1
|
Li C, Wang Q, Hou X, Zhao C, Guo Q. Overexpression of IlHMA2, from Iris lactea, Improves the Accumulation of and Tolerance to Cadmium in Tobacco. PLANTS (BASEL, SWITZERLAND) 2023; 12:3460. [PMID: 37836200 PMCID: PMC10574785 DOI: 10.3390/plants12193460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Long-distance transport cadmium (Cd) from roots to shoots is a key factor for Cd phytoremediation. Our previous study indicated that heavy metal P1B2-ATPases, IlHMA2, was involved in improving the accumulation of Cd via mediated long-distance transport Cd, contributing to the phytoremediation in Cd accumulator Iris lactea. However, whether the overexpression of IlHMA2 could enhance the accumulation and tolerance to Cd remains unclear in plants. Here, we generated transgenic tobacco overexpressing IlHMA2 and tested its effect on the translocation and accumulation of Cd and zinc (Zn), as well as the physio-biochemical characteristics under 50 mg/L Cd exposure. The overexpression of IlHMA2 significantly increased Cd concentrations in xylem saps, resulting in enhanced root-to-shoot Cd translocation compared with wild-type. Meanwhile, overexpressing IlHMA2 promoted Zn accumulations, accompanied by elevating proline contents and antioxidant enzyme activity (SOD, POD, and CAT) to diminish the overproduction of ROS in transgenic tobacco. These pieces of evidence suggested that higher Zn concentrations and lower ROS levels could tremendously alleviate Cd toxicity for transgenic tobacco, thereby improving the growth and tolerance. Overall, the overexpression of IlHMA2 could facilitate Cd accumulation and enhance its tolerance in tobacco exposed to Cd contaminations. This would provide a valuable reference for improving Cd phytoremediation efficiency.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Guo
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (C.L.); (Q.W.); (X.H.); (C.Z.)
| |
Collapse
|
2
|
Rocha CS, Kochi LY, Brito JCM, Kitamura RSA, Carneiro DM, Dos Reis MV, Gomes MP. Pharmaceutical-contaminated irrigation water: implications for ornamental plant production and phytoremediation using enrofloxacin-accumulating species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:97253-97266. [PMID: 37587399 DOI: 10.1007/s11356-023-29317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Enrofloxacin (Enro) has been widely encountered in natural water sources, and that water is often used for irrigation in crop production systems. Due to its phytotoxicity and accumulation in plant tissues, the presence of Enro in water used for crop irrigation may represent economical and toxicological concerns. Here, we irrigated two ornamental plant species (Zantedeschia rehmannii Engl. and Spathiphyllum wallisii Regel.) with water artificially contaminated with the antimicrobial enrofloxacin (Enro; 0, 5, 10, 100, and 1000 μg L-1) to evaluate its effects on ornamental plant production, as well as its accumulation and distribution among different plant organs (roots, leaves, bulbs, and flower stems), and examined the economic and environmental safety of commercializing plants produced under conditions of pharmaceutical contamination. The presence of Enro in irrigation water was not found to disrupt plant growth (biomass) or flower production. Both species accumulated Enro, with its internal concentrations distributed as the following: roots > leaves > bulbs > flower stems. In addition to plant tolerance, the content of Enro in plant organs indicated that both Z. rehmannii and S. wallisii could be safety produced under Enro-contaminated conditions and would not significantly contribute to contaminant transfer. The high capacity of those plants to accumulate Enro in their tissues, associated with their tolerance to it, indicates them for use in Enro-phytoremediation programs.
Collapse
Affiliation(s)
- Camila Silva Rocha
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Paraná, 81531-980, Brazil
| | - Leticia Yoshie Kochi
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Paraná, 81531-980, Brazil
| | - Júlio Cesar Moreira Brito
- Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80, Belo Horizonte, Minas Gerais, 30510-010, Brazil
- Laboratório de Micropropagação de Plantas, Departamento de Fitotecnia E Fitossanidade, Setor de Ciências Agrárias, Universidade Federal Do Paraná, Rua Dos Funcionário, 1540, Juvevê, Curitiba, Paraná, 80035-050, Brazil
| | - Rafael Shinji Akiyama Kitamura
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Paraná, 81531-980, Brazil
| | - Daniella Moreira Carneiro
- Horto Botânico, Departamento de Agricultura, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Michele Valquíria Dos Reis
- Horto Botânico, Departamento de Agricultura, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, Paraná, 81531-980, Brazil.
| |
Collapse
|
3
|
Zheng MM, Feng D, Liu HJ, Yang GL. Subcellular distribution, chemical forms of cadmium and rhizosphere microbial community in the process of cadmium hyperaccumulation in duckweed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160389. [PMID: 36423841 DOI: 10.1016/j.scitotenv.2022.160389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Duckweed is a newly reported Cd hyperaccumulator that grow rapidly; however, little is known about its tolerance and detoxification mechanisms. In this study, we investigated the tissue, subcellular, and chemical form distribution of the Cd in duckweed and studied the influences of Cd on duckweed growth, ultrastructure, and rhizosphere microbial community. The results showed that Cd could negatively affect the growth of duckweed and shorten the root length. More Cd accumulated in the roots than in the leaves, and Cd was transferred from the roots to the leaves with time. During 12-24 h, Cd mainly existed in the cell wall fraction (2.05 %-95.52 %) and the organelle fraction (5.03 %-97.80 %), followed the soluble fraction (0.14 %-16.98 %). Over time, the proportion of Cd in the organelles increased (46.64 %-92.83 %), exceeding that in the cell wall (6.79 %-66.23 %), which indicated that duckweed detoxification mechanism may be related to the retention of cell wall and vacuole. The main chemical form of Cd was the NaCl-extracted state (30.15 %-88.66 %), which was integrated with pectate and protein. With increasing stress concentration and time, the proportion of the HCl-extracted state and HAc-extracted state increased, and they were low-toxic Cd oxalate and Cd phosphate, respectively. Cd damaged the ultrastructure of cells such as chloroplasts and mitochondria and inhibited the diversity of microbial communities in the duckweed rhizosphere; however, the dominant populations that could tolerate heavy metals increased. It was speculated that duckweed distributed Cd in a less toxic chemical form in a less active location, mainly through retention in the root cell wall and sequestration in the leaf vacuoles, and is dynamically adjusted. The rhizosphere microbial communities tolerate heavy metals may also be one of the mechanisms by which duckweed can tolerate Cd. This study revealed the mechanism of duckweed tolerance and detoxification of Cd at the molecular level and provides a theoretical basis for further development of duckweed.
Collapse
Affiliation(s)
- Meng-Meng Zheng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center forMountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dan Feng
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center forMountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Hui-Jiao Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center forMountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Gui-Li Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), CollaborativeInnovation Center forMountain Ecology & Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China.
| |
Collapse
|
4
|
Liu X, Li W, Wang M, Cao Y, Zhang T, Hu H, Cheng X, Yan Q. Establishment of hairy root system of transgenic IRT1 brassica campestris L. and preliminary study of its effect on cadmium enrichment. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1455-1462. [PMID: 36597829 DOI: 10.1080/15226514.2022.2164247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is the main heavy metal pollutant in soil. The combination of genetic engineering technology and Rizobium rhizogenes mediated technology can effectively improve the enrichment efficiency of heavy metals in super accumulators and reduce soil heavy metal pollution. In this study, the transgenic hairy root system containing the IRT1 gene of Cd hyperaccumulator-Brassica campestris L. was successfully constructed by the R. rhizogenes mediated method (IRT1 gene come from Arabidopsis thaliana). The hairy roots of each subculture can grow stably within 6 weeks, and IRT1 gene will not be lost within 50 subcultures., which is detected using PCR method. The results of Cd enrichment experiments showed that after treatment with 100 µmol/L Cd for 14 days, the growth state of transgenic IRT1 hairy roots only showed slight browning. Also, the accumulation value of Cd reached 331.61 µg/g and the enrichment efficiency of transgenic IRT1 hairy roots was 13.8% higher than that of wild-type hairy roots. Western blotting results showed that the expression of IRT1 protein in transgenic hairy roots was significantly higher than that of wild-type hairy roots under Cd stress. The above results indicated that the overexpression of IRT1 gene can help B. campestris L. hairy roots to effectively cope with Cd stress and improve its ability to enrich Cd.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Wenxuan Li
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Menghua Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Yushen Cao
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Teng Zhang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Honggang Hu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Qiong Yan
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
5
|
Kenny CR, Ring G, Sheehan A, Mc Auliffe MAP, Lucey B, Furey A. Novel metallomic profiling and non-carcinogenic risk assessment of botanical ingredients for use in herbal, phytopharmaceutical and dietary products using HR-ICP-SFMS. Sci Rep 2022; 12:17582. [PMID: 36266322 PMCID: PMC9584900 DOI: 10.1038/s41598-022-16873-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2022] [Indexed: 01/13/2023] Open
Abstract
Knowledge of element concentrations in botanical extracts is relevant to assure consumer protection given the increased interest in plant-based ingredients. This study demonstrates successful multi-element investigations in order to address the lack of comprehensive profiling data for botanical extracts, while reporting for the first time the metallomic profile(s) of arnica, bush vetch, sweet cicely, yellow rattle, bogbean, rock-tea and tufted catchfly. Key element compositions were quantified using a validated HR-ICP-SFMS method (µg kg-1) and were found highly variable between the different plants: Lithium (18-3964); Beryllium (3-121); Molybdenum (75-4505); Cadmium (5-325); Tin (6-165); Barium (747-4646); Platinum (2-33); Mercury (5-30); Thallium (3-91); Lead (12-4248); Bismuth (2-30); Titanium (131-5827); Vanadium (15-1758); Chromium (100-4534); Cobalt (21-652); Nickel (230-6060) and Copper (1910-6340). Compendial permissible limits were not exceeded. Overall, no evidence of a health risk to consumers could be determined from consumption of the investigated plants at reasonable intake rates. Mathematical risk modelling (EDI, CDI, HQ, HI) estimated levels above safe oral thresholds only for Cd (16%) and Pb (8%) from higher intakes of the respective plant-derived material. Following high consumption of certain plants, 42% of the samples were categorised as potentially unsafe due to cumulative exposure to Cu, Cd, Hg and Pb. PCA suggested a potential influence of post-harvest processing on Cr, Ti and V levels in commercially-acquired plant material compared to wild-collected and farm-grown plants. Moreover, a strong correlation was observed between Pb-Bi, Be-V, Bi-Sn, and Tl-Mo occurrence. This study may support future research by providing both robust methodology and accompanying reference profile(s) suitable for the quality evaluation of essential elements and/or metal contaminants in botanical ingredients.
Collapse
Affiliation(s)
- Ciara-Ruth Kenny
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Department of Biological Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Gavin Ring
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Aisling Sheehan
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Michael A P Mc Auliffe
- Centre for Advanced Photonics and Process Analysis (CAPPA), Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Brigid Lucey
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Department of Biological Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland
| | - Ambrose Furey
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Department of Biological Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland.
- Department of Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, Co. Cork, T12 P928, Ireland.
| |
Collapse
|
6
|
Duan Y, Zhang Y, Zhao B. Lead, zinc tolerance mechanism and phytoremediation potential of Alcea rosea (Linn.) Cavan. and Hydrangea macrophylla (Thunb.) Ser. and ethylenediaminetetraacetic acid effect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41329-41343. [PMID: 35088277 DOI: 10.1007/s11356-021-18243-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/16/2021] [Indexed: 05/15/2023]
Abstract
In this study, we aimed to elucidate the defense mechanism of Alcea rosea (Linn.) Cavan. and Hydrangea macrophylla (Thunb.) Ser. against the single and compound toxicity of lead (Pb) and zinc (Zn) along with the synergistic effect of ethylenediaminetetraacetic acid (EDTA) in accumulation of metals in these two species. The two plant species were subjected to single metal treatment (Pb 1000 mg kg-1, Zn 600 mg kg-1) and compound metal treatment (Pb 1000 mg kg-1 + Zn 600 mg kg-1) in a greenhouse. Besides, different levels of EDTA were applied (2.5, 5.0, and 10.0 mmol kg-1) with compound metal treatment. Several physiological and biochemical parameters, including plant photosynthetic parameters, enzymatic antioxidant system, accumulation concentration of metals, and subcellular distribution were estimated. The results showed that the antioxidative enzymes, proline, root morphological changes, and metal localization all played important roles in resisting Pb and Zn toxicity. A notable difference was that Zn was concentrated in the roots (58.5%) of H. macrophylla to reduce the damage but in the leaves (38.5%) of A. rosea to promote photosynthesis and resist the toxicity of metals. In addition, Zn reduced the toxicity of Pb to plants by regulating photosynthesis, Pb absorption and Pb distribution in subcells. The biological concentration factors (BCF) and translocation factors (TF) for Pb in two plants were less than 1, indicating that they could be considered as phytostabilizators in Pb-contaminated soils. Moreover, EDTA could enhance the enrichment and transport capacity of Pb and Zn to promote the phytoremediation effect. In summary, both plants have a certain application potential for repairing Pb-Zn-contaminated soil.
Collapse
Affiliation(s)
- Yaping Duan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, China
| | - Ying Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, China
| | - Bing Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
7
|
Rocha CS, Rocha DC, Kochi LY, Carneiro DNM, Dos Reis MV, Gomes MP. Phytoremediation by ornamental plants: a beautiful and ecological alternative. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3336-3354. [PMID: 34766223 DOI: 10.1007/s11356-021-17307-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation is an eco-friendly and economical technology in which plants are used for the removal of contaminants presents in the urban and rural environment. One of the challenges of the technique is the proper destination of the biomass of plants. In this context, the use of ornamental plants in areas under contamination treatment improves landscape, serving as a tourist option and source of income with high added value. In addition to their high stress tolerance, rapid growth, high biomass production, and good root development, ornamental species are not intended for animal and human food consumption, avoiding the introduction of contaminants into the food web in addition to improving the environments with aesthetic value. Furthermore, ornamental plants provide multiple ecosystem services, and promote human well-being, while contributing to the conservation of biodiversity. In this review, we summarized the main uses of ornamental plants in phytoremediation of contaminated soil, air, and water. We discuss the potential use of ornamental plants in constructed buffer strips aiming to mitigate the contamination of agricultural lands occurring in the vicinity of sources of contaminants. Moreover, we underlie the ecological and health benefits of the use of ornamental plants in urban and rural landscape projects. This study is expected to draw attention to a promising decontamination technology combined with the beautification of urban and rural areas as well as a possible alternative source of income and diversification in horticultural production.
Collapse
Affiliation(s)
- Camila Silva Rocha
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, , Paraná, 81531-980, Brazil
| | - Daiane Cristina Rocha
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, , Paraná, 81531-980, Brazil
| | - Leticia Yoshie Kochi
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, , Paraná, 81531-980, Brazil
| | - Daniella Nogueira Moraes Carneiro
- Laboratório de Micropropagação de Plantas, Departamento de Fitotecnia E Fitossanitaríssimo, Setor de Ciências Agrarias, Universidade Federal Do Paraná, Rua Dos Funcionário, 1540, Juvevê, Curitiba, Paraná, 80035-050, Brazil
| | - Michele Valquíria Dos Reis
- Horto Botânico, Departamento de Agricultura, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas Sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Avenida Coronel Francisco H. Dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, Curitiba, , Paraná, 81531-980, Brazil.
| |
Collapse
|
8
|
Yang H, Yu H, Tang H, Huang H, Zhang X, Zheng Z, Wang Y, Li T. Physiological responses involved in cadmium tolerance in a high-cadmium-accumulating rice (Oryza sativa L.) line. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41736-41745. [PMID: 33791958 DOI: 10.1007/s11356-021-12956-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The disparity of tolerance in plants in response to Cd stress is associated with multiple physiological processes. A pot experiment was conducted to investigate the physiological properties involved in Cd tolerance of a high-cadmium (Cd)-accumulating rice line (Lu527-8) in comparison with a normal rice line (Lu527-4) under different levels of Cd exposure. Lu527-8 showed higher biomass and Cd concentrations compared with Lu527-4. The tolerance index (TI), bioconcentration factor (BCF), and translocation factor (TF) of Lu527-8 could be up to 3.08, 1.48, and 4.50 times these of Lu527-4, respectively. The two rice lines owned a uniform strategy to reduce Cd toxicity in root and stem by Cd deposition in cell wall and compartmentalization in vacuoles instead of keeping Cd in organelles. For Lu527-8, the higher distribution proportions of Cd combined with cell wall in leaf was linked to its higher Cd tolerance in comparison with Lu527-4. Lu527-8 showed a lower decline in membrane stability, antioxidation, photosynthetic parameters, and pigments than Lu527-4 when exposed to Cd stress. Taken together, the results demonstrated that higher Cd tolerance in high-Cd-accumulating rice Lu527-8 is closely linked to its greater abilities of cell wall fixation in leaf, oxidation resistance, as well as osmotic regulation and photosynthesis.
Collapse
Affiliation(s)
- Huan Yang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Hao Tang
- Plant Ecology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr, 18, 22609, Hamburg, Germany
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
9
|
Qian J, Du Z, Jiang Y, Duan B. The complete chloroplast genome sequence of Althaea rosea (L.) Cavan. (Malvaceae) and its phylogenetic analysis. MITOCHONDRIAL DNA PART B 2020. [DOI: 10.1080/23802359.2020.1736964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jun Qian
- College of Pharmaceutical Science, Dali University, Dali, China
- Key Laboratory of Yunnan Provincial Higher Education Institute for Development of Yunnan Daodi Medicinal Materials Resources, Dali, China
| | - Zefei Du
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Yuan Jiang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
- Key Laboratory of Yunnan Provincial Higher Education Institute for Development of Yunnan Daodi Medicinal Materials Resources, Dali, China
| |
Collapse
|