1
|
Zhang Y, Shen Z, Zhou W, Liu C, Li Y, Ding B, Zhang P, Zhang X, Zhang Z. Environmental problems of emerging toxic metals and treatment technology and methods. RSC Adv 2024; 14:37299-37310. [PMID: 39588236 PMCID: PMC11586922 DOI: 10.1039/d4ra06085g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/02/2024] [Indexed: 11/27/2024] Open
Abstract
The increasing industrial use of toxic metals essential for modern electronics and renewable energy presents significant environmental and health challenges. This review was needed to address the environmental risks posed by toxic metals, particularly those accumulating in soil and sediment ecosystems. The objective is to examine the sources of toxic metal pollution, their ecological impacts, and the effectiveness of existing treatment technologies. By comprehensively reviewing the recent literature, we analyzed the physiological and molecular responses of plants to toxic metals, focusing on their toxicity mechanisms. Key parameters measured include toxic metal concentration, soil and sediment health, microbial diversity, and plant stress responses. Our findings highlight that toxic metals, such as lithium, nickel, and indium, fueled by industrial activities, including mining and electronic waste disposal, significantly disrupt ecosystems. These metals bioaccumulate, harming soil microbial communities and aquatic life. For instance, in soil ecosystems, cadmium and lead inhibit microbial functions, while in aquatic systems, resuspension of sediment-bound metals leads to persistent contamination. Data show that phytoremediation and microbial techniques are effective in reducing toxic metal concentrations up to 30-40%. In conclusion, long-term monitoring and sustainable remediation strategies are essential to mitigate these environmental impacts. Future efforts should focus on enhancing the efficiency of bioremediation techniques and integrating these methods into global toxic metal management practices.
Collapse
Affiliation(s)
- Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Zhiyuan Shen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Wenlu Zhou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Chengying Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Yi Li
- Shandong Academy for Environmental Planning Jinan 250101 China
| | - Botao Ding
- Shandong Academy for Environmental Planning Jinan 250101 China
| | - Peng Zhang
- Yantai Economic and Technological Development Zone Water Supply Co., Ltd Yantai 264006 China
| | - Xu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| |
Collapse
|
2
|
Ammar A, Nouira A, El Mouridi Z, Boughribil S. Recent trends in the phytoremediation of radionuclide contamination of soil by cesium and strontium: Sources, mechanisms and methods: A comprehensive review. CHEMOSPHERE 2024; 359:142273. [PMID: 38750727 DOI: 10.1016/j.chemosphere.2024.142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review examines recent trends in phytoremediation strategies to address soil radionuclide contamination by cesium (Cs) and strontium (Sr). Radionuclide contamination, resulting from natural processes and nuclear-related activities such as accidents and the operation of nuclear facilities, poses significant risks to the environment and human health. Cs and Sr, prominent radionuclides involved in nuclear accidents, exhibit chemical properties that contribute to their toxicity, including easy uptake, high solubility, and long half-lives. Phytoremediation is emerging as a promising and environmentally friendly approach to mitigate radionuclide contamination by exploiting the ability of plants to extract toxic elements from soil and water. This review focuses specifically on the removal of 90Sr and 137Cs, addressing their health risks and environmental implications. Understanding the mechanisms governing plant uptake of radionuclides is critical and is influenced by factors such as plant species, soil texture, and physicochemical properties. Phytoremediation not only addresses immediate contamination challenges but also provides long-term benefits for ecosystem restoration and sustainable development. By improving soil health, biodiversity, and ecosystem resilience, phytoremediation is in line with global sustainability goals and environmental protection initiatives. This review aims to provide insights into effective strategies for mitigating environmental hazards associated with radionuclide contamination and to highlight the importance of phytoremediation in environmental remediation efforts.
Collapse
Affiliation(s)
- Ayyoub Ammar
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco; National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco; Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco.
| | - Asmae Nouira
- National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - Zineb El Mouridi
- Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco
| | - Said Boughribil
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco
| |
Collapse
|
3
|
Rafiq M, Shahid M, Bibi I, Khalid S, Tariq TZ, Al-Kahtani AA, ALOthman ZA, Murtaza B, Niazi NK. Role of organic and inorganic amendments on physiological attributes of germinating pea seedlings under arsenic stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1243-1252. [PMID: 38265045 DOI: 10.1080/15226514.2024.2305684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
There are scarce data regarding the effects of soil amendments on biophysicochemical responses of plants at the early stages of growth/germination. This study critically compares the effects of ethylene-diamine-tetra-acetic-acid (EDTA) and calcium (Ca) on biophysicochemical responses of germinating pea seedlings under varied arsenic levels (As, 25, 125, 250 µM). Arsenic alone enhanced hydrogen peroxide (H2O2) level in pea roots (176%) and shoot (89%), which significantly reduced seed germination percentage, pigment contents, and growth parameters. Presence of EDTA and Ca in growth culture minimized the toxic effects of As on pea seedlings, EDTA being more pertinent than Ca. Both the amendments decreased H2O2 levels in pea tissues (16% in shoot and 13% in roots by EDTA, and 7% by Ca in shoot), and maintained seed germination, pigment contents, and growth parameters of peas close to those of the control treatment. The effects of all As-treatments were more pronounced in the pea roots than in the shoot. The presence of organic and inorganic amendments can play a useful role in alleviating As toxicity at the early stages of pea growth. The scarcity of data demands comparing plant biophysicochemical responses at different stages of plant growth (germinating vs mature) in future studies.
Collapse
Affiliation(s)
- Marina Rafiq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | | | - Abdullah A Al-Kahtani
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
4
|
Li X, Hu N, Li Y, Tang H, Huang X, Yang T, Xu J. Integrated ultrastructural, physiological, transcriptomic, and metabolomic analysis uncovers the mechanisms by which nicotinamide alleviates cadmium toxicity in Pistia stratiotes L. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133702. [PMID: 38330649 DOI: 10.1016/j.jhazmat.2024.133702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Exogenous nicotinamide (NIC) is a promising solution to relieve heavy metal (HM) toxicity in plants. Nonetheless, the underlying mechanisms involved remain poorly understood. As NIC addition (200 μM) can increase the tolerance of Pistia stratiotes L. to Cd stress (10 mg L-1), this strategy was subjected to integrated ultrastructural, physiological, transcriptomic, and metabolomic analysis to reveal the mechanisms involved. Exogenous NIC initiated a series of physiological, transcriptional, and metabolic responses that alleviated Cd damage. NIC addition improved Cd transfer from roots to leaves and reduced Cd damage in roots. The transported Cd to leaves did not induce further toxicity because it was abundantly compartmentalised in cell walls, which might be mediated by lignin synthesis. Moreover, NIC addition improved the repair of photosystem II in leaves under Cd stress by inducing key genes (e.g., chlorophyll A-B binding protein and PSII repair protein encoding genes), resulting in the restoration of Fv/Fm. In addition, antioxidant enzyme activities (e.g., peroxidase and catalase) and synthesis of antioxidants (e.g., stachydrine and curculigoside) were triggered to overcome oxidative stress. Our work paves the way for a deeper understanding of the mechanisms by which NIC alleviates HM toxicity in plants, providing a basis for improving phytoremediation.
Collapse
Affiliation(s)
- Xiong Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Na Hu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Yanshuang Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China; School of Ecology and Environment, Yunnan University, Kunming 650500, China
| | - Haisheng Tang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China; School of Forestry, Southwest Forestry University, Kunming 650224, China
| | - Xumei Huang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China; School of Forestry, Southwest Forestry University, Kunming 650224, China
| | - Ting Yang
- Service Center for Experimental Biotechnology, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianchu Xu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China.
| |
Collapse
|