1
|
Makhdoumi P, Hossini H, Ashraf GM, Limoee M. Molecular Mechanism of Aniline Induced Spleen Toxicity and Neuron Toxicity in Experimental Rat Exposure: A Review. Curr Neuropharmacol 2019; 17:201-213. [PMID: 30081786 PMCID: PMC6425079 DOI: 10.2174/1570159x16666180803164238] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/17/2018] [Accepted: 08/02/2018] [Indexed: 01/04/2023] Open
Abstract
Aniline exposure leads to neuron and spleen toxicity specifically and makes diverse neurological effects and sar-coma that is defined by splenomegaly, hyperplasia, and fibrosis and tumors formation at the end. However, the molecular mechanism(s) of aniline-induced spleen toxicity is not understood well, previous studies have represented that aniline expo-sure results in iron overload and initiation of oxidative/nitrosative disorder stress and oxidative damage to proteins, lipids and DNA subsequently, in the spleen. Elevated expression of cyclins, cyclin-dependent kinases (CDKs) and phosphorylation of pRB protein along with increases in A, B and CDK1 as a cell cycle regulatory proteins cyclins, and reduce in CDK inhibitors (p21 and p27) could be critical in cell cycle regulation, which contributes to tumorigenic response after aniline exposure. Aniline-induced splenic toxicity is corre-lated to oxidative DNA damage and initiation of DNA glycosylases expression (OGG1, NEIL1/2, NTH1, APE1 and PNK) for removal of oxidative DNA lesions in rat. Oxidative stress causes transcriptional up-regulation of fibrogenic/inflammatory factors (cytokines, IL-1, IL-6 and TNF-α) via induction of nuclear factor-kappa B, AP-1 and redox-sensitive transcription factors, in aniline treated-rats. The upstream signalling events as phosphorylation of IκB kinases (IKKα and IKKβ) and mito-gen-activated protein kinases (MAPKs) could potentially be the causes of activation of NF-κB and AP-1. All of these events could initiate a fibrogenic and/or tumorigenic response in the spleen. The spleen toxicity of aniline is studied more and the different mechanisms are suggested. This review summarizes those events following aniline exposure that induce spleen tox-icity and neurotoxicity.
Collapse
Affiliation(s)
- Pouran Makhdoumi
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hooshyar Hossini
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mojtaba Limoee
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Koenig CM, Beevers C, Pant K, Young RR. Assessment of the mutagenic potential of para-chloroaniline and aniline in the liver, spleen, and bone marrow of Big Blue® rats with micronuclei analysis in peripheral blood. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:785-797. [PMID: 30216547 DOI: 10.1002/em.22241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Splenic tumors have been reported in rat cancer bioassays with para-chloroaniline (PCA) and aniline. Development of these tumors is hypothesized to be due to hematotoxicity via the formation of methemoglobin (MetHb) and not direct DNA reactivity. To evaluate the mode of action (MOA) for tumor formation a transgenic rodent (TGR) in vivo gene mutation assay in Big Blue® TgF344 rats was performed with parallel micronuclei analysis in peripheral blood. Male rats were gavaged daily for 28 d to 0.5, 15, and 60 mg/kg PCA and 100 mg/kg aniline, the base molecular structure of PCA. On test day 10, the 60 mg/kg PCA dose was reduced to 30 mg/kg due to toxicity. On test day 4 and 29 peripheral blood micronucleus analysis was performed and on test day 29 clinical chemistry, hematology, and MetHb measurements were taken. At study termination, on test day 31, spleen, bone marrow, and liver (control tissue) were analyzed for cII transgene mutant frequency (MF). Repeat gavage exposure to PCA and aniline for 28 d did not produce an increase in cII transgene MF in analyzed tissues. An increase in micronuclei was seen at both time points at ≥15 mg/kg PCA and 100 mg/kg aniline. At the same dose levels, significant reductions in red blood cells, increases in absolute reticulocytes (ABRET), and increased levels of MetHb were observed. Together these results support that generation of micronuclei and tumorigenicity following exposure to PCA and aniline is due to compensatory mechanisms (e.g. increased cellular turnover) and not direct DNA reactivity. Environ. Mol. Mutagen. 59:785-797, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Kamala Pant
- MilliporeSigma, BioReliance® Toxicology Testing Services, Rockville, Maryland
| | - Robert R Young
- MilliporeSigma, BioReliance® Toxicology Testing Services, Rockville, Maryland
| |
Collapse
|
3
|
Aniline Induces Oxidative Stress and Apoptosis of Primary Cultured Hepatocytes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13121188. [PMID: 27916916 PMCID: PMC5201329 DOI: 10.3390/ijerph13121188] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/17/2016] [Accepted: 11/26/2016] [Indexed: 11/24/2022]
Abstract
The toxicity and carcinogenicity of aniline in humans and animals have been well documented. However, the molecular mechanism involved in aniline-induced liver toxicity and carcinogenesis remains unclear. In our research, primary cultured hepatocytes were exposed to aniline (0, 1.25, 2.50, 5.0 and 10.0 μg/mL) for 24 h in the presence or absence of N-acetyl-l-cysteine (NAC). Levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH), activities of superoxide dismutase (SOD) and catalase (CAT), mitochondrial membrane potential, DNA damage, cell viability, and apoptosis were detected. Levels of ROS and MDA were significantly increased and levels of GSH and CAT, activity of SOD, and mitochondrial membrane potential in hepatocytes were significantly decreased by aniline compared with the negative control group. The tail moment and DNA content of the tail in exposed groups were significantly higher than those in the negative control group. Cell viability was reduced and apoptotic death was induced by aniline in a concentration-dependent manner. The phenomena of ROS generation, oxidative damage, loss of mitochondrial membrane potential, DNA damage and apoptosis could be prevented if ROS inhibitor NAC was added. ROS generation is involved in the loss of mitochondrial membrane potential and DNA injury, which may play a role in aniline-induced apoptosis in hepatocytes. Our study provides insight into the mechanism of aniline-induced toxicity and apoptosis of hepatocytes.
Collapse
|
4
|
Khairnar U, Upaganlawar A, Upasani C. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats. SCIENTIFICA 2016; 2016:4306984. [PMID: 27418998 PMCID: PMC4935924 DOI: 10.1155/2016/4306984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 06/06/2023]
Abstract
Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200-250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats.
Collapse
Affiliation(s)
- Upasana Khairnar
- SNJB's SSDJ College of Pharmacy, Neminagar, Chandwad 42310, India
| | - Aman Upaganlawar
- SNJB's SSDJ College of Pharmacy, Neminagar, Chandwad 42310, India
| | | |
Collapse
|
5
|
Wang J, Wang G, Khan MF. Disorder of G2-M Checkpoint Control in Aniline-Induced Cell Proliferation in Rat Spleen. PLoS One 2015; 10:e0131457. [PMID: 26192324 PMCID: PMC4507860 DOI: 10.1371/journal.pone.0131457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/02/2015] [Indexed: 12/17/2022] Open
Abstract
Aniline, a toxic aromatic amine, is known to cause hemopoietic toxicity both in humans and animals. Aniline exposure also leads to toxic response in spleen which is characterized by splenomegaly, hyperplasia, fibrosis and the eventual formation of tumors on chronic in vivo exposure. Previously, we have shown that aniline exposure leads to iron overload, oxidative DNA damage, and increased cell proliferation, which could eventually contribute to a tumorigenic response in the spleen. Despite our demonstration that cell proliferation was associated with deregulation of G1 phase cyclins and increased expression of G1 phase cyclin-dependent kinases (CDKs), molecular mechanisms, especially the regulation of G2 phase and contribution of epigenetic mechanisms in aniline-induced splenic cellular proliferation remain largely unclear. This study therefore, mainly focused on the regulation of G2 phase in an animal model preceding a tumorigenic response. Male Sprague-Dawley rats were given aniline (0.5 mmol/kg/day) in drinking water or drinking water only (controls) for 30 days, and expression of G2 phase cyclins, CDK1, CDK inhibitors and miRNAs were measured in the spleen. Aniline treatment resulted in significant increases in cell cycle regulatory proteins, including cyclins A, B and CDK1, particularly phosphor-CDK1, and decreases in CDK inhibitors p21 and p27, which could promote the splenocytes to go through G2/M transition. Our data also showed upregulation of tumor markers Trx-1 and Ref-1 in rats treated with aniline. More importantly, we observed lower expression of miRNAs including Let-7a, miR-15b, miR24, miR-100 and miR-125, and greater expression of CDK inhibitor regulatory miRNAs such as miR-181a, miR-221 and miR-222 in the spleens of aniline-treated animals. Our findings suggest that significant increases in the expression of cyclins, CDK1 and aberrant regulation of miRNAs could lead to an accelerated G2/M transition of the splenocytes, and potentially to a tumorigenic response on chronic aniline exposure.
Collapse
Affiliation(s)
- Jianling Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, United States of America
| | - Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, United States of America
| | - M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, United States of America
- * E-mail:
| |
Collapse
|
6
|
Song Y, Li Z, Lin H, Du S, Hao Z, Lin H, Zhu Z. Effect of malondialdehyde treatment on the IgE binding capacity and conformational structure of shrimp tropomyosin. Food Chem 2015; 175:374-80. [DOI: 10.1016/j.foodchem.2014.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/03/2014] [Accepted: 12/01/2014] [Indexed: 11/28/2022]
|
7
|
Wang L, Lingappan K, Jiang W, Couroucli XI, Welty SE, Shivanna B, Barrios R, Wang G, Firoze Khan M, Gonzalez FJ, Jackson Roberts L, Moorthy B. Disruption of cytochrome P4501A2 in mice leads to increased susceptibility to hyperoxic lung injury. Free Radic Biol Med 2015; 82:147-59. [PMID: 25680282 PMCID: PMC4418801 DOI: 10.1016/j.freeradbiomed.2015.01.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/09/2015] [Accepted: 01/19/2015] [Indexed: 12/16/2022]
Abstract
Hyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome. Cytochrome P450 (CYP) 1A enzymes have been implicated in hyperoxic lung injury, but the mechanistic role of CYP1A2 in pulmonary injury is not known. We hypothesized that mice lacking the gene Cyp1a2 (which is predominantly expressed in the liver) will be more sensitive to lung injury and inflammation mediated by hyperoxia and that CYP1A2 will play a protective role by attenuating lipid peroxidation and oxidative stress in the lung. Eight- to ten-week-old WT (C57BL/6) or Cyp1a2(-/-) mice were exposed to hyperoxia (>95% O2) or maintained in room air for 24-72 h. Lung injury was assessed by determining the ratio of lung weight/body weight (LW/BW) and by histology. Extent of inflammation was determined by measuring the number of neutrophils in the lung as well as cytokine expression. The Cyp1a2(-/-) mice under hyperoxic conditions showed increased LW/BW ratios, lung injury, neutrophil infiltration, and IL-6 and TNF-α levels and augmented lipid peroxidation, as evidenced by increased formation of malondialdehyde- and 4-hydroxynonenal-protein adducts and pulmonary isofurans compared to WT mice. In vitro experiments showed that the F2-isoprostane PGF2-α is metabolized by CYP1A2 to a dinor metabolite, providing evidence for a catalytic role for CYP1A2 in the metabolism of F2-isoprostanes. In summary, our results support the hypothesis that hepatic CYP1A2 plays a critical role in the attenuation of hyperoxic lung injury by decreasing lipid peroxidation and oxidative stress in vivo.
Collapse
Affiliation(s)
- Lihua Wang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krithika Lingappan
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weiwu Jiang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xanthi I Couroucli
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen E Welty
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Binoy Shivanna
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roberto Barrios
- Department of Pathology, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - M Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Frank J Gonzalez
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - L Jackson Roberts
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Bhagavatula Moorthy
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Lingappan K, Jiang W, Wang L, Wang G, Couroucli XI, Shivanna B, Welty SE, Barrios R, Khan MF, Nebert DW, Roberts LJ, Moorthy B. Mice deficient in the gene for cytochrome P450 (CYP)1A1 are more susceptible than wild-type to hyperoxic lung injury: evidence for protective role of CYP1A1 against oxidative stress. Toxicol Sci 2014; 141:68-77. [PMID: 24893714 PMCID: PMC4200035 DOI: 10.1093/toxsci/kfu106] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/21/2014] [Indexed: 11/14/2022] Open
Abstract
Hyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome in adults and bronchopulmonary dysplasia in premature infants. Cytochrome P450 (CYP)1A1 has been shown to modulate hyperoxic lung injury. The mechanistic role(s) of CYP1A1 in hyperoxic lung injury in vivo is not known. In this investigation, we hypothesized that Cyp1a1(-/-) mice would be more susceptible to hyperoxic lung injury than wild-type (WT) mice, and that the protective role of CYP1A1 is in part due to CYP1A1-mediated decrease in the levels of reactive oxygen species-mediated lipid hydroperoxides, e.g., F2-isoprostanes/isofurans, leading to attenuation of oxidative damage. Eight- to ten-week-old male WT (C57BL/6J) or Cyp1a1(-/-) mice were exposed to hyperoxia (>95% O2) or room air for 24-72 h. The Cyp1a1(-/-) mice were more susceptible to oxygen-mediated lung damage and inflammation than WT mice, as evidenced by increased lung weight/body weight ratio, lung injury, neutrophil infiltration, and augmented expression of IL-6. Hyperoxia for 24-48 h induced CYP1A expression at the mRNA, protein, and enzyme levels in liver and lung of WT mice. Pulmonary F2-isoprostane and isofuran levels were elevated in WT mice after hyperoxia for 24 h. On the other hand, Cyp1a1(-/-) mice showed higher levels after 48-72 h of hyperoxia exposure compared to WT mice. Our results support the hypothesis that CYP1A1 protects against hyperoxic lung injury by decreasing oxidative stress. Future research could lead to the development of novel strategies for prevention and/or treatment of acute lung injury.
Collapse
Affiliation(s)
- Krithika Lingappan
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030
| | - Weiwu Jiang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030
| | - Lihua Wang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030
| | - Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Xanthi I Couroucli
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030
| | - Binoy Shivanna
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030
| | - Stephen E Welty
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030
| | - Roberto Barrios
- Department of Pathology, The Methodist Research Organization, Houston, Texas, 77030
| | - M Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, 77555
| | - Daniel W Nebert
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, 45267
| | - L Jackson Roberts
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Bhagavatula Moorthy
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
9
|
Short exposure of albumin to high concentrations of malondialdehyde does not mimic physiological conditions. Exp Mol Pathol 2013; 94:270-6. [DOI: 10.1016/j.yexmp.2012.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/15/2012] [Accepted: 06/18/2012] [Indexed: 11/20/2022]
|
10
|
Ma H, Wang J, Abdel-Rahman SZ, Boor PJ, Khan MF. Induction of base excision repair enzymes NTH1 and APE1 in rat spleen following aniline exposure. Toxicol Appl Pharmacol 2013; 267:276-83. [PMID: 23352893 DOI: 10.1016/j.taap.2013.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 01/16/2023]
Abstract
Mechanisms by which aniline exposure elicits splenotoxicity, especially a tumorigenic response, are not well-understood. Earlier, we have shown that aniline exposure leads to oxidative DNA damage and up-regulation of OGG1 and NEIL1/2 DNA glycosylases in rat spleen. However, the contribution of endonuclease III homolog 1 (NTH1) and apurinic/apyrimidinic endonuclease 1 (APE1) in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on examining whether NTH1 and APE1 contribute to the repair of oxidative DNA lesions in the spleen, in an experimental condition preceding tumorigenesis. To achieve this, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. By quantitating the cleavage products, the activities of NTH1 and APE1 were assayed using substrates containing thymine glycol (Tg) and tetrahydrofuran, respectively. Aniline treatment led to significant increases in NTH1- and APE1-mediated BER activity in the nuclear extracts of spleen of aniline-treated rats compared to the controls. NTH1 and APE1 mRNA expression in the spleen showed 2.9- and 3.2-fold increases, respectively, in aniline-treated rats compared to the controls. Likewise, Western blot analysis showed that protein expression of NTH1 and APE1 in the nuclear extracts of spleen from aniline-treated rats was 1.9- and 2.7-fold higher than the controls, respectively. Immunohistochemistry indicated that aniline treatment also led to stronger immunoreactivity for both NTH1 and APE1 in the spleens, confined to the red pulp areas. These results, thus, show that aniline exposure is associated with induction of NTH1 and APE1 in the spleen. The increased repair activity of NTH1 and APE1 could be an important mechanism for the removal of oxidative DNA lesions. These findings thus identify a novel mechanism through which NTH1 and APE1 may regulate the repair of oxidative DNA damage in aniline-induced splenic toxicity.
Collapse
Affiliation(s)
- Huaxian Ma
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
11
|
Fan X, Wang J, Soman KV, Ansari GAS, Khan MF. Aniline-induced nitrosative stress in rat spleen: proteomic identification of nitrated proteins. Toxicol Appl Pharmacol 2011; 255:103-12. [PMID: 21708182 DOI: 10.1016/j.taap.2011.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/06/2011] [Accepted: 06/06/2011] [Indexed: 01/08/2023]
Abstract
Aniline exposure is associated with toxicity to the spleen which is characterized by splenomegaly, hyperplasia, fibrosis, and a variety of sarcomas on chronic exposure in rats. However, mechanisms by which aniline elicits splenotoxic responses are not well understood. Earlier we have shown that aniline exposure leads to increased nitration of proteins in the spleen. However, nitrated proteins remain to be characterized. Therefore, in the current study using proteomic approaches, we focused on characterizing the nitrated proteins in the spleen of aniline-exposed rats. Aniline exposure led to increased tyrosine nitration of proteins, as determined by 2D Western blotting with anti-3-nitrotyrosine specific antibody, compared to the controls. The analyzed nitrated proteins were found in the molecular weight range of 27.7 to 123.6kDa. A total of 37 nitrated proteins were identified in aniline-treated and control spleens. Among them, 25 were found only in aniline-treated rats, 11 were present in both aniline-treated and control rats, while one was found in controls only. The nitrated proteins identified mainly represent skeletal proteins, chaperones, ferric iron transporter, enzymes, nucleic acids binding protein, and signaling and protein synthesis pathways. Furthermore, aniline exposure led to significantly increased iNOS mRNA and protein expression in the spleen, suggesting its role in increased reactive nitrogen species formation and contribution to increased nitrated proteins. The identified nitrated proteins provide a global map to further investigate alterations in their structural and functional properties, which will lead to a better understanding of the role of protein nitration in aniline-mediated splenic toxicity.
Collapse
Affiliation(s)
- Xiuzhen Fan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
12
|
Spickett CM, Wiswedel I, Siems W, Zarkovic K, Zarkovic N. Advances in methods for the determination of biologically relevant lipid peroxidation products. Free Radic Res 2010; 44:1172-202. [PMID: 20836661 DOI: 10.3109/10715762.2010.498476] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lipid peroxidation is recognized to be an important contributor to many chronic diseases, especially those of an inflammatory pathology. In addition to their value as markers of oxidative damage, lipid peroxidation products have also been shown to have a wide variety of biological and cell signalling effects. In view of this, accurate and sensitive methods for the measurement of lipid peroxidation products are essential. Although some assays have been described for many years, improvements in protocols are continually being reported and, with recent advances in instrumentation and technology, highly specialized and informative techniques are increasingly used. This article gives an overview of the most currently used methods and then addresses the recent advances in some specific approaches. The focus is on analysis of oxysterols, F(2)-isoprostanes and oxidized phospholipids by gas chromatography or liquid chromatography mass spectrometry techniques and immunoassays for the detection of 4-hydroxynonenal.
Collapse
Affiliation(s)
- Corinne M Spickett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | | | | | | | |
Collapse
|
13
|
Ma H, Wang J, Abdel-Rahman SZ, Hazra TK, Boor PJ, Khan MF. Induction of NEIL1 and NEIL2 DNA glycosylases in aniline-induced splenic toxicity. Toxicol Appl Pharmacol 2010; 251:1-7. [PMID: 21145906 DOI: 10.1016/j.taap.2010.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 01/08/2023]
Abstract
The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Earlier, we have shown that aniline-induced oxidative stress is associated with increased oxidative DNA damage in rat spleen. The base excision repair (BER) pathway is the major mechanism for the repair of oxidative DNA base lesions, and we have shown an up-regulation of 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase involved in the removal of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adducts, following aniline exposure. Nei-like DNA glycosylases (NEIL1/2) belong to a family of BER proteins that are distinct from other DNA glycosylases, including OGG1. However, contribution of NEIL1/2 in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on evaluating if NEILs also contribute to the repair of oxidative DNA lesions in the spleen following aniline exposure. To achieve that, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. The BER activity of NEIL1/2 was assayed using a bubble structure substrate containing 5-OHU (preferred substrates for NEIL1 and NEIL2) and by quantitating the cleavage products. Aniline treatment led to a 1.25-fold increase in the NEIL1/2-associated BER activity in the nuclear extracts of spleen compared to the controls. Real-time PCR analysis for NEIL1 and NEIL2 mRNA expression in the spleen revealed 2.7- and 3.9-fold increases, respectively, in aniline-treated rats compared to controls. Likewise, Western blot analysis showed that protein expression of NEIL1 and NEIL2 in the nuclear extract of spleens from aniline-treated rats was 2.0- and 3.8-fold higher than controls, respectively. Aniline treatment also led to stronger immunoreactivity for NEIL1 and NEIL2 in the spleens, confined to the red pulp areas. These studies, thus, show that aniline-induced oxidative stress is associated with an induction of NEIL1/2. The increased NIEL-mediated BER activity is another indication of aniline-induced oxidative damage in the spleen and could constitute another important mechanism of removal of oxidative DNA lesions, especially in transcribed DNA following aniline insult.
Collapse
Affiliation(s)
- Huaxian Ma
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
14
|
Wang J, Wang G, Ma H, Khan MF. Enhanced expression of cyclins and cyclin-dependent kinases in aniline-induced cell proliferation in rat spleen. Toxicol Appl Pharmacol 2010; 250:213-20. [PMID: 21070798 DOI: 10.1016/j.taap.2010.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/21/2010] [Accepted: 10/26/2010] [Indexed: 02/01/2023]
Abstract
Aniline exposure is associated with toxicity to the spleen leading to splenomegaly, hyperplasia, fibrosis and a variety of sarcomas of the spleen on chronic exposure. In earlier studies, we have shown that aniline exposure leads to iron overload, oxidative stress and activation of redox-sensitive transcription factors, which could regulate various genes leading to a tumorigenic response in the spleen. However, molecular mechanisms leading to aniline-induced cellular proliferation in the spleen remain largely unknown. This study was, therefore, undertaken on the regulation of G1 phase cell cycle proteins (cyclins), expression of cyclin-dependent kinases (CDKs), phosphorylation of retinoblastoma protein (pRB) and cell proliferation in the spleen, in an experimental condition preceding a tumorigenic response. Male SD rats were treated with aniline (0.5 mmol/kg/day via drinking water) for 30 days (controls received drinking water only), and splenocyte proliferation, protein expression of G1 phase cyclins, CDKs and pRB were measured. Aniline treatment resulted in significant increases in splenocyte proliferation, based on cell counts, cell proliferation markers including proliferating cell nuclear antigen (PCNA), nuclear Ki67 protein (Ki67) and minichromosome maintenance (MCM), MTT assay and flow cytometric analysis. Western blot analysis of splenocyte proteins from aniline-treated rats showed significantly increased expression of cyclins D1, D2, D3 and E, as compared to the controls. Similarly, real-time PCR analysis showed significantly increased mRNA expression for cyclins D1, D2, D3 and E in the spleens of aniline-treated rats. The overexpression of these cyclins was associated with increases in the expression of CDK4, CDK6, CDK2 as well as phosphorylation of pRB protein. Our data suggest that increased expression of cyclins, CDKs and phosphorylation of pRB protein could be critical in cell proliferation, and may contribute to aniline-induced tumorigenic response in the spleen.
Collapse
Affiliation(s)
- Jianling Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
15
|
Wang G, Pierangeli SS, Papalardo E, Ansari GAS, Khan MF. Markers of oxidative and nitrosative stress in systemic lupus erythematosus: correlation with disease activity. ACTA ACUST UNITED AC 2010; 62:2064-72. [PMID: 20201076 DOI: 10.1002/art.27442] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Free radical-mediated reactions have been implicated as contributors in a number of autoimmune diseases, including systemic lupus erythematosus (SLE). However, the potential for oxidative/nitrosative stress to elicit an autoimmune response or to contribute to disease pathogenesis, and thus be useful when determining a prognosis, remains largely unexplored in humans. This study was undertaken to investigate the status and contribution of oxidative/nitrosative stress in patients with SLE. METHODS Sera from 72 SLE patients with varying levels of disease activity according to the SLE Disease Activity Index (SLEDAI) and 36 age- and sex-matched healthy controls were evaluated for serum levels of oxidative/nitrosative stress markers, including antibodies to malondialdehyde (anti-MDA) protein adducts and to 4-hydroxynonenal (anti-HNE) protein adducts, MDA/HNE protein adducts, superoxide dismutase (SOD), nitrotyrosine (NT), and inducible nitric oxide synthase (iNOS). RESULTS Serum analysis showed significantly higher levels of both anti-MDA/anti-HNE protein adduct antibodies and MDA/HNE protein adducts in SLE patients compared with healthy controls. Interestingly, not only was there an increased number of subjects positive for anti-MDA or anti-HNE antibodies, but also the levels of both of these antibodies were statistically significantly higher among SLE patients whose SLEDAI scores were > or = 6 as compared with SLE patients with lower SLEDAI scores (SLEDAI score <6). In addition, a significant correlation was observed between the levels of anti-MDA or anti-HNE antibodies and the SLEDAI score (r = 0.734 and r = 0.647, respectively), suggesting a possible causal relationship between these antibodies and SLE. Furthermore, sera from SLE patients had lower levels of SOD and higher levels of iNOS and NT compared with healthy control sera. CONCLUSION These findings support an association between oxidative/nitrosative stress and SLE. The stronger response observed in serum samples from patients with higher SLEDAI scores suggests that markers of oxidative/nitrosative stress may be useful in evaluating the progression of SLE and in elucidating the mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Gangduo Wang
- University of Texas Medical Branch, Galveston, TX 77555-0438, USA
| | | | | | | | | |
Collapse
|
16
|
Bomhard EM, Herbold BA. Genotoxic Activities of Aniline and its Metabolites and Their Relationship to the Carcinogenicity of Aniline in the Spleen of Rats. Crit Rev Toxicol 2008; 35:783-835. [PMID: 16468500 DOI: 10.1080/10408440500442384] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aniline (in the form of its hydrochloride) has been shown to induce a rather rare spectrum of tumors in the spleen of Fischer 344 rats. The dose levels necessary for this carcinogenic activity were in a range where also massive effects on the blood and non-neoplastic splenotoxicity as a consequence of methemoglobinemia were to be observed. This review aimed at clarifying if aniline itself or one of its metabolites has a genotoxic potential which would explain the occurrence of the spleen tumors in rats as a result of a primary genetic activity. The database for aniline and its metabolites is extremely heterogeneous. With validated assays it ranges from a few limited Ames tests (o- and m-hydroxyacetanilide, phenylhydroxylamine, nitrosobenzene) to a broad range of studies covering all genetic endpoints partly with several studies of the same or different test systems (aniline, p-aminophenol, p-hydroxyacetanilide). This makes a direct comparison rather difficult. In addition, a varying number of results with as yet not validated systems are available for aniline and its metabolites. Most results, especially those with validated and well performed/documented studies, did not indicate a potential of aniline to induce gene mutations. In five different mouse lymphoma tests, where colony sizing was performed only in one test, aniline was positive. If this indicates a peculiar feature of a point mutagenic potential or does represent a part of the clastogenic activity for which there is evidence in vitro as well as in vivo remains to be investigated. There is little evidence for a DNA damaging potential of aniline. The clastogenic activity in vivo is confined to dose levels, which are close to lethality essentially due to hematotoxic effects. The quantitatively most important metabolites for experimental animals as well as for humans (p-aminophenol, p-hydroxyacetanilide) seem to have a potential for inducing chromosomal damage in vitro and, at relatively high dose levels, also in vivo. This could be the explanation for the clastogenic effects that have been observed after high doses/concentrations with aniline. They do not induce gene mutations and there is little evidence for a DNA damaging potential. None of these metabolites revealed a splenotoxic potential comparable to that of aniline in studies with repeated or long-term administration to rats. The genotoxicity database on those metabolites with a demonstrated and marked splenotoxic potential, i.e. phenylhydroxylamine, nitrosobenzene, is unfortunately very limited and does not allow to exclude with certainty primary genotoxic events in the development of spleen tumors. But quite a number of considerations by analogy from other investigations support the conclusion that the effects in the spleen do not develop on a primary genotoxic basis. The weight of evidences suggests that the carcinogenic effects in the spleen of rats are the endstage of a chronic high-dose damage of the blood leading to a massive overload of the spleen with iron, which causes chronic oxidative stress. This conclusion, based essentially on pathomorphological observations, and analogy considerations thereof by previous authors, is herewith reconfirmed under consideration of the more recently reported studies on the genotoxicity of aniline and its metabolites, on biochemical measurements indicating oxidative stress, and on the metabolism of aniline. It is concluded that there is no relationship between the damage to the chromosomes at high, toxic doses of aniline and its major metabolites p-aminophenol/p-hydroxyacetanilide and the aniline-induced spleen tumors in the rat.
Collapse
Affiliation(s)
- Ernst M Bomhard
- Institute of Toxicology, Bayer Healthcare AG, D-42096 Wuppertal, Germany.
| | | |
Collapse
|
17
|
Ma H, Wang J, Abdel-Rahman SZ, Boor PJ, Khan MF. Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline. Toxicol Appl Pharmacol 2008; 233:247-53. [PMID: 18793663 DOI: 10.1016/j.taap.2008.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/04/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by approximately 1.3 fold in the nuclear protein extracts (NE) and approximately 1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was approximately 1.5 fold higher, whereas in the MEs it was approximately 1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of mutagenic oxidative DNA lesions in the spleen following exposure to aniline could play a critical role in the tumorigenic process.
Collapse
Affiliation(s)
- Huaxian Ma
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0438, USA
| | | | | | | | | |
Collapse
|
18
|
Wang J, Wang G, Ansari GAS, Khan MF. Activation of oxidative stress-responsive signaling pathways in early splenotoxic response of aniline. Toxicol Appl Pharmacol 2008; 230:227-34. [PMID: 18420242 DOI: 10.1016/j.taap.2008.02.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/14/2008] [Accepted: 02/19/2008] [Indexed: 10/22/2022]
Abstract
Aniline exposure causes toxicity to the spleen, which leads to a variety of sarcomas, and fibrosis appears to be an important preneoplastic lesion. However, early molecular mechanisms in aniline-induced toxicity to the spleen are not known. Previously, we have shown that aniline exposure results in iron overload and induction of oxidative stress in the spleen, which can cause transcriptional upregulation of fibrogenic/inflammatory cytokines via activation of oxidative stress (OS)-responsive signaling pathways. To test this mechanism, male SD rats were treated with aniline (1mmol/kg/day via gavage) for 7 days, an experimental condition that precedes the appearance of fibrosis. Significant increases in both NF-kappaB and AP-1 binding activity was observed in the nuclear extracts of splenocytes from aniline-treated rats as determined by ELISAs, and supported by Western blot data showing increases in p-IkappaBalpha, p-p65 and p-c-Jun. To understand the upstream signaling events which could account for the activation of NF-kappaB and AP-1, phosphorylation patterns of IkappaB kinases (IKKalpha and IKKbeta) and mitogen-activated protein kinases (MAPKs) were pursued. Our data showed remarkable increases in both p-IKKalpha and p-IKKbeta in the splenocytes from aniline-treated rats, suggesting their role in the phosphorylation of both IkappaBalpha and p65 subunits. Furthermore, aniline exposure led to activation of all three classes of MAPKs, as evident from increased phosphorylation of extracellular-signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK1/2) and p38 MAPKs, which could potentially contribute to the observed activation of both AP-1 and NF-kappaB. Activation of upstream signaling molecules was also associated with simultaneous increases in gene transcription of cytokines IL-1, IL-6 and TNF-alpha. The observed sequence of events following aniline exposure could initiate a fibrogenic and/or tumorigenic response in the spleen.
Collapse
Affiliation(s)
- Jianling Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0438, USA
| | | | | | | |
Collapse
|
19
|
Wang G, Ansari GAS, Khan MF. Involvement of lipid peroxidation-derived aldehyde-protein adducts in autoimmunity mediated by trichloroethene. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1977-1985. [PMID: 17966069 DOI: 10.1080/15287390701550888] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lipid peroxidation, a major contributor to cellular damage, is also implicated in the pathogenesis of autoimmune diseases (AD). The focus of this study was to elucidate the role of lipid peroxidation-derived aldehydes in autoimmunity induced and/or exacerbated by chemical exposure. Previous studies showed that trichloroethene (TCE) is capable of inducing/accelerating autoimmunity. To test whether TCE-induced lipid peroxidation might be involved in the induction/exacerbation of autoimmune responses, groups of autoimmune-prone female MRL +/+ mice were treated with TCE (10 mmol/kg, i.p., every 4th day) for 6 or 12 wk. Significant increases of the formation of malondialdehyde (MDA)- and 4-hydroxynonenal (HNE)-protein adducts were found in the livers of TCE-treated mice at both 6 and 12 wk, but the response was greater at 12 wk. Further characterization of these adducts in liver microsomes showed increased formation of MDA-protein adducts with molecular masses of 86, 65, 56, 44, and 32 kD, and of HNE-protein adducts with molecular masses of 87, 79, 46, and 17 kD in TCE-treated mice. In addition, significant induction of anti-MDA- and anti-HNE-protein adduct-specific antibodies was observed in the sera of TCE-treated mice, and showed a pattern similar to MDA- or HNE-protein adducts. The increases in anti-MDA- and anti-HNE-protein adduct antibodies were associated with significant elevation in serum anti-nuclear-, anti-ssDNA- and anti-dsDNA-antibodies at 6 wk and, to a greater extent, at 12 wk. These studies suggest that TCE-induced lipid peroxidation is associated with induction/exacerbation of autoimmune response in MRL+/+ mice, and thus may play an important role in disease pathogenesis. Further interventional studies are needed to establish a causal relationship between lipid peroxidation and TCE-induced autoimmune response.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | |
Collapse
|
20
|
Li H, Wang J, König R, Ansari GAS, Khan MF. Formaldehyde-protein conjugate-specific antibodies in rats exposed to formaldehyde. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1071-5. [PMID: 17558803 DOI: 10.1080/15287390601172155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A large human population is exposed to formaldehyde (FA) environmentally and occupationally, leading to a variety of respiratory and dermatological disturbances. FA covalently binds with proteins to form FA-protein conjugates, which might lead to the formation of FA-specific antibodies. The focus of this investigation was to study the formation of antibodies against FA-protein conjugates in rats for their possible use as biological markers of FA exposure. Male Sprague-Dawley rats were fed FA via drinking water (1.6 mg/ml) for up to 6 mo. Blood was collected at 3 and 6 mo following FA exposure, and formation of anti-FA-albumin adduct (anti-FAA) antibodies measured in the serum samples (1:100 dilution) by an enzyme-linked immunosorbent assay (ELISA) using synthesized rat albumin conjugates of FA as the solid-phase antigen. Sera from FA-treated rats showed induction of antibodies to FAA in 50% of the animals at both 3 and 6 mo, and the antibody titer was higher at 6 mo, suggesting a greater antibody response with exposure period. These antibodies were highly specific for FAA as they did not cross-react with malondialdehyde-, 4-hydroxynonenal-, 4-hydroxyhexenal-, and acrolein-albumin adducts. The specificity of anti-FAA antibodies was further evaluated by inhibition studies that showed a dose-dependent decrease in binding when the serum was preincubated with increasing concentrations of FAA, and by Western blot analysis that showed immunoreactivity of the antibody with FAA but not with rat albumin. Furthermore, the anti-FAA antibodies (rat serum) also recognized FA-human albumin (FAHA) conjugates, but had only approximately one-third of the binding affinity in comparison to FAA. Induction of anti-FA-protein conjugate antibodies could be further evaluated to serve as a biomarker of FA exposure.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | | | | | |
Collapse
|
21
|
Jung T, Engels M, Kaiser B, Poppek D, Grune T. Intracellular distribution of oxidized proteins and proteasome in HT22 cells during oxidative stress. Free Radic Biol Med 2006; 40:1303-12. [PMID: 16631520 DOI: 10.1016/j.freeradbiomed.2005.11.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/15/2005] [Accepted: 11/22/2005] [Indexed: 01/05/2023]
Abstract
The production of free radicals and the resulting oxidative damage of cellular structures are always connected with the formation of oxidized proteins. The 20S proteasome is responsible for recognition and degradation of oxidatively damaged proteins. No detailed studies on the intracellular distribution of oxidized proteins during oxidative stress and on the distribution of the proteasome have been performed until now. Therefore, we used immunocytochemical methods to measure protein carbonyls, a form of protein oxidation products, and proteasome distribution within cells. Both immunocytochemical methods of measurement are semiquantitative and the load of oxidized proteins is increased after various oxidative stresses explored, with the highest increase in the perinuclear region of the cell. Distribution of the proteasome and the total protein content revealed the highest concentration of both in the nucleus. No redistribution of the proteasome during oxidative stress occurs. The normalized ratio of protein carbonyls to protein content was formed, indicating the highest concentration of oxidized proteins in the cytosolic region near the cell membrane. By forming the protein oxidation-to-proteasome ratio it was concluded that the highest load of oxidized proteins to the proteasome takes place in the cytosol, independent of the oxidant explored.
Collapse
Affiliation(s)
- Tobias Jung
- Research Institute of Environmental Medicine, Heinrich Heine University, Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
22
|
Khan MF, Kannan S, Wang J. Activation of transcription factor AP-1 and mitogen-activated protein kinases in aniline-induced splenic toxicity. Toxicol Appl Pharmacol 2005; 210:86-93. [PMID: 16169568 DOI: 10.1016/j.taap.2005.08.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 08/16/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Signaling mechanisms in aniline-induced fibrogenic and/or tumorigenic response in the spleen are not known. Previous studies have shown that aniline exposure leads to iron accumulation and oxidative stress in the spleen, which may cause activation of redox-sensitive transcription factors and regulate the transcription of genes involved in fibrosis and/or tumorigenesis. To test this, male SD rats were treated with 0.5 mmol/kg/day aniline via drinking water for 30 days, and activation of transcription factor AP-1 was determined in the splenocyte nuclear extracts (NEs). AP-1 DNA-binding activity in the NEs of freshly isolated splenocytes from aniline-treated rats increased in comparison to the controls, as determined by electrophoretic mobility shift assay (EMSA). AP-1 binding was also determined in the NEs of cultured splenocytes (2 h and 24 h), which showed even a greater increase in binding activity at 2 h. The specificity of AP-1 binding for relevant DNA motifs was confirmed by competition EMSA and by supershift EMSA using antibodies specific to c-Jun and c-Fos. To further explore the signaling mechanisms in the AP-1 activation, phosphorylation patterns of mitogen-activated protein kinases (MAPKs) were pursued. Aniline exposure induced increases in the phosphorylation of the three classes of MAPKs: extracellular-signal-regulated kinase (ERK 1/2), c-Jun N-terminal kinase (JNK 1/2), and p38 MAPKs. Furthermore, TGF-beta1 mRNA expression showed a 3-fold increase in the spleens of aniline-treated rats. These observations suggest a strong association among MAPK phosphorylation, AP-1 activation, and enhanced TGF-beta1 gene expression. The observed sequence of events subsequent to aniline exposure could regulate genes that lead to fibrogenic and/or tumorigenic response in the spleen.
Collapse
Affiliation(s)
- M Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| | | | | |
Collapse
|
23
|
Wu X, Kannan S, Ramanujam VMS, Khan MF. Iron release and oxidative DNA damage in splenic toxicity of aniline. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2005; 68:657-66. [PMID: 15901093 DOI: 10.1080/15287390590921757] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mechanisms by which aniline produces selective toxicity to the spleen are not well understood. Previously, studies showed that aniline exposure induces lipid peroxidation and protein oxidation in the spleen. The present study was aimed to determine the release of free iron and oxidative DNA damage in the spleen following aniline exposure. To achieve this, male SD rats were orally administered 1 mmol/kg/d aniline for 7 d, while controls received the vehicle only. Total splenic iron content showed a significant increase of 200% in the aniline-treated rats, whereas free iron (low-molecular-weight chelatable iron) showed a marked increase of 375% in comparison to controls. Oxidative DNA damage, measured in terms of 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, showed a remarkable increase of 83% in the aniline-treated rats. These results suggest an association between release of free iron and oxidative DNA damage, which could lead to mutagenic and/or carcinogenic responses in the spleen.
Collapse
Affiliation(s)
- Xiaohong Wu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | | | |
Collapse
|
24
|
Wang J, Kannan S, Li H, Khan MF. Cytokine gene expression and activation of NF-kappa B in aniline-induced splenic toxicity. Toxicol Appl Pharmacol 2005; 203:36-44. [PMID: 15694462 DOI: 10.1016/j.taap.2004.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 07/20/2004] [Indexed: 11/25/2022]
Abstract
Exposure to aniline results in selective toxicity to the spleen, leading to a variety of sarcomas on chronic exposure in rats, and fibrosis appears to be an important initiating preneoplastic lesion of the spleen. However, the molecular mechanism(s) by which aniline leads to fibrogenic response is not well understood. Previously, we have shown that aniline exposure leads to iron overload and induction of oxidative stress in the spleen. We hypothesized that aniline-induced oxidative stress in the spleen causes transcriptional up-regulation of fibrogenic cytokines via activation of redox-sensitive transcription factor, nuclear factor-kappa B (NF-kappa B). To test this hypothesis, male SD rats were treated with 0.5 mmol/kg/day aniline hydrochloride via drinking water for 30 days. Cytokine mRNAs were measured by real-time quantitative PCR, while cytokine release was determined in the supernatants of the cultured splenocytes using specific ELISAs. IL-1alpha, IL-6, and TNF-alpha mRNA levels showed 6.9-, 2.9-, and 2.6-fold increases, respectively, in the spleens of aniline-treated rats in comparison to the controls. The increases in mRNA levels were associated with enhanced secretion of these cytokines in the splenocyte culture supernatants. NF-kappa B p65 level in the nuclear extracts of cultured splenocytes of aniline-treated rats showed a 2-fold increase in comparison to the controls as quantitated by NF-kappa B p65-specific ELISA. The binding activity of NF-kappa B, determined by electrophoretic mobility shift assay (EMSA), also showed an increase in NF-kappa B binding in the nuclear extracts of the splenocytes from aniline-treated rats. The specificity of NF-kappa B binding was further confirmed by supershift assays. The results indicate that aniline exposure causes enhanced expression of IL-1alpha, IL-6, and TNF-alpha, both at mRNA and protein levels, suggesting their role in splenic fibrosis. Also, the increased NF-kappa B binding activity suggests that up-regulation of these cytokines in the spleen is a redox-dependent mechanism.
Collapse
Affiliation(s)
- Jianling Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | |
Collapse
|
25
|
Li H, Wang J, Kaphalia B, Ansari GAS, Khan MF. Quantitation of acrolein-protein adducts: potential biomarker of acrolein exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2004; 67:513-524. [PMID: 14742096 DOI: 10.1080/15287390490276539] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Acrolein, an alpha,beta-unsaturated aldehyde, is a ubiquitous environmental toxic pollutant. Because of potential human exposure, there is a need for a sensitive, reliable, and specific method to monitor acrolein exposure. Acrolein is a potent electrophile and reacts with proteins mainly through Michael addition reaction, leading to acrolein-protein adducts (APA). The present study aimed to develop a competitive enzyme-linked immunosorbent assay (ELISA) method for the quantitation of APA in biological samples. Antibody to acrolein-keyhole limpet hemocyanin adduct was raised in rabbits, and the specificity of the antibody was determined by ELISA using acrolein-albumin adduct (AAA) or native albumin. A dose-dependent response was observed with AAA, but no immunoreactivity with native albumin. Further, lack of cross-reactivity of anti-acrolein antibody with formaldehyde-, malondialdehyde-, or 4-hydroxynonenal-albumin adducts indicates its specificity for acrolein. For the competitive ELISA, 1:16,000 diluted antisera was used with varying concentrations of AAA, which provided a linear detection range between 250 and 10,000 pg. To test the efficacy of the method for possible use as a biomarker of acrolein exposure, SD rats were orally administered 1 or 7 doses of 9.2 mg/kg/d acrolein. APA levels, quantitated in the serum, showed significantly greater formation (32% and 58% after 1 and 7 doses, respectively) in acrolein-treated rats as compared to the controls. Western blot analyses of APA in the sera from acrolein-treated rats showed APA bands (especially 29, 31, and 100 kD) with greater intensity in comparison to controls, further supporting our ELISA results. These results suggest that quantitation of APA has potential to be used as biomarker of acrolein exposure and eventually for molecular dosimetry and risk assessment.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | | | | | |
Collapse
|
26
|
Firoze Khan M, Wu X, Wang J. Up-regulation of transforming growth factor-beta 1 in the spleen of aniline-treated rats. Toxicol Appl Pharmacol 2003; 187:22-8. [PMID: 12628581 DOI: 10.1016/s0041-008x(02)00041-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aniline exposure produces selective toxicity to the spleen, leading to a variety of sarcomas in rats following chronic exposure. Fibrosis appears to be an important preneoplastic lesion of the spleen. However, early molecular events leading to splenic fibrosis are not known. Earlier studies have shown that aniline exposure in rats leads to excessive deposition of iron and increased lipid peroxidation in the spleen, which may produce changes in the expression of fibrogenic cytokines, such as transforming growth factor-beta 1 (TGF-beta 1), leading to splenic fibrosis. Therefore, this study was designed to establish whether aniline exposure leads to induction/overexpression of TGF-beta 1 and association of such induction with lipid peroxidation (oxidative stress) in the spleen. To achieve this, male Sprague-Dawley rats were given 1 mmol/kg/day aniline hydrochloride in water by gavage for 7 days, while controls received water only. Aniline treatment resulted in significant increases in spleen weight (97%), spleen-to-body weight ratios (104%), and splenocyte population (25%). Malondialdehyde-protein adducts, quantitated by a competitive ELISA, showed a 56% increase in the spleen of aniline-treated rats. TGF-beta 1, measured in the supernatants of cultured splenocytes by an ELISA specific for TGF-beta 1, showed a significant increase (60%) in the total TGF-beta 1 from aniline-treated rats. These increases were further confirmed by Western blot analysis, which showed approximately 2.5-fold increase in cell-associated TGF-beta 1 protein expression in aniline-treated rats. Furthermore, determination of TGF-beta 1 mRNA expression showed a 4-fold increase in the spleens of aniline-treated rats. These results suggest an association between formation of MDA-protein adducts and overexpression of TGF-beta 1 as a result of aniline insult, which together could promote splenic injury and fibrogenesis.
Collapse
Affiliation(s)
- M Firoze Khan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| | | | | |
Collapse
|