ZW800-1C were loaded separately into the compartments of a dual-barrel syringe for intratympanic injection. The Cx-HA depots formed quickly, and an extended residence time in the tympanic cavity was confirmed by performing NIR fluorescence imaging. We have successfully prepared an injectable click-crosslinking HA formulation that has promise as an intratympanic drug depot.
Collapse
Affiliation(s)
- Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (H.J.J.); (J.H.P.); (G.R.S.)
| | - Mina Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul Medical Center, Seoul 05505, Korea;
| | - Ji Hoon Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (H.J.J.); (J.H.P.); (G.R.S.)
| | - Gi Ru Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (H.J.J.); (J.H.P.); (G.R.S.)
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Correspondence: (H.S.C.); (M.-W.S.); (M.S.K.); Tel.: +1-617-726-5784 (H.S.C.); +82-2-2072-3649 (M.-W.S.); +82-31-219-2608 (M.S.K.); Fax: +1-617-643-2604 (H.S.C.); +82-2-745-2387 (M.-W.S.); +82-31-219-3931 (M.S.K.)
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul Medical Center, Seoul 05505, Korea;
- Correspondence: (H.S.C.); (M.-W.S.); (M.S.K.); Tel.: +1-617-726-5784 (H.S.C.); +82-2-2072-3649 (M.-W.S.); +82-31-219-2608 (M.S.K.); Fax: +1-617-643-2604 (H.S.C.); +82-2-745-2387 (M.-W.S.); +82-31-219-3931 (M.S.K.)
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; (H.J.J.); (J.H.P.); (G.R.S.)
- Correspondence: (H.S.C.); (M.-W.S.); (M.S.K.); Tel.: +1-617-726-5784 (H.S.C.); +82-2-2072-3649 (M.-W.S.); +82-31-219-2608 (M.S.K.); Fax: +1-617-643-2604 (H.S.C.); +82-2-745-2387 (M.-W.S.); +82-31-219-3931 (M.S.K.)
| |
Collapse
|
28
|
Ebselen attenuates tobramycin-induced ototoxicity in mice. J Cyst Fibros 2020; 20:271-277. [PMID: 32147183 DOI: 10.1016/j.jcf.2020.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Cystic fibrosis patients are often adminstered tobramycin to treat pulmonary infections. Unfortunately, a common side effect is hearing loss, which can fluctuate. Ebselen has known anti-inflammatory properties and could reduce the incidence and severity of tobramycin-induced hearing loss. METHODS In vitro: neonatal cochlear cultures were treated with tobramycin or cotreated with tobramycin and ebselen for 3 days. In vivo: adult mice were injected with tobramycin or tobramycin and ebselen for 14 days. ABRs were collected in a repeated measures design until 56 days after treatments. ABR threshold shifts were analyzed and a novel cochleotoxic criteria applied to determine the incidence of ototoxicity. Cochlear immunohistology was analyzed for IHC and OHC loss. RESULTS Tobramycin leads to significant IHC and OHC loss in cochlear explant cultures. Ebselen co-treatment at 1:20 concentrations resulted in significant otoprotection. Tobramycin leads to significant ABR threshold shifts that are ameliorated by ebselen co-treatment. Hearing loss did not correlate with significant IHC or OHC loss. CONCLUSIONS This mouse model of tobramycin-induced ototoxicity is clinically relevant in that it results in an incidence and severity of hearing loss recently documented in clinic. The in vitro experiments show that tobramycin kills hair cells and that ebselen co-treatment can attenuate this ototoxicity. The in vivo model shows tobramycin-induced hearing loss is ameliorated by ebselen co-treatment, but this is not explained by concomitant hair cell loss. These preclinical data support the testing of ebselen in CF patients receiving tobramycin treatment.
Collapse
|
29
|
Favrelière S, Delaunay P, Lebreton JP, Rouby F, Atzenhoffer M, Lafay-Chebassier C, Pérault-Pochat MC. Drug-induced hearing loss: a case/non-case study in the French pharmacovigilance database. Fundam Clin Pharmacol 2020; 34:397-407. [PMID: 31912913 DOI: 10.1111/fcp.12533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 12/06/2019] [Accepted: 01/06/2020] [Indexed: 11/29/2022]
Abstract
Hearing loss is defined as a decrease in the ability to perceive sounds which can occur suddenly or gradually and affects one ear or both. It is related to various etiologies, in particular drugs. The identification of all drugs that could be associated with hearing loss is essential for the patients' life quality. The objective of our study was to identify signals of hearing loss involving drugs approved in the last 20 years. The occurrence in association with drugs known for their ototoxicity was also analyzed. We used a case/non-case method in the French Pharmacovigilance Database (FPVD). The cases were reports of hearing loss in the FPVD between January 2007 and August 2017. Non-cases were all reports over the same period. We calculated the reporting odds ratio (ROR) with 95% confidence intervals. Among the 555 reports of hearing loss, significant RORs were found for 68 drugs. The main therapeutic classes implicated were antineoplastic agents (n = 240), systemic anti-infective agents (n = 182), immunosuppressants (n = 42) loop diuretics (n = 26), and salicylate analgesics (n = 26). We found signals of hearing loss with azacitidine, vaccines and nevirapine, immunosuppressants such as leflunomide, and biotherapies such as panitumumab and vandetanib. Prescribers should be informed about the potential associations with all these drugs. The role of the pathology itself and the known ototoxic drugs that can be associated do not allow to conclude definitively. Audiograms for the early detection of hearing loss induced by drugs known to be ototoxic are rarely carried out. Preventive treatments exist and must be considered.
Collapse
Affiliation(s)
- Sylvie Favrelière
- Department of Clinical Pharmacology and Pharmacovigilance, University Hospital of Poitiers, 2 rue de la Milètrie, BP 577, 86021, Poitiers Cedex, France
| | - Paul Delaunay
- Department of Clinical Pharmacology and Pharmacovigilance, University Hospital of Poitiers, 2 rue de la Milètrie, BP 577, 86021, Poitiers Cedex, France
| | - Jean-Pascal Lebreton
- Department of Otorhinolaryngology - Head & Neck Surgery, University Hospital of Poitiers, 2, rue de la Milètrie, BP 577, 86021, Poitiers Cedex, France
| | - Franck Rouby
- Department of Clinical Pharmacology and Pharmacovigilance, University Hospital of Marseille, 270 Boulevard Sainte Marguerite, 13009, Marseille, France
| | - Martine Atzenhoffer
- Department of Clinical Pharmacology and Pharmacovigilance, Hospices civils de Lyon, 69424, Lyon, France
| | - Claire Lafay-Chebassier
- Department of Clinical Pharmacology and Pharmacovigilance, University Hospital of Poitiers, 2 rue de la Milètrie, BP 577, 86021, Poitiers Cedex, France.,INSERM, U1084, Laboratoire de Neurosciences Expérimentales et Cliniques - LNEC, Université de Poitiers, Batiment B36, 1 rue Georges Bonnet, BP633, 86022, Poitiers Cedex, France
| | - Marie Christine Pérault-Pochat
- Department of Clinical Pharmacology and Pharmacovigilance, University Hospital of Poitiers, 2 rue de la Milètrie, BP 577, 86021, Poitiers Cedex, France.,INSERM, U1084, Laboratoire de Neurosciences Expérimentales et Cliniques - LNEC, Université de Poitiers, Batiment B36, 1 rue Georges Bonnet, BP633, 86022, Poitiers Cedex, France
| |
Collapse
|
30
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
31
|
Hecht QA, Hammill TL, Calamia PT, Smalt CJ, Brungart DS. Characterization of acute hearing changes in United States military populations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3839. [PMID: 31795720 DOI: 10.1121/1.5132710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Until recently, most hearing conservation programs, including those in the military, have used permanent shifts in the pure-tone audiometric threshold as the gold standard for measuring hearing impairment in noise-exposed populations. However, recent results from animal studies suggest that high-level noise exposures can cause the permanent destruction of synapses between the inner hair cells and auditory nerve fibers, even in cases where pure-tone audiometric thresholds eventually return to their normal pre-exposure baselines. This has created a dilemma for researchers, who are now increasingly interested in studying the long-term effects that temporary hearing shifts might have on hearing function, but are also concerned about the ethical considerations of exposing human listeners to high levels of noise for research purposes. One method that remains viable to study the effects of high noise exposures on human listeners, or to evaluate the efficacy of interventions designed to prevent noise-related inner ear damage, is to identify individuals in occupations with unavoidable noise exposures and measure hearing before and as soon as possible after exposure. This paper discusses some of the important factors to be considered in studies that attempt to measure acute hearing changes in noise-exposed military populations.
Collapse
Affiliation(s)
- Quintin A Hecht
- Department of Defense Hearing Center of Excellence, 1100 Wilford Hall Loop, Building 4554, Joint Base San Antonio (JBSA), Lackland, Texas 78236, USA
| | - Tanisha L Hammill
- Department of Defense Hearing Center of Excellence, 1100 Wilford Hall Loop, Building 4554, Joint Base San Antonio (JBSA), Lackland, Texas 78236, USA
| | - Paul T Calamia
- Bioengineering Systems and Technologies Group, Massachusetts Institute of Technology (MIT) Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02421, USA
| | - Christopher J Smalt
- Bioengineering Systems and Technologies Group, Massachusetts Institute of Technology (MIT) Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02421, USA
| | - Douglas S Brungart
- Walter-Reed National Military Medical Center (WRNMMC), Building 19, Room 5600, 4954 North Palmer Road Bethesda, Maryland 20889-5630, USA
| |
Collapse
|
32
|
Spankovich C, Le Prell CG. The role of diet in vulnerability to noise-induced cochlear injury and hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4033. [PMID: 31795697 DOI: 10.1121/1.5132707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The influence of dietary nutrient intake on the onset and trajectory of hearing loss during aging and in mediating protection from challenges such as noise is an important relationship yet to be fully appreciated. Dietary intake provides essential nutrients that support basic cellular processes related to influencing cellular stress response, immune response, cardiometabolic status, neural status, and psychological well-being. Dietary quality has been shown to alter risk for essentially all chronic health conditions including hearing loss and tinnitus. Evidence of nutrients with antioxidant, anti-inflammatory, and anti-ischemic properties, and overall healthy diet quality as otoprotective strategies are slowly accumulating, but many questions remain unanswered. In this article, the authors will discuss (1) animal models in nutritional research, (2) evidence of dietary nutrient-based otoprotection, and (3) consideration of confounds and limitations to nutrient and dietary study in hearing sciences. Given that there are some 60 physiologically essential nutrients, unraveling the intricate biochemistry and multitude of interactions among nutrients may ultimately prove infeasible; however, the wealth of available data suggesting healthy nutrient intake to be associated with improved hearing outcomes suggests the development of evidence-based guidance regarding diets that support healthy hearing may not require precise understanding of all possible interactions among variables. Clinical trials evaluating otoprotective benefits of nutrients should account for dietary quality, noise exposure history, and exercise habits as potential covariates that may influence the efficacy and effectiveness of test agents; pharmacokinetic measures are also encouraged.
Collapse
Affiliation(s)
- Christopher Spankovich
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
33
|
Abstract
There is an urgent need for otoprotective drug agents. Prevention of noise-induced hearing loss continues to be a major challenge for military personnel and workers in a variety of industries despite the requirements that at-risk individuals use hearing protection devices such as ear plugs or ear muffs. Drug-induced hearing loss is also a major quality-of-life issue with many patients experiencing clinically significant hearing loss as a side effect of treatment with life-saving drug agents such as cisplatin and aminoglycoside antibiotics. There are no pharmaceutical agents approved by the United States Food and Drug Administration for the purpose of protecting the inner ear against damage, and preventing associated hearing loss (otoprotection). However, a variety of preclinical studies have suggested promise, with some supporting data from clinical trials now being available as well. Additional research within this promising area is urgently needed.
Collapse
Affiliation(s)
- Colleen G Le Prell
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
34
|
Abstract
The need for monitoring hearing and auditory function during drug therapy and other treatments that have the potential to cause hearing loss is well documented. Besides the main purpose of ototoxic monitoring, which is to provide feedback to the attending physician about the effects the treatment is having on the auditory system, it is also helpful in setting expectations for the patient and his/her family about the communication issues that may result from the drug therapy. This article will review tests available to an audiologist, both subjective and objective, that can be used to effectively monitor hearing levels and auditory function during treatment. Published guidelines and various ototoxic monitoring protocols are reviewed regarding tests administered, what constitutes a significant change in test results and how these findings are reported, and the impact significant changes may have on the course of treatment. Test protocols from different institutions are compared for both similarities and contrasts. Effective scheduling and test location are key to a successful monitoring program. Finally, the need to streamline ototoxic monitoring of hearing and auditory function to reduce test time and make it less stressful and tiresome on the patient will be considered.
Collapse
|