1
|
Chen ZW, Hua ZL. Characteristics of organic matter driven by Eichhornia crassipes during co-contamination with per(poly)fluoroalkyl substances (PFASs) and microplastics (MPs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176114. [PMID: 39255929 DOI: 10.1016/j.scitotenv.2024.176114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Co-contamination with MPs and PFASs has been recorded, particularly in surface-water environments. Floating macrophyte microcosms are an important part of the surface water ecosystem, and dissolved organic matter (DOM) driven by floating macrophytes (FMDDOM) is critical for maintaining material circulation. However, knowledge gaps remain regarding the impact of MPs and PFASs co-pollution on FMDDOM. An greenhouse simulation experiment was conducted in this study to investigate the effects of four PFASs, perfluorooctanoic acid (PFOA), perfluoro-octane-sulfonic acid (PFOS), perfluoro-2-methyl-3-oxahexanoic acid (Gen X), and potassium 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate (F-53B), on FMDDOM sourced from Eichhornia crassipes (E. crassipes), a typical floating macrophyte, in the presence and absence of polystyrene (PS) MPs. Four PFASs increased FMDDOM release from E. crassipes, leading to a 32.52-77.49 % increase in dissolved organic carbon (DOC) levels. PS MPs further increased this, with results ranging from -21.28 % to 26.49 %. Based on the parallel factor analysis (PARAFAC), FMDDOM was classified into three types of fluorescent components: tryptophan-like, humic-like, and tyrosine-like compounds. Contaminants of MPs and PFASs modified the relative abundance of these three components. Protein secondary structure analysis showed that fluorocarbon bonds tended to accumulate on the α-helix of proteins in FMDDOM. The relative abundance of fluorescent and chromophorous FMDDOMs varied from 0.648 ± 0.044 to 0.964 ± 0.173, indicating that the photochemical structures of the FMDDOM were modified. FMDDOM exhibits decreased humification and increased aromaticity when contaminated with MPs and PFASs, which may be detrimental to the geochemical cycling of carbon. This study offers a theoretical basis for assessing the combined ecological risks of MPs and PFASs in floating macrophyte ecosystems.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Nanjing 210098, PR China.
| |
Collapse
|
2
|
Narayanasamydamodaran S, Kumar N, Zuo J. The role of plant uptake in total phosphorous and total nitrogen removal in vegetated bioretention cells using vetiver and cattail. CHEMOSPHERE 2024; 364:143276. [PMID: 39243897 DOI: 10.1016/j.chemosphere.2024.143276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Bioretention cells have emerged as a prominent strategy for mitigating pollutant loads within urban stormwater runoff. This study delves into the role of plant uptake in the simultaneous removal of nitrogen and phosphorus compounds within these systems. Three bioretention cells-CP, P1, and P2-were constructed using local soil, C33 sand, and gravel. CP served as the unvegetated control, while P1 and P2 were vegetated with vetiver and cattail, respectively. The removal efficiencies of NO₃⁻-N, NH₃⁻-N, NO₂⁻-N, TN, TP, and COD from rainwater were evaluated under saturated and unsaturated conditions. The unvegetated control reactor (CP) achieved TN and TP removal rates of 40.44% and 82.52%, respectively. Reactor P1 (vetiver) demonstrated TN and TP removal rates of 62.92% and 97.19%, respectively. Reactor P2 (cattail) showed TN and TP removal rates of 49.71% and 87.78%, respectively. With the introduction of a saturation zone, TN removal efficiencies increased to 51.69%, 89.22%, and 79.91% for CP, P1, and P2, respectively. However, TP removal efficiencies decreased to 74.81%, 95.04%, and 84.58% for CP, P1, and P2, respectively. Plant tissue uptake tests indicated that vetiver could retain 5 times more TN and twice as much TP compared to cattail. This enhanced performance is attributed to vetiver's high photosynthetic potential as a C4 plant, resilience to varying environmental and nutrient conditions, extensive root network, secretion of oil sesquiterpenes from its root cortex, and the presence of arbuscular mycorrhizal fungi, which secrete glomalin, a substance that promotes water retention and nutrient uptake. Findings from this study indicate that the efficacy of traditional bioretention cells can be augmented through the strategic selection and integration of locally adapted plant species, coupled with the incorporation of saturation zones, to enhance pollutant removal capabilities and resilience to drought conditions.
Collapse
Affiliation(s)
- Sanjena Narayanasamydamodaran
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Nawnit Kumar
- State Key Laboratory of Hydroscience and Hydraulic Engineering, Tsinghua University, Beijing, China
| | - Jian'e Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Yang SH, Shan L, Chu KH. Root exudates enhanced 6:2 FTOH defluorination, altered metabolite profiles and shifted soil microbiome dynamics. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133651. [PMID: 38309165 DOI: 10.1016/j.jhazmat.2024.133651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
6:2 Fluorotelomer alcohol (FTOH), one of per- and polyfluoroalkyl substances (PFAS), is widely used as a raw material in synthesizing surfactants and fluorinated polymers. However, little is known about the role of root exudates on 6:2 FTOH biodegradation in the rhizosphere. This study examined the effects of root exudates produced from dicot (Arabidopsis thaliana) and monocot (Brachypodium distachyon) grown under different nutrient conditions (nutrient-rich, sulfur-free, and potassium-free) on 6:2 FTOH biotransformation with or without bioaugmentating agent Rhodococcus jostii RHA1. All the exudates enhanced defluorination of 6:2 FTOH by glucose-grown RHA1. Amendment of dicot or monocot root exudates, regardless of the plant growth conditions, also enhanced 6:2 FTOH biotransformation in soil microcosms. Interestingly, high levels of humic-like substances in the root exudates are linked to high extents of 6:2 FTOH defluorination. Bioaugmenting strain RHA1 along with root exudates facilitated 6:2 FTOH transformation with a production of more diverse metabolites. Microbial community analysis revealed that Rhodococcus was predominant in all strain RHA1 spiked treatments. Different root exudates changed the soil microbiome dynamics. This study provided new insight into 6:2 FTOH biotransformation with different root exudates, suggesting that root exudates amendment and bioaugmentation are promising approaches to promote rhizoremediation for PFAS-contaminated soil.
Collapse
Affiliation(s)
- Shih-Hung Yang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Hu S, He R, Zeng J, Zhao D, Wang S, He F, Yu Z, Wu QL. Lower Compositional Variation and Higher Network Complexity of Rhizosphere Bacterial Community in Constructed Wetland Compared to Natural Wetland. MICROBIAL ECOLOGY 2023; 85:965-979. [PMID: 35641581 DOI: 10.1007/s00248-022-02040-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/09/2022] [Indexed: 05/04/2023]
Abstract
Macrophyte rhizosphere microbes, as crucial components of the wetland ecosystem, play an important role in maintaining the function and stability of natural and constructed wetlands. Distinct environmental conditions and management practices between natural and constructed wetlands would affect macrophytes rhizosphere microbial communities and their associated functions. Nevertheless, the understanding of the diversity, composition, and co-occurrence patterns of the rhizosphere bacterial communities in natural and constructed wetlands remains unclear. Here, we used 16S rRNA gene high-throughput sequencing to characterize the bacterial community of the rhizosphere and bulk sediments of macrophyte Phragmites australis in representative natural and constructed wetlands. We observed higher alpha diversity of the bacterial community in the constructed wetland than that of the natural wetland. Additionally, the similarity of bacterial community composition between rhizosphere and bulk sediments in the constructed wetland was increased compared to that of the natural wetland. We also found that plants recruit specific taxa with adaptive functions in the rhizosphere of different wetland types. Rhizosphere samples of the natural wetland significantly enriched the functional bacterial groups that mainly related to nutrient cycling and plant-growth-promoting, while those of the constructed wetland-enriched bacterial taxa with potentials for biodegradation. Co-occurrence network analysis showed that the interactions among rhizosphere bacterial taxa in the constructed wetland were more complex than those of the natural wetland. This study broadens our understanding of the distinct selection processes of the macrophytes rhizosphere-associated microbes and the co-occurrence network patterns in different wetland types. Furthermore, our findings emphasize the importance of plant-microbe interactions in wetlands and further suggest P. australis rhizosphere enriched diverse functional bacteria that might enhance the wetland performance through biodegradation, nutrient cycling, and supporting plant growth.
Collapse
Affiliation(s)
- Siwen Hu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Rujia He
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Shuren Wang
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Fei He
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Zhongbo Yu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Lyu D, Smith DL. The root signals in rhizospheric inter-organismal communications. FRONTIERS IN PLANT SCIENCE 2022; 13:1064058. [PMID: 36618624 PMCID: PMC9811129 DOI: 10.3389/fpls.2022.1064058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Root exudates play a key role in mediating plant-plant and plant-rhizomicrobiome interactions, including regulating biochemical/physiological aspects of plant-associated microorganisms, to enhance host plant growth and resilience. Root exudates can act as signals to reduce the competition from neighboring plants and recruiting/choreographing a wide range of diverse rhizomicrobiome members to make the host plant a good fit with its immediate environment. Root exudate production is a dynamic and key process, but there is a limited understanding of the metabolites or metabolic pathways involved in the inter-organismal communications facilitated by them. Given the well-known symbiotic relationships between plants and associated rhizomicrobiome members, adding root exudates to microbial isolation media may allow some of the large segments of rhizomicrobiome members that are not currently culturable to be grown in vitro. This will provide new insights into how root signals orchestrate associated microbes, will benefit agricultural production in the face of challenges posed by climate change, and will help to sustainably provide food for a growing global human population.
Collapse
|
6
|
Tejeda A, Valencia-Botín AJ, Zurita F. Resistance evaluation of Canna indica, Cyperus papyrus, Iris sibirica, and Typha latifolia to phytotoxic characteristics of diluted tequila vinasses in wetland microcosms. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022:1-10. [PMID: 36382673 DOI: 10.1080/15226514.2022.2145266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tequila vinasse has a high contaminating capacity due to its physicochemical characteristics. Efficient and low-cost alternative treatments are required to reduce and control the environmental impacts caused by raw vinasse discharges, mainly from micro and small factories. One option is wetland technologies in which vegetation plays an important role in the proper functioning of the system; thus, the species to be used must be properly selected based on their resistance and tolerance to the toxic effects of vinasse. Therefore, this study aims to evaluate the resistance of four macrophyte species to tequila vinasse in wetland microcosms that is, Canna indica, Cyperus papyrus, Iris sibirica, and Typha latifolia which were exposed to 5, 7, 10, 12, and 15% of vinasse diluted with domestic wastewater. The control parameters (relative content, evapotranspiration, pH, electrical conductivity, and apparent color) showed that the plants in general developed stress symptoms. However, statistical analysis revealed a significant difference (p < 0.05) between plant species and vinasse treatments, further evidencing that I. sibirica is the species with the greatest potential to be used as emergent vegetation in treatment wetlands for the purification of tequila vinasse.
Collapse
Affiliation(s)
- Allan Tejeda
- Environmental Quality Research Center, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán, Mexico
| | - Alberto J Valencia-Botín
- Environmental Quality Research Center, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán, Mexico
| | - Florentina Zurita
- Environmental Quality Research Center, Centro Universitario de la Ciénega, University of Guadalajara, Ocotlán, Mexico
| |
Collapse
|
7
|
Wang JF, Zhu CY, Weng BS, Mo PW, Xu ZJ, Tian P, Cui BS, Bai JH. Regulation of heavy metals accumulated by Acorus calamus L. in constructed wetland through different nitrogen forms. CHEMOSPHERE 2021; 281:130773. [PMID: 34000656 DOI: 10.1016/j.chemosphere.2021.130773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Improving accumulation of heavy metals (HMs) by plants is an important pathway for constructed wetland (CW) to alleviate the environmental risks caused by their release. This study aims to regulate HMs (Cr, Ni, Cu, Zn, and Cd) accumulated by Acorus calamus L. in the sandy substrate CW with different nitrogen forms, including ammonia (NH4+), nitrate (NO3‾), and NH4+/NO3‾ (1:1) in synthetic tailwaters. In general, the removal efficiency of HMs by CW could reach 92.4% under the initial concentrations below 500 μg/L. Accumulation percentages of HMs in the shoots and roots of plants in CW with NH4+ and NH4+/NO3‾ influents increased by 52-395% and 15-101%, respectively, when compared with that of NO3‾ treatment. Influents with NH4+ promoted plant growth of Acorus calamus L. and metabolic functions, such as carbohydrate metabolism/amino acid metabolism, related to HMs mobilization of rhizosphere bacterial communities, which might induce more organic acids and amino acids secreted by plants and microbes during their metabolic processes. These are the main reasons for the enhancive mobilization of HMs from their precipitation fractions and their uptake by plants in CW with NH4+ treatments. Moreover, the enhancement of organics secreted from plants and microbes also led to the high denitrification efficiency and nitrogen removal in CW. Overall, this study could provide a feasible method for the enhancive accumulation of HMs by wetland plants via the regulation water treatment process to appropriately increase NH4+ for CW.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Cong-Yun Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Bai-Sha Weng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Pei-Wen Mo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Zi-Jie Xu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ping Tian
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Bao-Shan Cui
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jun-Hong Bai
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
8
|
Ma X, Du Y, Peng W, Zhang S, Liu X, Wang S, Yuan S, Kolditz O. Modeling the impacts of plants and internal organic carbon on remediation performance in the integrated vertical flow constructed wetland. WATER RESEARCH 2021; 204:117635. [PMID: 34530225 DOI: 10.1016/j.watres.2021.117635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The integrated vertical flow (IVF) constructed wetland consists of two or more chambers with heterogeneous flow patterns and strong aeration capability, possesses favorable remediation performance. The Constructed Wetland Model No.1 (CWM1) embedded in the OpenGeoSys # IPHREEQC was applied to investigate the wetland plant effects on treatment efficiency. Two fundamental functions of the plant roots (i) the radial oxygen loss (ROL) and (ii) exudation of internal organic carbon (IOC), are developed and implemented in the model to simulate the treating processes of planted laboratory-scale IVF wetlands fed by the synthetic wastewater. The good agreement between simulated results and measurements of the planted IVF wetland and the unplanted filters mimicking wetland demonstrates the combined effects of ROL and IOC and the model reliability. In summer the ammonia (NH4-N) and total nitrogen (TN) removals are high as above 90% in both IVF wetlands, and in winter they decline significantly to around 55% and 45% in unplanted wetland, contrastively to about 85% and 78% in the planted wetland. The nitrogen removal - COD/N ratio relation curves of IVF wetlands are proposed and obtained by modeling to evaluate organic carbon loading status. Based on the curves, the COD/N ratios of unplanted and planted wetlands are about 3∼7 and 3∼10 gCOD/gN for high TN removal respectively. Planted wetlands can tolerate a wider range of COD/N ratio influents than unplanted ones. The ROL in the unplanted wetland promotes COD and NH4-N removal, while may inhibit denitrification under low-temperature conditions. The single addition of IOC enhances the oxygen-consuming and restrains the nitrification under the full loaded COD condition. Summing up all organic carbon releases from substrate and roots as IOC, the quantification of IOC acts on nitrogen treatment was simulated and compared with the external organic carbon (EOC) loading from influent. IOC performs higher efficiency on TN removal than EOC at the same organic loading rates. The results provide the thoughts of the solution for low TN removal in the carbon deficient constructed wetlands.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Yanliang Du
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China.
| | - Wenqi Peng
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Shuanghu Zhang
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Xiaobo Liu
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Shiyang Wang
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
| | - Shoujun Yuan
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Olaf Kolditz
- Department of Environmental Informatics, Helmholtz Centre for Environmental Research, UFZ, Leipzig, Germany
| |
Collapse
|
9
|
Wu D, Zhao C, Bai H, Feng F, Sui X, Sun G. Characteristics and metabolic patterns of soil methanogenic archaea communities in the high-latitude natural forested wetlands of China. Ecol Evol 2021; 11:10396-10408. [PMID: 34367583 PMCID: PMC8328403 DOI: 10.1002/ece3.7842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 06/10/2021] [Indexed: 01/12/2023] Open
Abstract
Soil methanogenic microorganisms are one of the primary methane-producing microbes in wetlands. However, we still poorly understand the community characteristic and metabolic patterns of these microorganisms according to vegetation type and seasonal changes. Therefore, to better elucidate the effects of the vegetation type and seasonal factors on the methanogenic community structure and metabolic patterns, we detected the characteristics of the soil methanogenic mcrA gene from three types of natural wetlands in different seasons in the Xiaoxing'an Mountain region, China. The results indicated that the distribution of Methanobacteriaceae (hydrogenotrophic methanogens) was higher in winter, while Methanosarcinaceae and Methanosaetaceae accounted for a higher proportion in summer. Hydrogenotrophic methanogenesis was the dominant trophic pattern in each wetland. The results of principal coordinate analysis and cluster analysis showed that the vegetation type considerably influenced the methanogenic community composition. The methanogenic community structure in the Betula platyphylla-Larix gmelinii wetland was relatively different from the structure of the other two wetland types. Indicator species analysis further demonstrated that the corresponding species of indicator operational taxonomic units from the Alnus sibirica wetland and the Betula ovalifolia wetland were similar. Network analysis showed that cooperative and competitive relationships exist both within and between the same or different trophic methanogens. The core methanogens with higher abundance in each wetland were conducive to the adaptation to environmental disturbances. This information is crucial for the assessment of metabolic patterns of soil methanogenic archaea and future fluxes in the wetlands of the Xiaoxing'an Mountain region given their vulnerability.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Saline‐Alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbinChina
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Caihong Zhao
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Hui Bai
- Key Laboratory of Fast‐Growing Tree Cultivating of Heilongjiang ProvinceForestry Science Research Institute of Heilongjiang ProvinceHarbinChina
| | - Fujuan Feng
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Xin Sui
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold RegionSchool of Life SciencesHeilongjiang UniversityHarbinChina
| | - Guangyu Sun
- Key Laboratory of Saline‐Alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbinChina
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| |
Collapse
|
10
|
Kotsia D, Deligianni A, Fyllas NM, Stasinakis AS, Fountoulakis MS. Converting treatment wetlands into "treatment gardens": Use of ornamental plants for greywater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140889. [PMID: 32711317 DOI: 10.1016/j.scitotenv.2020.140889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, the use of constructed wetlands for on-site greywater treatment is a very promising option. The successful application of this nature-based solution at full scale requires public acceptance, economic feasibility and the production of high-quality treated greywater. This work focuses on the use of ornamental plants as vertical flow constructed wetland (VFCW) vegetation for greywater treatment, aiming to improve aesthetic and acceptability of the system. The performance and economic feasibility of the proposed green technology were examined during a 2-years study. Results show that Pittosporum tobira and Hedera helix can grow in VFCW operating with greywater without any visible symptoms. These species tolerated both drought and flooding conditions, making them ideal for use not only in residential buildings but also in seasonal hotels and holiday homes. In contrast, partial defoliation of Polygala myrtifolia plants was observed during the winter period. High average removal efficiencies were observed for BOD (99%), COD (96%) and TSS (94%) in all examined VFCWs including unplanted beds. Phosphorus removal gradually decreased from 100% during first months of operation to 15% during second year of operation. In addition, total coliforms concentration reduced by 2.2 log units in the effluent of all planted systems, while lower removal efficiency was observed in the absence of plants. The mean concentration of BOD and TSS in the treated greywater met the standards for indoor reuse (<10 mg/L). Cost payback periods for the installation of the proposed technology in a multi-family building, a single house and a hotel in Greece were found 4.7, 16.6 and 2.5 years, respectively. Overall, the "treatment gardens" proposed in this study provide a technically and economically feasible solution for greywater treatment, with the additional benefit of improving the aesthetic of urban, semi-urban and touristic areas.
Collapse
Affiliation(s)
- D Kotsia
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - A Deligianni
- Water Resources Management Group, Wageningen University, the Netherlands
| | - N M Fyllas
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - A S Stasinakis
- Department of Environment, University of the Aegean, Mytilene, Greece
| | - M S Fountoulakis
- Department of Environment, University of the Aegean, Mytilene, Greece.
| |
Collapse
|
11
|
Duan X, Zhao YY, Zhang JC. Characteristics of the root exudate release system of typical plants in plateau lakeside wetland under phosphorus stress conditions. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn this study, the root exudates of wetland plants, Pistia stratiotes, black algae, and Cyperus alternifolius, exposed to six phosphorus concentration gradients (0, 0.2, 1, 5, 10, and 20 mg/L) were characterized. The experimental seedlings were cultivated in Hoagland solutions, which were then extracted, decompressed, and concentrated with CH2Cl2; subsequently, a gas chromatography-mass spectrometry (GC-MS) analysis was performed to study the root exudates effects under different phosphorus concentrations. Results showed the existence of several organic compounds, such as alkanes, esters, alcohols, amines, benzene, and acids (phthalic acid, cycloheptasiloxane, benzoic acid, and cyclopentasiloxane) in the root exudates of the wetland plants. The relative contents of phthalate, benzene dicarboxylic acid, and cyclohexasiloxane in the root exudates first increased, and then decreased, with the change in phosphorus concentration. The relative contents of three compounds in Pistia were the highest at 1 mg/L of phosphorus, and the lowest relative contents of phthalic acid and benzene dicarboxylic acid were observed at 20 mg/L of phosphorus. However, the relative content of cyclohexasiloxane was the lowest in the absence of P stress. In black algae, the relative contents of the three compounds were 36.66, 16.24, and 14.61%, respectively. The relative content of cyclohexasiloxane in the black algae first decreased and then increased, with its lowest relative content occurring at 5 mg/L of phosphorus and the highest at 10 mg/L of phosphorus. In Cyperus alternifolius, the highest relative concentrations of the four compounds: phthalic acid, dimethyl phthalate, octadecane, and diphenyl sulfone in Cyperus were observed at 5 mg/L phosphorus and the lowest at 10 mg/L phosphorus.
Collapse
Affiliation(s)
- Xu Duan
- Forestry, Ecology & Soil and Water Department, College of Forestry, Ecology & Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China
| | - Yang-yi Zhao
- Forestry, Ecology & Soil and Water Department, College of Forestry, Ecology & Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China
| | - Jian-cong Zhang
- Forestry, Ecology & Soil and Water Department, College of Forestry, Ecology & Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
12
|
Bledsoe RB, Goodwillie C, Peralta AL. Long-Term Nutrient Enrichment of an Oligotroph-Dominated Wetland Increases Bacterial Diversity in Bulk Soils and Plant Rhizospheres. mSphere 2020; 5:e00035-20. [PMID: 32434837 PMCID: PMC7380569 DOI: 10.1128/msphere.00035-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/07/2020] [Indexed: 12/04/2022] Open
Abstract
In nutrient-limited conditions, plants rely on rhizosphere microbial members to facilitate nutrient acquisition, and in return, plants provide carbon resources to these root-associated microorganisms. However, atmospheric nutrient deposition can affect plant-microbe relationships by changing soil bacterial composition and by reducing cooperation between microbial taxa and plants. To examine how long-term nutrient addition shapes rhizosphere community composition, we compared traits associated with bacterial (fast-growing copiotrophs, slow-growing oligotrophs) and plant (C3 forb, C4 grass) communities residing in a nutrient-poor wetland ecosystem. Results revealed that oligotrophic taxa dominated soil bacterial communities and that fertilization increased the presence of oligotrophs in bulk and rhizosphere communities. Additionally, bacterial species diversity was greatest in fertilized soils, particularly in bulk soils. Nutrient enrichment (fertilized versus unfertilized) and plant association (bulk versus rhizosphere) determined bacterial community composition; bacterial community structure associated with plant functional group (grass versus forb) was similar within treatments but differed between fertilization treatments. The core forb microbiome consisted of 602 unique taxa, and the core grass microbiome consisted of 372 unique taxa. Forb rhizospheres were enriched in potentially disease-suppressive bacterial taxa, and grass rhizospheres were enriched in bacterial taxa associated with complex carbon decomposition. Results from this study demonstrate that fertilization serves as a strong environmental filter on the soil microbiome, which leads to distinct rhizosphere communities and can shift plant effects on the rhizosphere microbiome. These taxonomic shifts within plant rhizospheres could have implications for plant health and ecosystem functions associated with carbon and nitrogen cycling.IMPORTANCE Over the last century, humans have substantially altered nitrogen and phosphorus cycling. Use of synthetic fertilizer and burning of fossil fuels and biomass have increased nitrogen and phosphorus deposition, which results in unintended fertilization of historically low-nutrient ecosystems. With increased nutrient availability, plant biodiversity is expected to decline, and the abundance of copiotrophic taxa is anticipated to increase in bacterial communities. Here, we address how bacterial communities associated with different plant functional types (forb, grass) shift due to long-term nutrient enrichment. Unlike other studies, results revealed an increase in bacterial diversity, particularly of oligotrophic bacteria in fertilized plots. We observed that nutrient addition strongly determines forb and grass rhizosphere composition, which could indicate different metabolic preferences in the bacterial communities. This study highlights how long-term fertilization of oligotroph-dominated wetlands could alter diversity and metabolism of rhizosphere bacterial communities in unexpected ways.
Collapse
Affiliation(s)
- Regina B Bledsoe
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Carol Goodwillie
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Ariane L Peralta
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
13
|
Du L, Chen Y, Chen Y, Zhuge Z, Fu X. Performance of woody and herbaceous plant polyculture in constructed wetland for treating domestic wastewater. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:679-686. [PMID: 32107924 DOI: 10.1080/15226514.2019.1707163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effect of polyculture of woody and herbaceous plant with different ecological niche in constructed wetlands (CWs) on wastewater treatment is unclear. Herein, three kinds of polyculture CWs were constructed to treat domestic wastewater: woody polyculture system (W, Nerium and Hibiscus), herbaceous polyculture system (H, Acorus and Typha), woody and herbaceous polyculture system (WH, Nerium, Hibiscus, Acorus and Typha) and non-planted system (N) as control. The seasonality removal performance of pollutant, activities of urease and phosphatase, microscopic characteristics of roots were measured. Results showed that the average removals of COD, TN and TP in WH were significantly higher than that in the other systems. Interspecies competition existed in WH system, while the difference in terms of biomass gradually diminished. Furthermore, the root lengths, area, volume and tip number were higher compared to the other systems. The correlation between the removal rate of TP and activity of phosphatase in upper and bottom layer of CWs showed the opposite tendency, the distribution of plant roots in polyculture essentially impact TP removal rate in CWs. Our results provide the necessary insights for appropriately selecting different plant types for doing polyculture in CWs.
Collapse
Affiliation(s)
- Lu Du
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Yonghua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Ying Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Zhengdong Zhuge
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, P. R. China
| | - Xinxi Fu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, P. R. China
| |
Collapse
|
14
|
Kumar P, Kaur R, Celestin D, Kumar P. Chromium removal efficiency of plant, microbe and media in experimental VSSF constructed wetlands under monocropped and co-cropped conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2071-2086. [PMID: 31773522 DOI: 10.1007/s11356-019-06439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Chromium (Cr), one of the most abundant and hazardous heavy metals, is generally observed to be widely distributed in environment, primarily due to the inter-mixing of the untreated domestic and industrial wastewaters. There has been an increased interest to replace conventional centralized treatment technologies with the low energy, low cost, and zero sludge producing decentralized constructed wetland technology. Therefore, a long-term investigation on the comparative metal removal efficiency of the experimental vertical sub-surface flow (VSSF) constructed wetland systems, irrigated with Cr-spiked ground waters, under both mono and mixed-culture conditions planted with five different macrophytes viz. Typha (T), Phragmites (P), Acorus (V), Arundo (A), and Vetiver (K), in as mono- and {viz. (TP), (PA), (KV), (AT), and (VT)} as co-cropped combinations along with unplanted (U) systems as controls was conducted at the ICAR-Indian Agricultural Research Institute, New Delhi, India. Long-term investigations revealed significant differences between metal removal efficiencies of the planted (61.6% to 78.5%) and the unplanted systems (32.8% to 47.9%). However, these long-term average metal removal efficiencies were found to be insignificantly different for the mono (78.5%) and the co-cropped systems (77.6%). On further compartmentalization of the experimental wetland system's Cr-removal efficiencies amongst the major components viz. plant, microbe, and substrate, it was observed that vegetation contributed the maximum (i.e., 33-48%) while the microbes and the substrate contributed only 4-20% and 8-28%, respectively. It was further observed that due to reduced microbial diversity under unplanted conditions, the planted systems were associated with 2-7% higher microbial and equivalently lower substrate removal efficiencies. Thus, microbial activity-mediated metal mobilization and plant uptake were observed to be the principal processes governing Cr removal in the test VSSF constructed wetland systems exposed to varying Cr concentrations. Amongst all test macrophytes and their combinations, Arundo (81.9%) and Acorus (84.5%) based monocropped systems and Arundo+Typha (89.3%) based co-cropped systems emerged to be the most superior Cr-removing systems. Graphical abstarct.
Collapse
Affiliation(s)
- Paritosh Kumar
- Centre for Environment Science & Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- School of Edaphic Stress Management, ICAR-National Institute of Abiotic Stress Management, Pune, Baramati, Maharashtra, 413115, India.
| | - Ravinder Kaur
- Water Technology Centre, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Defo Celestin
- Faculty of Agronomy & Agri Sci, School of Wood, Water & Natural Resources, University of Dschang, PO Box 786, Ebolowa, Cameroon
| | - Prakash Kumar
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
15
|
Milligan G, Poulos HM, Gilmore MS, Berlyn GP, Milligan J, Chernoff B. Estimation of short-term C-fixation in a New England temperate tidal freshwater wetland. Heliyon 2019; 5:e01782. [PMID: 31193883 PMCID: PMC6543080 DOI: 10.1016/j.heliyon.2019.e01782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/25/2019] [Accepted: 05/17/2019] [Indexed: 11/25/2022] Open
Abstract
Wetlands provide myriad ecosystem services, yet the C-cycling of vegetation within interior freshwater tidal wetlands remains poorly understood. To this end, we estimated species’-specific plant carbon-fixation rates for the six dominant wetland plant species in a large temperate freshwater wetland in Connecticut, USA. We integrated field C-fixation rates for dominant marsh plant species with satellite-derived leaf area index and wetland aerial extent data to: 1) quantify seasonal and species-level differences in wetland plant C-fixation rates; and 2) estimate whole-marsh emergent aquatic plant C-fixation rates over the growing season. Photosynthetic rates differed significantly by species and month (P < 0.05). Acorus calamus had the highest photosynthetic rate between May and September, and Acer saccharinum had the lowest. By integrating field photosynthetic data with wetland aerial extents, we estimated that the total annual C uptake by the vegetation in this wetland, which was 2868 Mg C. Herbaceous vegetation contributed to most of that stock (herbaceous vegetation = 2099.2 Mg C, forest = 769.6 Mg C), although soil respiration likely offset those numbers substantially. Our results demonstrate the importance of short-term above-ground freshwater wetland C-fixation, and that the emergent vegetative component of these wetland systems are key components of the tidal freshwater wetland C cycle.
Collapse
Affiliation(s)
- Gailynn Milligan
- Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459, United States
| | - Helen M Poulos
- College of the Environment, Wesleyan University, Middletown, CT 06459, United States
| | - Martha S Gilmore
- Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459, United States
| | - Graeme P Berlyn
- Yale School of Forestry and Environmental Studies, New Haven, CT 06511, United States
| | - Joseph Milligan
- Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459, United States.,Department of Geology, Baylor University, Waco, TX 76798, United States
| | - Barry Chernoff
- Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT 06459, United States.,College of the Environment, Wesleyan University, Middletown, CT 06459, United States.,Biology Department, Wesleyan University, Middletown, CT 06459, United States
| |
Collapse
|
16
|
Pan W, Wu C, Wang Q, Su Z, Zhou H, Chung AKC, Hartley W, Ge L. Effect of wetland plants and bacterial inoculation on dissipation of phenanthrene. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:870-876. [PMID: 28323450 DOI: 10.1080/15226514.2017.1301877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study attempts to evaluate the capacity of wetland plants' ability to dissipate phenanthrene (PHE) under waterlogged conditions. The results indicate that Typha latifolia and Vetiveria zizanioides may efficiently degrade PHE, and were much more effective when under combined plant cultivation with the inoculation of Pseudomonas frederiksbergensis (ATCC BAA-257) . Concentrations of PHE declined from 200 to less than 52 mg kg-1 in all treatments with plant cultivation. At the end of the experimental period, PHE was undetectable in combined plant cultivation in the presence of bacteria inoculation. Microbial biomass C(carbon), N(nitrogen), and P(phosphate) were significantly different (p < 0.05) in the presence and absence of bacteria inoculation with bacteria inoculation significantly (p < 0.05) increased microbial biomass P. The presence of bacteria inoculation and different plant species significantly (p < 0.05) decreased the PHE concentrations in the microcosms. The inoculation of bacteria and release of exudates from plant roots further enhanced the dissipation of PHE in sand. Concentrations of citric and malic acids were decreased up to 69% in bacteria-inoculated treatments, showing large citric and malic acids serving as a food source and growth substrate for bacteria.
Collapse
Affiliation(s)
- Weisong Pan
- a College of Bioscience and Biotechnology, Hunan Agricultural University , Changsha , P.R. China
| | - Chuan Wu
- b School of Metallurgy and Environment, Central South University , Changsha , P.R. China
| | - Qiming Wang
- a College of Bioscience and Biotechnology, Hunan Agricultural University , Changsha , P.R. China
| | - Zhaohong Su
- a College of Bioscience and Biotechnology, Hunan Agricultural University , Changsha , P.R. China
| | - Hui Zhou
- a College of Bioscience and Biotechnology, Hunan Agricultural University , Changsha , P.R. China
| | - Anna King Chuen Chung
- c Croucher Institute for Environmental Sciences, and Department of Biology , Hong Kong Baptist University , Hong Kong SAR , P.R. China
| | - William Hartley
- d Crop and Environment Sciences Department , Harper Adams University , Newport , Shropshire , United Kingdom
| | - Long Ge
- e Sanbio (Beijing) Tech Co., Ltd , Beijing , P.R. China
| |
Collapse
|
17
|
Sánchez-Carrillo S, Álvarez-Cobelas M, Angeler DG, Serrano-Grijalva L, Sánchez-Andrés R, Cirujano S, Schmid T. Elevated Atmospheric CO2 Increases Root Exudation of Carbon in Wetlands: Results from the First Free-Air CO2 Enrichment Facility (FACE) in a Marshland. Ecosystems 2017. [DOI: 10.1007/s10021-017-0189-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Fountoulakis MS, Daskalakis G, Papadaki A, Kalogerakis N, Manios T. Use of halophytes in pilot-scale horizontal flow constructed wetland treating domestic wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16682-16689. [PMID: 28560626 DOI: 10.1007/s11356-017-9295-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Recent findings encourage the use of halophytes in constructed wetlands for domestic wastewater treatment due to their special physiological characteristics as the ability to accumulate heavy metals and salts in their tissues makes them ideal candidates for constructed wetland vegetation. In this particular study, we investigated the application of halophytic plants in a horizontal flow constructed wetland for domestic wastewater treatment purposes. The pilot plant which was situated in Crete (Greece) was planted with a polyculture of halophytes (Tamarix parviflora, Juncus acutus, Sarcocornia perrenis, and Limoniastrum monopetalum). The system's performance was monitored for a period of 11 months during which it received primary treated wastewater from the local wastewater treatment plant. Results show that halophytes developed successfully in the constructed wetland and achieved organic matter and pathogen removal efficiencies comparable to those reported for reeds in previous works (63% and 1.6 log units, respectively). In addition, boron concentration in the effluent was reduced by 40% in comparison with the influent. Salinity as expressed by electrical conductivity did not change during the treatment, indicating that the accumulation of salts in the leaves is not able to overcome electrical conductivity increasing due to evapotranspiration. The results indicate an improvement in the treatment of domestic wastewater via the use of halophyte-planted CWs.
Collapse
Affiliation(s)
- Michael S Fountoulakis
- Department of Agriculture, Technological Educational Institute of Crete, Heraklion, Greece.
- TM Solutions Ltd, Heraklion, Greece.
| | - Giorgos Daskalakis
- Department of Agriculture, Technological Educational Institute of Crete, Heraklion, Greece
- TM Solutions Ltd, Heraklion, Greece
| | - Akrivi Papadaki
- Department of Agriculture, Technological Educational Institute of Crete, Heraklion, Greece
- TM Solutions Ltd, Heraklion, Greece
| | - Nicolas Kalogerakis
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Thrassyvoulos Manios
- Department of Agriculture, Technological Educational Institute of Crete, Heraklion, Greece
- TM Solutions Ltd, Heraklion, Greece
| |
Collapse
|
19
|
The rhizospheric microbial community structure and diversity of deciduous and evergreen forests in Taihu Lake area, China. PLoS One 2017; 12:e0174411. [PMID: 28379996 PMCID: PMC5381875 DOI: 10.1371/journal.pone.0174411] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/08/2017] [Indexed: 11/19/2022] Open
Abstract
Soil bacteria are important drivers of biogeochemical cycles and participate in many nutrient transformations in the soil. Meanwhile, bacterial diversity and community composition are related to soil physic-chemical properties and vegetation factors. However, how the soil and vegetation factors affect the diversity and community composition of bacteria is poorly understood, especially for bacteria associated with evergreen and deciduous trees in subtropical forest ecosystems. In the present paper, the microbial communities of rhizospheric soils associated with different types of trees were analyzed by Illumina MiSeq sequencing the V3-V4 region of the 16S rRNA gene. A total of 121,219 effective 16S rRNA gene sequences were obtained, which were classified into 29 bacterial phyla and 2 archaeal phyla. The dominant phyla across all samples (>5% of good-quality sequences in each sample) were Proteobacteria, Acidobacteria, Firmicutes and Bacteroidetes. The bacterial community composition and diversity were largely affected by both soil pH and tree species. The soil pH was the key factor influencing bacterial diversity, with lower pH associated with less diverse communities. Meanwhile, the contents of NO3− were higher in evergreen tree soils than those associated with deciduous trees, while less NH4+ than those associated with deciduous trees, leading to a lower pH and indirectly influencing the diversity and composition of the bacteria. The co-occurrence patterns were assessed by network analysis. A total of 415 pairs of significant and robust correlations (co-occurrence and negative) were identified from 89 genera. Sixteen hubs of co-occurrence patterns, mainly under the phyla Acidobacteria, Proteobacteria, Firmicutes and Bacteroidetes, may play important roles in sustaining the stability of the rhizospheric microbial communities. In general, our results suggested that local environmental conditions and soil pH were important in shaping the bacterial community of the Taihu Lake zone in east China.
Collapse
|