1
|
Han A, Wang C, Li J, Xu L, Guo X, Li W, Zhou F, Liu R. Physiological mechanism of sodium salicylate and folcisteine on alleviating salt stress in wheat seedlings. Sci Rep 2023; 13:22869. [PMID: 38129459 PMCID: PMC10739812 DOI: 10.1038/s41598-023-49629-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Soil salinization substantially hampers the growth and development of wheat, potentially leading to plant death in severe cases, thus reducing grain yield and quality. This phenomenon poses a significant threat to food security in China. We investigated the effects of two exogenous plant growth regulators, sodium salicylate and folcisteine, on the wheat physiology and key characteristics under salt stress using hydroponics method. The results indicated that both regulators effectively mitigated the growth inhibition of wheat under salt stress. We assessed morphological and physiological indexes, including antioxidant enzyme activities (superoxide dismutase [SOD], catalase [CAT], peroxidase [POD]) and malondialdehyde (MDA) concentration in wheat after foliar application of sodium salicylate and folcisteine under salt stress. The findings revealed that sodium salicylate was more effective than folcisteine. However, folcisteine showed superior performance in reducing hydrogen peroxide (H2O2) content and superoxide anion (O2-) level compared to sodium salicylate. Simultaneously, Concurrent application of both regulators synergistically enhanced their efficacy, yielding the most favorable outcomes. In addition, this study noted that while the initial effects of these regulators were not pronounced, their sustained application significantly improved wheat growth in stressful condition and alleviated the detrimental impacts of salt stress. This approach could effectively guarantee the food security and production in China.
Collapse
Affiliation(s)
- Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Cuiling Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jingchong Li
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Li Xu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaoyan Guo
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Weiguo Li
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Feng Zhou
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring By Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang, 453003, China.
- Baiquan Institute of Advanced Agricultural Technology, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Liu X, Li A, Wang S, Lan C, Wang Y, Li J, Zhu J. Overexpression of Pyrus sinkiangensis HAT5 enhances drought and salt tolerance, and low-temperature sensitivity in transgenic tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1036254. [PMID: 36420018 PMCID: PMC9676457 DOI: 10.3389/fpls.2022.1036254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The homeodomain-leucine zipper protein HAT belongs to the homeodomain leucine zipper subfamily (HD-Zip) and is important for regulating plant growth and development and stress tolerance. To investigate the role of HAT5 in tolerance to drought, salt, and low temperature stress, we selected a HAT gene from Pyrus sinkiangensis Yü (Pyrus sinkiangensis T.T. Yu). The sequences were analyzed using ioinformatics, and the overexpressed tomato lines were obtained using molecular biology techniques. The phenotypes, physiological, and biochemical indexes of the wild-type and transgenic tomato lines were observed under different stress conditions. We found that the gene had the highest homology with PbrHAT5. Under drought and NaCl stress, osmotic regulatory substances (especially proline) were significantly accumulated, and antioxidant enzyme activities were enhanced. The malondialdehyde level and relative electrical conductivity of transgenic tomatoes under low temperature (freezing) stress were significantly higher than those of wild-type tomatoes. The reactive oxygen species scavenging system was unbalanced. This study found that PsHAT5 improved the tolerance of tomatoes to drought and salt stress by regulating proline metabolism and oxidative stress ability, reducing the production of reactive oxygen species, and maintaining normal cell metabolism. In conclusion, the PsHAT5 transcription factor has great potential in crop resistance breeding, which lays a theoretical foundation for future excavation of effective resistance genes of the HD-Zip family and experimental field studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Li
- *Correspondence: Jianbo Zhu, ; Jin Li,
| | | |
Collapse
|
3
|
Saharan BS, Brar B, Duhan JS, Kumar R, Marwaha S, Rajput VD, Minkina T. Molecular and Physiological Mechanisms to Mitigate Abiotic Stress Conditions in Plants. Life (Basel) 2022; 12:1634. [PMID: 36295069 PMCID: PMC9605384 DOI: 10.3390/life12101634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 10/03/2023] Open
Abstract
Agriculture production faces many abiotic stresses, mainly drought, salinity, low and high temperature. These abiotic stresses inhibit plants' genetic potential, which is the cause of huge reduction in crop productivity, decrease potent yields for important crop plants by more than 50% and imbalance agriculture's sustainability. They lead to changes in the physio-morphological, molecular, and biochemical nature of the plants and change plants' regular metabolism, which makes them a leading cause of losses in crop productivity. These changes in plant systems also help to mitigate abiotic stress conditions. To initiate the signal during stress conditions, sensor molecules of the plant perceive the stress signal from the outside and commence a signaling cascade to send a message and stimulate nuclear transcription factors to provoke specific gene expression. To mitigate the abiotic stress, plants contain several methods of avoidance, adaption, and acclimation. In addition to these, to manage stress conditions, plants possess several tolerance mechanisms which involve ion transporters, osmoprotectants, proteins, and other factors associated with transcriptional control, and signaling cascades are stimulated to offset abiotic stress-associated biochemical and molecular changes. Plant growth and survival depends on the ability to respond to the stress stimulus, produce the signal, and start suitable biochemical and physiological changes. Various important factors, such as the biochemical, physiological, and molecular mechanisms of plants, including the use of microbiomes and nanotechnology to combat abiotic stresses, are highlighted in this article.
Collapse
Affiliation(s)
- Baljeet Singh Saharan
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Basanti Brar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | | | - Ravinder Kumar
- Department of Biotechnology, Ch. Devi Lal University, Sirsa 125055, India
| | - Sumnil Marwaha
- ICAR-National Research Centre on Camel, Bikaner 334001, India
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| |
Collapse
|
4
|
Vega A, Delgado N, Handford M. Increasing Heavy Metal Tolerance by the Exogenous Application of Organic Acids. Int J Mol Sci 2022; 23:5438. [PMID: 35628249 PMCID: PMC9141679 DOI: 10.3390/ijms23105438] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Several metals belong to a group of non-biodegradable inorganic constituents that, at low concentrations, play fundamental roles as essential micronutrients for the growth and development of plants. However, in high concentrations they can have toxic and/or mutagenic effects, which can be counteracted by natural chemical compounds called chelators. Chelators have a diversity of chemical structures; many are organic acids, including carboxylic acids and cyclic phenolic acids. The exogenous application of such compounds is a non-genetic approach, which is proving to be a successful strategy to reduce damage caused by heavy metal toxicity. In this review, we will present the latest literature on the exogenous addition of both carboxylic acids, including the Kreb's Cycle intermediates citric and malic acid, as well as oxalic acid, lipoic acid, and phenolic acids (gallic and caffeic acid). The use of two non-traditional organic acids, the phytohormones jasmonic and salicylic acids, is also discussed. We place particular emphasis on physiological and molecular responses, and their impact in increasing heavy metal tolerance, especially in crop species.
Collapse
Affiliation(s)
| | | | - Michael Handford
- Centro de Biología Molecular Vegetal, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800024, Chile; (A.V.); (N.D.)
| |
Collapse
|
5
|
Cai M, Zhao X, Wang X, Shi G, Hu C. Se changed the component of organic chemicals and Cr bioavailability in pak choi rhizosphere soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67331-67342. [PMID: 34245415 DOI: 10.1007/s11356-021-13465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/11/2021] [Indexed: 06/13/2023]
Abstract
Rhizosphere organic chemicals response and its role on Cr/Se adsorption are of great importance to understand Cr/Se bioavailability in Cr-contaminated soil with the application of Se. In the current work, the processes were carried out using rhizobox experiment (Brassica campestris L. ssp. chinensis Makino). The results showed that in soil contaminated by 200 mg kg-1 Cr(III), Se(IV) complexed with Cr(III) and carboxylic acid (cis-9,10-Epoxystearic acid, hexadecanedioic acid) reduced Cr(VI) to Cr(III), thus increasing of Cr adsorption, furtherly decreasing Cr bioavailability. While in soil contaminated by 120 mg kg-1 Cr(VI), Se(VI) competed for adsorption sites with Cr(VI) and salicylic acid activated insoluble Cr(III), thus decreasing Cr adsorption, finally increasing Cr bioavailability. Moreover, with Cr contamination, Se bioavailability in soil was enhanced by the secretion of carboxylic acid, which can reduce Se to lower valent state and compete the adsorption sites and complex with Se oxyanion. These results yielded a better understanding of rhizosphere dynamics regulating by Se application in Cr-contaminated soil. Moreover, the current study supplemented the theoretical basis for beneficial elements application as an environment-friendly resource to facilitate cleaner production in heavy metal contaminated soil.
Collapse
Affiliation(s)
- Miaomiao Cai
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan, 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan, 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Hubei Provincial Engineering Laboratory for New-Type Fertilizer/Research Center of Trace Elements/Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan, 430070, China.
| |
Collapse
|
6
|
Gupta S, Seth CS. Salicylic acid alleviates chromium (VI) toxicity by restricting its uptake, improving photosynthesis and augmenting antioxidant defense in Solanum lycopersicum L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2651-2664. [PMID: 34924716 PMCID: PMC8639991 DOI: 10.1007/s12298-021-01088-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 05/03/2023]
Abstract
Contamination of agricultural soil by chromium (Cr) is a serious menace to environmental safety and global food security. Although potential of salicylic acid (SA) in mitigating heavy metal (HM) toxicity in plants is well recognized, detailed physiological mechanisms behind such beneficial effects under Cr-stress in tomato (Solanum lycopersicum L.) plant are far from being completely unravelled. The present study evaluated the efficacy of exogenously applied SA, in alleviating Cr-mediated alterations on photosynthesis and antioxidant defense in tomato exposed to three different concentrations of Cr(VI) [0, 50, and 100 mg Cr(VI) kg-1 soil]. Exposure of tomato plants to Cr resulted in increased Cr-accumulation and oxidative damage, as signposted by high Cr concentration in root as well as shoot, augmented malondialdehyde (MDA) and superoxides levels, and inhibition in enzymes of ascorbate-glutathione (AsA-GSH) cycle. Furthermore, a significant (P ≤ 0.05) reduction in photosynthetic pigments and gas exchange parameters was also evident in Cr-stressed tomato plants. Findings of the present study showed that exogenous application of 0.5 mM SA not only promoted plant growth subjected to Cr, but also restored Cr-mediated disturbances in plant physiology. A significant (P ≤ 0.05) decrease in Cr acquisition and translocation as evidenced by improved growth and photosynthesis in SA-treated plants was observed. Additionally, exogenous SA application by virtue of its positive effect on efficient antioxidant system ameliorated the Cr-mediated oxidative stress in tomato plants as signposted by lower MDA and superoxide levels and improved AsA-GSH cycle. Overall, current study advocates the potential of exogenous SA application in amelioration of Cr-mediated physiological disturbances in tomato plant.
Collapse
Affiliation(s)
- Samta Gupta
- Department of Botany, University of Delhi, Delhi, 110007 India
| | | |
Collapse
|
7
|
Kaur G, Sharma P, Rathee S, Singh HP, Batish DR, Kohli RK. Salicylic acid pre-treatment modulates Pb 2+-induced DNA damage vis-à-vis oxidative stress in Allium cepa roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51989-52000. [PMID: 33999323 DOI: 10.1007/s11356-021-14151-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The current study investigated the putative role of salicylic acid (SA) in modulating Pb2+-induced DNA and oxidative damage in Allium cepa roots. Pb2+ exposure enhanced free radical generation and reduced DNA integrity and antioxidant machinery after 24 h; however, SA pre-treatment (for 24 h) ameliorated Pb2+ toxicity. Pb2+ exposure led to an increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) accumulation and enhanced superoxide radical and hydroxyl radical levels. SA improved the efficiency of enzymatic antioxidants (ascorbate and guaiacol peroxidases [APX, GPX], superoxide dismutases [SOD], and catalases [CAT]) at 50-μM Pb2+ concentration. However, SA pre-treatment could not improve the efficiency of CAT and APX at 500 μM of Pb2+ treatment. Elevated levels of ascorbate and glutathione were observed in A. cepa roots pre-treated with SA and exposed to 50 μM Pb2+ treatment, except for oxidized glutathione. Nuclear membrane integrity test demonstrated the ameliorating effect of SA by reducing the number of dark blue-stained nuclei as compared to Pb2+ alone treatments. SA was successful in reducing DNA damage in cell exposed to higher concentration of Pb2+ (500 μM) as observed through comet assay. The study concludes that SA played a major role in enhancing defense mechanism and protecting against DNA damage by acclimatizing the plant to Pb2+-induced toxicity.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Agriculture Victoria, AgriBio, The Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| | - Daizy Rani Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India.
| | | |
Collapse
|
8
|
Bashir MA, Naveed M, Ashraf S, Mustafa A, Ali Q, Rafique M, Alamri S, Siddiqui MH. Performance of Zea mays L. cultivars in tannery polluted soils: Management of chromium phytotoxicity through the application of biochar and compost. PHYSIOLOGIA PLANTARUM 2021; 173:129-147. [PMID: 33216991 DOI: 10.1111/ppl.13277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/19/2020] [Accepted: 11/11/2020] [Indexed: 05/22/2023]
Abstract
Soil contamination with heavy metals caused by various industrial activities is a threatening global environmental issue of the current era. Chromium (Cr) is the most toxic heavy metal used in leather industry and disposal of untreated wastewater into natural water bodies leads to contamination of natural soil and water resources. We studied the combined effect of biochar and compost on improving the tolerance to Cr toxicity by enhancing the morpho-physiological and biochemical attributes of two maize cultivars (P-1543 and NK-8441) grown in tannery waste polluted soils. The results of this study reveal that Cr toxicity reduced the plant growth by affecting physiological and biochemical attributes. Here, compost and biochar application significantly increased the plant biomass (fresh and dry), height, photosynthesis, chlorophyll content, water relation, starch, and protein content over treatment set as control. However, significant decline in electrolyte leakage (EL), proline, lipid peroxidation, soluble sugars, and antioxidant enzymes (APX, GPX, GR, GST, GSH, SOD, and CAT) was observed by combined application of compost and biochar. Hexavalent chromium concentration was maximum decreased to 4.1 μg g-1 in soil after post-harvesting of maize cultivar NK-8441, while in roots and shoots to 22.6 and 19.2 μg g-1 of maize cultivar P-1543, respectively, by combined application of compost and biochar. Moreover, these both amendments in combination showed considerably better results than their sole application and cultivar P-1543 comparatively performed better than NK 8441, in both K and S soils. Correlation and principal component analysis (PCA) revealed mostly highly positive associations among all the studied morpho, physio, and biochemical attributes of maize plant with the few exceptions, particularly concentration of Cr(III) and Cr(VI) in soil. The present work concluded that combined use of biochar and compost has great potential to decrease Cr toxicity and improve plant growth in tannery polluted soils.
Collapse
Affiliation(s)
- Muhammad A Bashir
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sobia Ashraf
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Adnan Mustafa
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qasim Ali
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Munazza Rafique
- Soil Bacteriology Section, Agricultural Biotechnology Research Institute, AARI, Faisalabad, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Chaâbene Z, Rorat A, Kriaa W, Rekik I, Mejdoub H, Vandenbulcke F, Elleuch A. In-site and Ex-site Date Palm Exposure to Heavy Metals Involved Infra-Individual Biomarkers Upregulation. PLANTS 2021; 10:plants10010137. [PMID: 33445405 PMCID: PMC7826821 DOI: 10.3390/plants10010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
As a tree of considerable importance in arid regions-date palm, Phoenix dactylifera L. survival in contaminated areas of Sfax city has drawn our attention. Leaf samples of the plants grown in the study area showed high levels of cadmium (Cd), copper (Cu), and chromium (Cr). On the basis of this finding, the cellular mechanisms that explain these metal accumulations were investigated in controlled conditions. After four months of exposure to Cd, Cr, or Cu, high bioconcentration and translocation factor (TF>1) have been shown for date palm plantlets exposed to Cd and low TF values were obtained for plantlets treated with Cr and Cu. Moreover, accumulation of oxidants and antioxidant enzyme activities occurred in exposed roots to Cu and Cd. Secondary metabolites, such as polyphenols and flavonoids, were enhanced in plants exposed at low metal concentrations and declined thereafter. Accumulation of flavonoids in cells may be correlated with the expression of the gene encoding Pdmate5, responsible for the transport of secondary metabolites, especially flavonoids. Other transporter genes responded positively to metal incorporation, especially Pdhma2, but also Pdabcc and Pdnramp6. The latter would be a new candidate gene sensitive to metallic stress in plants. Expressions of gene coding metal chelators were also investigated. Pdpcs1 and Pdmt3 exhibited a strong induction in plants exposed to Cr. These modifications of the expression of some biochemical and molecular based-markers in date palm helped to better understand the ability of the plant to tolerate metals. They could be useful in assessing heavy metal contaminations in polluted soils and may improve accumulation capacity of other plants.
Collapse
Affiliation(s)
- Zayneb Chaâbene
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia; (H.M.); (A.E.)
- Laboratoire de Génie Civil et géo-Environnement–Université de Lille 1, F-59655 Villeneuve d’Ascq, France; (A.R.); (F.V.)
- Correspondence:
| | - Agnieszka Rorat
- Laboratoire de Génie Civil et géo-Environnement–Université de Lille 1, F-59655 Villeneuve d’Ascq, France; (A.R.); (F.V.)
| | - Walid Kriaa
- Environmental Science Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Imen Rekik
- High Institute of Applied Biology of Medenine, Medenine 4119, Tunisia;
| | - Hafedh Mejdoub
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia; (H.M.); (A.E.)
| | - Franck Vandenbulcke
- Laboratoire de Génie Civil et géo-Environnement–Université de Lille 1, F-59655 Villeneuve d’Ascq, France; (A.R.); (F.V.)
| | - Amine Elleuch
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Sfax 3000, Tunisia; (H.M.); (A.E.)
| |
Collapse
|
10
|
Jia H, Wang X, Wei T, Wang M, Liu X, Hua L, Ren X, Guo J, Li J. Exogenous salicylic acid regulates cell wall polysaccharides synthesis and pectin methylation to reduce Cd accumulation of tomato. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111550. [PMID: 33254408 DOI: 10.1016/j.ecoenv.2020.111550] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/24/2020] [Accepted: 10/20/2020] [Indexed: 05/21/2023]
Abstract
Cadmium (Cd) is harmful to plant growth and can be easily transferred from soil to plants. Plant cell wall plays important role in preventing Cd from entering cells. Salicylic acid (SA) mediated defense response increases plant resistance to heavy metals. In this study, all tomato seedlings were pre-treated with 100 μM SA for 3 d, then seedlings were used to analyze the role of SA in regulating plant cell wall resistance to Cd stress. The results showed that exogenous SA significantly reduced Cd accumulation in tomato plants and changed Cd distribution. By analyzing the cell wall composition, it was found cellulose, hemicellulose, pectin, and lignin were induced by SA. Interestingly, the content of Cd in pectin decreased by SA pretreatment, however it was increased in cellulose. Gene expression analysis showed SA up-regulated the expression level of lignin and cellulose synthase genes, but down-regulated the expression of pectin methylesterase related genes. In addition, SA down-regulated the activity of pectin methylesterase. These results indicated that SA pretreatment up-regulated cell wall polysaccharide synthesis and related gene expression to thicken the cell wall and block Cd from passing through. Furthermore, SA decreased pectin methylesterase activity and content to reduce cell wall Cd accumulation and change the Cd partition ratio.
Collapse
Affiliation(s)
- HongLei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - XiaoHong Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Min Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xun Liu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Li Hua
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - XinHao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - JunKang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
11
|
Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules 2020; 25:540. [PMID: 31991931 PMCID: PMC7037467 DOI: 10.3390/molecules25030540,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Salicylic acid (SA) is a very simple phenolic compound (a C7H6O3 compound composed of an aromatic ring, one carboxylic and a hydroxyl group) and this simplicity contrasts with its high versatility and the involvement of SA in several plant processes either in optimal conditions or in plants facing environmental cues, including heavy metal (HM) stress. Nowadays, a huge body of evidence has unveiled that SA plays a pivotal role as plant growth regulator and influences intra- and inter-plant communication attributable to its methyl ester form, methyl salicylate, which is highly volatile. Under stress, including HM stress, SA interacts with other plant hormones (e.g., auxins, abscisic acid, gibberellin) and promotes the stimulation of antioxidant compounds and enzymes thereby alerting HM-treated plants and helping in counteracting HM stress. The present literature survey reviews recent literature concerning the roles of SA in plants suffering from HM stress with the aim of providing a comprehensive picture about SA and HM, in order to orientate the direction of future research on this topic.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence: (A.S.); (F.A.); (M.L.)
| | - Gagan Preet Singh Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh 160047, India;
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, RC, Italy
- Correspondence: (A.S.); (F.A.); (M.L.)
| | | | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India;
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, I-56124 Pisa, Italy
- Correspondence: (A.S.); (F.A.); (M.L.)
| |
Collapse
|
12
|
Sharma A, Sidhu GPS, Araniti F, Bali AS, Shahzad B, Tripathi DK, Brestic M, Skalicky M, Landi M. The Role of Salicylic Acid in Plants Exposed to Heavy Metals. Molecules 2020; 25:E540. [PMID: 31991931 PMCID: PMC7037467 DOI: 10.3390/molecules25030540] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 12/18/2022] Open
Abstract
Salicylic acid (SA) is a very simple phenolic compound (a C7H6O3 compound composed of an aromatic ring, one carboxylic and a hydroxyl group) and this simplicity contrasts with its high versatility and the involvement of SA in several plant processes either in optimal conditions or in plants facing environmental cues, including heavy metal (HM) stress. Nowadays, a huge body of evidence has unveiled that SA plays a pivotal role as plant growth regulator and influences intra- and inter-plant communication attributable to its methyl ester form, methyl salicylate, which is highly volatile. Under stress, including HM stress, SA interacts with other plant hormones (e.g., auxins, abscisic acid, gibberellin) and promotes the stimulation of antioxidant compounds and enzymes thereby alerting HM-treated plants and helping in counteracting HM stress. The present literature survey reviews recent literature concerning the roles of SA in plants suffering from HM stress with the aim of providing a comprehensive picture about SA and HM, in order to orientate the direction of future research on this topic.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Gagan Preet Singh Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh 160047, India;
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, RC, Italy
| | | | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India;
| | - Marian Brestic
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 94976 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic;
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy
- CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, I-56124 Pisa, Italy
| |
Collapse
|
13
|
Shahid M, Saleem M, Anwar H, Khalid S, Tariq TZ, Murtaza B, Amjad M, Naeem MA. A multivariate analysis of comparative effects of heavy metals on cellular biomarkers of phytoremediation using Brassica oleracea. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:617-627. [PMID: 31856592 DOI: 10.1080/15226514.2019.1701980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The biochemical/physiological variations in plant responses to heavy metals stress govern plant's ability to phytoremediate/tolerate metals. So, the comparative effects of different types of heavy metals on various plant responses can better elucidate the mechanisms of metal toxicity and detoxification. This study compared the physiological modifications, photosynthetic performance and detoxification potential of Brassica oleracea under different levels of chromium (Cr), nickel (Ni) and selenium (Se). All the heavy metals induced a severe phytotoxicity to B. oleracea in terms of chlorophyll contents, Ni being the most toxic (76% decrease). Brassica oleracea showed high lipid oxidation: 87% and 273%, respectively in leaves and roots. Furthermore, all the metals increased the activities of catalase and peroxidase, while decreased superoxide dismutase and ascorbate peroxidase. Interestingly, heavy metals decreased hydrogen peroxide contents perhaps due to their possible transformation to another form of reactive oxygen species such as hydroxyl radical. Among the three metals, Ni was more phytotoxic than Cr and Se. Moreover, the phytoremediation/tolerance potential of B. oleracea to Ni, Cr and Se stress varied with the type of metal, their applied levels, response variables and plant organ type (root/shoot). The multivariate analysis separated different plant response variables and heavy metal treatments into different groups based on their correlations.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Mazhar Saleem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Hasnain Anwar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | | | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| |
Collapse
|