1
|
Nunes NMF, do Nascimento Silva J, Conceição MLP, da Costa Júnior JS, da Silva Sousa E, das Dores Alves de Oliveira M, Maria das Graças Lopes Citó A, Dittz D, Peron AP, Ferreira PMP. In vitro and in vivo acute toxicity of an artificial butter flavoring. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:181-197. [PMID: 36794368 DOI: 10.1080/15287394.2023.2172502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavorings used in cookies, electronic cigarettes, popcorn, and breads contain approximately 30 chemical compounds, which makes it difficult to determine and correlate signs and symptoms of acute, subacute or chronic toxicity. The aim of this study was to characterize a butter flavoring chemically and subsequently examine the in vitro and in vivo toxicological profile using cellular techniques, invertebrates, and lab mammals. For the first time, the ethyl butanoate was found as the main compound of a butter flavoring (97.75%) and 24 h-toxicity assay employing Artemia salina larvae revealed a linear effect and LC50 value of 14.7 (13.7-15.7) mg/ml (R2 = 0.9448). Previous reports about higher oral doses of ethyl butanoate were not found. Observational screening with doses between 150-1000 mg/kg by gavage displayed increased amount of defecation, palpebral ptosis, and grip strength reduction, predominantly at higher doses. The flavoring also produced clinical signs of toxicity and diazepam-like behavioral changes in mice, including loss of motor coordination, muscle relaxation, increase of locomotor activity and intestinal motility, and induction of diarrhea, with deaths occurring after 48 h exposure. This substance fits into category 3 of the Globally Harmonized System. Data demonstrated that butter flavoring altered the emotional state in Swiss mice and disrupted intestinal motility, which may be a result of neurochemical changes or direct lesions in the central/peripheral nervous systems.
Collapse
Affiliation(s)
- Nárcia Mariana Fonseca Nunes
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, Brazil
| | - Jurandy do Nascimento Silva
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, Brazil
- Department of Chemistry, Federal Institute of Education and Technology of Piauí, Teresina, Brazil
| | - Micaely Lorrana Pereira Conceição
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, Brazil
| | | | | | | | | | - Dalton Dittz
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil
| | - Ana Paula Peron
- Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Brazil
- Department of Biodiversity and Nature Conservation, Federal Technological University of Paraná, Campo Mourão, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Department of Biophysics and Physiology, Laboratory of Experimental Cancerology (LabCancer), Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
2
|
Drake C, Wehr MM, Zobl W, Koschmann J, De Lucca D, Kühne BA, Hansen T, Knebel J, Ritter D, Boei J, Vrieling H, Bitsch A, Escher SE. Substantiate a read-across hypothesis by using transcriptome data-A case study on volatile diketones. FRONTIERS IN TOXICOLOGY 2023; 5:1155645. [PMID: 37206915 PMCID: PMC10188990 DOI: 10.3389/ftox.2023.1155645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
This case study explores the applicability of transcriptome data to characterize a common mechanism of action within groups of short-chain aliphatic α-, β-, and γ-diketones. Human reference in vivo data indicate that the α-diketone diacetyl induces bronchiolitis obliterans in workers involved in the preparation of microwave popcorn. The other three α-diketones induced inflammatory responses in preclinical in vivo animal studies, whereas beta and gamma diketones in addition caused neuronal effects. We investigated early transcriptional responses in primary human bronchiolar (PBEC) cell cultures after 24 h and 72 h of air-liquid exposure. Differentially expressed genes (DEGs) were assessed based on transcriptome data generated with the EUToxRisk gene panel of Temp-O-Seq®. For each individual substance, genes were identified displaying a consistent differential expression across dose and exposure duration. The log fold change values of the DEG profiles indicate that α- and β-diketones are more active compared to γ-diketones. α-diketones in particular showed a highly concordant expression pattern, which may serve as a first indication of the shared mode of action. In order to gain a better mechanistic understanding, the resultant DEGs were submitted to a pathway analysis using ConsensusPathDB. The four α-diketones showed very similar results with regard to the number of activated and shared pathways. Overall, the number of signaling pathways decreased from α-to β-to γ-diketones. Additionally, we reconstructed networks of genes that interact with one another and are associated with different adverse outcomes such as fibrosis, inflammation or apoptosis using the TRANSPATH-database. Transcription factor enrichment and upstream analyses with the geneXplain platform revealed highly interacting gene products (called master regulators, MRs) per case study compound. The mapping of the resultant MRs on the reconstructed networks, visualized similar gene regulation with regard to fibrosis, inflammation and apoptosis. This analysis showed that transcriptome data can strengthen the similarity assessment of compounds, which is of particular importance, e.g., in read-across approaches. It is one important step towards grouping of compounds based on biological profiles.
Collapse
Affiliation(s)
- Christina Drake
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Hannover, Germany
- *Correspondence: Christina Drake,
| | - Matthias M. Wehr
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Hannover, Germany
| | - Walter Zobl
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Hannover, Germany
| | | | | | - Britta A. Kühne
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Hannover, Germany
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Hannover, Germany
| | - Jan Knebel
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Hannover, Germany
| | - Detlef Ritter
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Hannover, Germany
| | - Jan Boei
- Leiden University Medical Center, Leiden, Netherlands
| | | | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Hannover, Germany
| | - Sylvia E. Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine, Chemical Safety and Toxicology, Hannover, Germany
| |
Collapse
|
3
|
Card JW, Scaife KM, Haighton LA. Review of evidence relating to occupational exposure limits for alpha-diketones and acetoin, and considerations for deriving an occupational exposure limit for 2,3-pentanedione. Crit Rev Toxicol 2022; 52:715-730. [PMID: 36803409 DOI: 10.1080/10408444.2023.2168175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Alpha-diketones, notably diacetyl, have been used as flavoring agents. When airborne in occupational settings, exposures to diacetyl have been associated with serious respiratory disease. Other α-diketones, such as 2,3-pentanedione, and analogues such as acetoin (a reduced form of diacetyl), require evaluation, particularly, in light of recently available toxicological studies. The current work reviewed mechanistic, metabolic, and toxicology data available for α-diketones. Data were most available for diacetyl and 2,3-pentanedione, and a comparative assessment of their pulmonary effects was performed, and an occupational exposure limit (OEL) was proposed for 2,3-pentanedione. Previous OELs were reviewed and an updated literature search was performed. Respiratory system histopathology data from 3-month toxicology studies were evaluated with benchmark dose (BMD) modelling of sensitive endpoints. This demonstrated comparable responses at concentrations up to 100 ppm, with no consistent overall pattern of greater sensitivity to either diacetyl or 2,3-pentanedione. In contrast, based on draft raw data, no adverse respiratory effects were observed in comparable 3-month toxicology studies that evaluated exposure to acetoin at up to 800 ppm (highest tested concentration), indicating that acetoin does not present the same inhalation hazard as diacetyl or 2,3-pentanedione. To derive an OEL for 2,3-pentanedione, BMD modelling was conducted for the most sensitive endpoint from 90-day inhalation toxicity studies, namely, hyperplasia of nasal respiratory epithelium. On the basis of this modelling, an 8-hour time-weighted average OEL of 0.07 ppm is proposed to be protective against respiratory effects that may be associated with chronic workplace exposure to 2,3-pentanedione.
Collapse
Affiliation(s)
- Jeffrey W Card
- Intertek Health Sciences Inc., Mississauga, Ontario, Canada
| | - Kevin M Scaife
- Intertek Health Sciences Inc., Mississauga, Ontario, Canada
| | | |
Collapse
|
4
|
Electronic Cigarette and Atherosclerosis: A Comprehensive Literature Review of Latest Evidences. Int J Vasc Med 2022; 2022:4136811. [PMID: 36093338 PMCID: PMC9453087 DOI: 10.1155/2022/4136811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/29/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Coronary artery diseases (CAD), also known as coronary heart disease (CHD), are the world’s leading cause of death. The basis of coronary artery disease is the narrowing of the heart coronary artery lumen due to atherosclerosis. The use of electronic cigarettes has increased significantly over the years. However, harmful effects of electronic cigarettes are still not firm. The aim of this article is to review the impact of electronic cigarette and its role in the pathogenesis of atherosclerosis from recent studies. The results showed that several chemical compounds, such as nicotine, propylene glycol, particulate matters, heavy metals, and flavorings, in electronic cigarette induce atherosclerosis with each molecular mechanism that lead to atherosclerosis progression by formation of ROS, endothelial dysfunction, and inflammation. Further research is still needed to determine the exact mechanism and provide more clinical evidence.
Collapse
|
5
|
Mechanisms of Acetoin Toxicity and Adaptive Responses in an Acetoin-Producing Species, Lactococcus lactis. Appl Environ Microbiol 2021; 87:e0107921. [PMID: 34613757 PMCID: PMC8612267 DOI: 10.1128/aem.01079-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Acetoin, 3-hydroxyl,2-butanone, is extensively used as a flavor additive in food products. This volatile compound is produced by the dairy bacterium Lactococcus lactis when aerobic respiration is activated by haem addition, and comprises ∼70% of carbohydrate degradation products. Here we investigate the targets of acetoin toxicity, and determine how acetoin impacts L. lactis physiology and survival. Acetoin caused damage to DNA and proteins, which related to reactivity of its keto group. Acetoin stress was reflected in proteome profiles, which revealed changes in lipid metabolic proteins. Acetoin provoked marked changes in fatty acid composition, with massive accumulation of cycC19:0 cyclopropane fatty acid at the expense of its unsaturated C18:1 fatty acid precursor. Deletion of the cfa gene, encoding the cycC19:0 synthase, sensitized cells to acetoin stress. Acetoin-resistant transposon mutagenesis revealed a hot spot in the high affinity phosphate transporter operon pstABCDEF, which is known to increase resistance to multiple stresses. This work reveals the causes and consequences of acetoin stress on L. lactis, and may facilitate control of lactic acid bacteria production in technological processes. IMPORTANCE Acetoin, 3-hydroxyl,2-butanone, has diverse uses in chemical industry, agriculture, and dairy industries as a volatile compound that generates aromas. In bacteria, it can be produced in high amount by Lactococcus lactis when it grows under aerobic respiration. However, acetoin production can be toxic and detrimental for growth and/or survival. Our results showed that it damages DNA and proteins via its keto group. We also showed that acetoin modifies membrane fatty acid composition with the production of cyclopropane C19:0 fatty acid at the expense of an unsaturated C18:1. We isolated mutants more resistant to acetoin than the wild-type strain. All of them mapped to a single locus pstABCDEF operon, suggesting a simple means to limit acetoin toxicity in dairy bacteria and to improve its production.
Collapse
|
6
|
Xie W, Kim KH, Vince R, More SS. The Amyloid Aggregation Accelerator Diacetyl Prevents Cognitive Decline in Alzheimer's Mouse Models. Chem Res Toxicol 2021; 34:1355-1366. [PMID: 33857375 DOI: 10.1021/acs.chemrestox.1c00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diacetyl (DA), a food flavorant, is linked with occupational lung disease. Our in vitro experiments described the formation of a covalent adduct by DA with Arg5 of the Aβ1-42 peptide, which resulted in only a transient increase in neurotoxicity in SH-SY5Y cells. However, in vivo implications of these effects on Alzheimer's disease (AD) pathogenesis and the underlying mechanisms remain poorly understood. In the APP/PS1 transgenic AD mouse model, DA treatment did not exacerbate learning and memory deficits in the Morris water maze test. Moreover, DA increased the Aβ1-42 plaque burden and decreased neuronal inflammation in the transgenic AD mice. Additionally, cognitive impairment induced by intracerebroventricular Aβ1-42 was restored by the DA treatment, as assessed by the T-maze test. A corresponding mitigation of neuronal inflammation was also observed in the hippocampus of these nontransgenic mice due to the acceleration of Aβ1-42 aggregation by DA into nontoxic plaques. The data from SDS-PAGE, dot-blot, and TEM in vitro experiments corroborated the acceleration of the Aβ1-42 aggregation observed in vivo in AD animal models and characterized the DA-induced formation of Aβ1-42 fibrils. Such Aβ1-42-DA fibrils were unstable in the presence of detergent and amenable to detection by the thioflavin T reagent, thus underscoring the distinct assembly of these fibrils compared to that of the fibrils of the native Aβ1-42. Taken together, the results of this study present for the first time the in vivo implications of the DA-induced acceleration of Aβ1-42 and may provide a strategy for the rational design of Aβ1-42 aggregation accelerators as AD therapeutics that promote oligomer-free Aβ1-42 fibril formation.
Collapse
Affiliation(s)
- Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kwan Hyun Kim
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Swati S More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Merecz-Sadowska A, Sitarek P, Zielinska-Blizniewska H, Malinowska K, Zajdel K, Zakonnik L, Zajdel R. A Summary of In Vitro and In Vivo Studies Evaluating the Impact of E-Cigarette Exposure on Living Organisms and the Environment. Int J Mol Sci 2020; 21:ijms21020652. [PMID: 31963832 PMCID: PMC7013895 DOI: 10.3390/ijms21020652] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Worldwide use of electronic cigarettes has been rapidly expanding over recent years, but the long-term effect of e-cigarette vapor exposure on human health and environment is not well established; however, its mechanism of action entails the production of reactive oxygen species and trace metals, and the exacerbation of inflammation, which are associated with potential cytotoxicity and genotoxicity. The present study examines the effects of selected liquid chemicals used in e-cigarettes, such as propylene glycol/vegetable glycerin, nicotine and flavorings, on living organisms; the data collected indicates that exposure to e-cigarette liquid has potentially detrimental effects on cells in vitro, and on animals and humans in vivo. While e-liquid exposure can adversely influence the physiology of living organisms, vaping is recommended as an alternative for tobacco smoking. The study also compares the impact of e-cigarette liquid exposure and traditional cigarette smoke on organisms and the environmental impact. The environmental influence of e-cigarette use is closely connected with the emission of airborne particulate matter, suggesting the possibility of passive smoking. The obtained data provides an insight into the impact of nicotine delivery systems on living organisms and the environment.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
- Correspondence: ; Tel.: +48-663-626-667
| | - Przemyslaw Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | | | - Katarzyna Malinowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Lukasz Zakonnik
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
| | - Radoslaw Zajdel
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
| |
Collapse
|
8
|
Vas CA, Porter A, McAdam K. Acetoin is a precursor to diacetyl in e-cigarette liquids. Food Chem Toxicol 2019; 133:110727. [DOI: 10.1016/j.fct.2019.110727] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/27/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
|
9
|
Hubbs AF, Kreiss K, Cummings KJ, Fluharty KL, O'Connell R, Cole A, Dodd TM, Clingerman SM, Flesher JR, Lee R, Pagel S, Battelli LA, Cumpston A, Jackson M, Kashon M, Orandle MS, Fedan JS, Sriram K. Flavorings-Related Lung Disease: A Brief Review and New Mechanistic Data. Toxicol Pathol 2019; 47:1012-1026. [PMID: 31645208 DOI: 10.1177/0192623319879906] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Flavorings-related lung disease is a potentially disabling and sometimes fatal lung disease of workers making or using flavorings. First identified almost 20 years ago in microwave popcorn workers exposed to butter-flavoring vapors, flavorings-related lung disease remains a concern today. In some cases, workers develop bronchiolitis obliterans, a severe form of fixed airways disease. Affected workers have been reported in microwave popcorn, flavorings, and coffee production workplaces. Volatile α-dicarbonyl compounds, particularly diacetyl (2,3-butanedione) and 2,3-pentanedione, are implicated in the etiology. Published studies on diacetyl and 2,3-pentanedione document their ability to cause airway epithelial necrosis, damage biological molecules, and perturb protein homeostasis. With chronic exposure in rats, they produce airway fibrosis resembling bronchiolitis obliterans. To add to this knowledge, we recently evaluated airway toxicity of the 3-carbon α-dicarbonyl compound, methylglyoxal. Methylglyoxal inhalation causes epithelial necrosis at even lower concentrations than diacetyl. In addition, we investigated airway toxicity of mixtures of diacetyl, acetoin, and acetic acid, common volatiles in butter flavoring. At ratios comparable to workplace scenarios, the mixtures or diacetyl alone, but not acetic acid or acetoin, cause airway epithelial necrosis. These new findings add to existing data to implicate α-dicarbonyl compounds in airway injury and flavorings-related lung disease.
Collapse
Affiliation(s)
- Ann F Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Kathleen Kreiss
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Kristin J Cummings
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Kara L Fluharty
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Ryan O'Connell
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Allison Cole
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Tiana M Dodd
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Sidney M Clingerman
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Jordan R Flesher
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Rebecca Lee
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Samantha Pagel
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA.,West Virginia University, Morgantown, WV, USA. Cummings is now with California Department of Public Health, Richmond, CA, USA. O'Connell is now with Department of Biochemistry, West Virginia, University, Morgantown, WV, USA. Flesher is now with Department of Biology, West Virginia University, Morgantown, WV, USA. Cole is now with Department of Pediatrics-Hematology/Oncology, University of Colorado School of Medicine, Aurora, CO, USA. Kreiss (retired) is in Sitka, AK, USA
| | - Lori A Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Amy Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Mark Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Michael Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Marlene S Orandle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA
| |
Collapse
|
10
|
Pulmonary Impairment and Risk Assessment in a Diacetyl-Exposed Population: Microwave Popcorn Workers. J Occup Environ Med 2019; 60:496-506. [PMID: 29443707 DOI: 10.1097/jom.0000000000001303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The butter flavoring additive, diacetyl (DA), can cause bronchiolitis obliterans (BO) by inhalation. A risk assessment was performed using data from a microwave popcorn manufacturing plant. METHODS Current employees' medical history and pulmonary function tests together with air sampling over a 2.7-year period were used to analyze forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC). The exposure responses for declining pulmonary function and for possible early onset of BO were estimated using multiple regression methods. Several exposure metrics were investigated; benchmark dose and excess lifetime risk of impairment were calculated. RESULTS Forty-six percent of the population had less than 6 months exposure to DA. Percent-of-predicted FEV1 declined with cumulative exposure (0.40 per ppm-yr, P < 10) as did percent FEV1/FVC (0.13 per ppm-yr, P = 0.0004). Lifetime respiratory impairment prevalence of one per thousand resulted from 0.005 ppm DA and one per thousand lifetime incidence of impairment was predicted for 0.002 ppm DA. CONCLUSION DA exposures, often exceeding 1 ppm in the past, place workers at high risk of pulmonary impairment.
Collapse
|
11
|
Park HR, O'Sullivan M, Vallarino J, Shumyatcher M, Himes BE, Park JA, Christiani DC, Allen J, Lu Q. Transcriptomic response of primary human airway epithelial cells to flavoring chemicals in electronic cigarettes. Sci Rep 2019; 9:1400. [PMID: 30710127 PMCID: PMC6358614 DOI: 10.1038/s41598-018-37913-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
The widespread use of electronic cigarettes (e-cigarettes or e-cig) is a growing public health concern. Diacetyl and its chemical cousin 2,3-pentanedione are commonly used to add flavors to e-cig; however, little is known about how the flavoring chemicals may impair lung function. Here we report that the flavoring chemicals induce transcriptomic changes and perturb cilia function in the airway epithelium. Using RNA-Seq, we identified a total of 163 and 568 differentially expressed genes in primary normal human bronchial epithelial (NHBE) cells that were exposed to diacetyl and 2,3-pentanedione, respectively. DAVID pathway analysis revealed an enrichment of cellular pathways involved in cytoskeletal and cilia processes among the set of common genes (142 genes) perturbed by both diacetyl and 2,3-pentanedione. Consistent with this, qRT-PCR confirmed that the expression of multiple genes involved in cilia biogenesis was significantly downregulated by diacetyl and 2,3-pentanedione in NHBE cells. Furthermore, immunofluorescence staining showed that the number of ciliated cells was significantly decreased by the flavoring chemicals. Our study indicates that the two widely used e-cig flavoring chemicals impair the cilia function in airway epithelium and likely contribute to the adverse effects of e-cig in the lung.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA
| | - Michael O'Sullivan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA
| | - Jose Vallarino
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA
| | - Joseph Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA.
| | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA.
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, 02115, Massachusetts, USA.
| |
Collapse
|
12
|
Russ KA, Thompson JA, Kashon M, Porter DW, Friend SA, McKinney W, Fedan JS. Comparison of multi-wall carbon nanotube and nitrogen-doped multi-wall carbon nanotube effects on lung function and airway reactivity in rats. Toxicol Appl Pharmacol 2018; 364:153-163. [PMID: 30423287 DOI: 10.1016/j.taap.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Incorporation of multi-wall carbon nanotubes (MWCNT) into materials has raised concerns about their potential hazards to manufacturing workers. In animal models, airway inflammation and lung fibrosis follow aspiration, instillation, and inhalation exposures to MWCNT. However, the effects of MWCNT on pulmonary function, airway reactivity and airway epithelium function following inhalation exposure has not been studied. We investigated whether inhaled MWCNT affects lung resistance (RL) and dynamic compliance (Cdyn), reactivity to inhaled methacholine (MCh), epithelial regulation of airway reactivity to MCh in vitro, and airway epithelial ion transport. Male rats were exposed by whole body inhalation for 6 h to air or aerosolized MWCNT (0.5, 1 or 5 mg/m3) for one or nine days. Eighteen h after 1 d exposure to 5 mg/m3 MWCNT, basal RL was increased and basal Cdyn was decreased; changes did not persist for 7 d. Reactivity to MCh (RL) was increased and Cdyn responses were decreased at 18 h, but not 7 d after exposure to 1 and 5 mg/m3 MWCNT. The effects of i.t.-instilled MWCNT and nitrogen-doped MWCNT (N-MWCNT) on pulmonary function and reactivity to MCh at doses comparable to deposition after inhalation of 5 mg/m3 at 1 d and 0.5, 1, and 5 mg/m3 MWCNT 9 d-exposures were compared. Both nanoparticles increased airway reactivity (RL); N-MWCNT did not affect Cdyn responses. Lung function and airway reactivity are altered following a single MWCNT inhalation and generally subside over time. Given i.t., MWCNT's and N-MWCNT's effects were comparable, but N-MWCNT evoke smaller changes in Cdyn responses.
Collapse
Affiliation(s)
- Kristen A Russ
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Janet A Thompson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Michael Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Dale W Porter
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Sherri A Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| |
Collapse
|
13
|
Brass DM, Palmer SM. Models of toxicity of diacetyl and alternative diones. Toxicology 2017; 388:15-20. [PMID: 28232124 PMCID: PMC5540796 DOI: 10.1016/j.tox.2017.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/23/2017] [Accepted: 02/17/2017] [Indexed: 11/28/2022]
Abstract
Diacetyl (DA; 2,3-butanedione), with the chemical formula (CH3CO)2 is a volatile organic compound with a deep yellow color and a strong buttery flavor and aroma. These properties have made DA a particularly useful and common food flavoring ingredient. However, because of this increased occupational use, workers can be exposed to high vapor concentrations in the workplace. Despite being listed by the USFDA to be 'generally regarded as safe' (GRAS), multiple lines of evidence suggest that exposure to high concentrations of DA vapor causes long-term impairments in lung function with lung function testing indicating evidence of either restrictive or obstructive airway narrowing in affected individuals. A growing number of pre-clinical studies have now addressed the short and long-term toxicity associated with DA exposure providing further insight into the toxicity of DA and related diones. This review summarizes these observations.
Collapse
Affiliation(s)
- David M Brass
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA.
| | - Scott M Palmer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
14
|
Hubbs AF, Fluharty KL, Edwards RJ, Barnabei JL, Grantham JT, Palmer SM, Kelly F, Sargent LM, Reynolds SH, Mercer RR, Goravanahally MP, Kashon ML, Honaker JC, Jackson MC, Cumpston AM, Goldsmith WT, McKinney W, Fedan JS, Battelli LA, Munro T, Bucklew-Moyers W, McKinstry K, Schwegler-Berry D, Friend S, Knepp AK, Smith SL, Sriram K. Accumulation of Ubiquitin and Sequestosome-1 Implicate Protein Damage in Diacetyl-Induced Cytotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2887-2908. [PMID: 27643531 PMCID: PMC5222965 DOI: 10.1016/j.ajpath.2016.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/09/2016] [Accepted: 07/21/2016] [Indexed: 01/12/2023]
Abstract
Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive α-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this α-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the α-dicarbonyl group in protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal-associated membrane proteins 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease.
Collapse
Affiliation(s)
- Ann F Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia.
| | - Kara L Fluharty
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Rebekah J Edwards
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; Department of Forensic and Investigative Science, West Virginia University, Morgantown, West Virginia
| | - Jamie L Barnabei
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - John T Grantham
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Scott M Palmer
- Duke University School of Medicine, Durham, North Carolina
| | - Francine Kelly
- Duke University School of Medicine, Durham, North Carolina
| | - Linda M Sargent
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Steven H Reynolds
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Robert R Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Madhusudan P Goravanahally
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; Centers for Neuroscience, West Virginia University, Morgantown, West Virginia
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - John C Honaker
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Mark C Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Amy M Cumpston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - William T Goldsmith
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Lori A Battelli
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Tiffany Munro
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Winnie Bucklew-Moyers
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Kimberly McKinstry
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Diane Schwegler-Berry
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Sherri Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Alycia K Knepp
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; Department of Forensic and Investigative Science, West Virginia University, Morgantown, West Virginia
| | - Samantha L Smith
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia; Department of Forensic and Investigative Science, West Virginia University, Morgantown, West Virginia
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| |
Collapse
|
15
|
|
16
|
Zaccone EJ, Goldsmith WT, Shimko MJ, Wells JR, Schwegler-Berry D, Willard PA, Case SL, Thompson JA, Fedan JS. Diacetyl and 2,3-pentanedione exposure of human cultured airway epithelial cells: Ion transport effects and metabolism of butter flavoring agents. Toxicol Appl Pharmacol 2015; 289:542-9. [PMID: 26454031 DOI: 10.1016/j.taap.2015.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 09/04/2015] [Accepted: 10/06/2015] [Indexed: 11/29/2022]
Abstract
Inhalation of butter flavoring by workers in the microwave popcorn industry may result in “popcorn workers' lung.” In previous in vivo studies rats exposed for 6 h to vapor from the flavoring agents, diacetyl and 2,3-pentanedione, acquired flavoring concentration-dependent damage of the upper airway epithelium and airway hyporeactivity to inhaled methacholine. Because ion transport is essential for lung fluid balance,we hypothesized that alterations in ion transport may be an early manifestation of butter flavoring-induced toxicity.We developed a system to expose cultured human bronchial/tracheal epithelial cells (NHBEs) to flavoring vapors. NHBEs were exposed for 6 h to diacetyl or 2,3-pentanedione vapors (25 or ≥ 60 ppm) and the effects on short circuit current and transepithelial resistance (Rt) were measured. Immediately after exposure to 25 ppm both flavorings reduced Na+ transport,without affecting Cl- transport or Na+,K+-pump activity. Rt was unaffected. Na+ transport recovered 18 h after exposure. Concentrations (100-360 ppm) of diacetyl and 2,3-pentanedione reported earlier to give rise in vivo to epithelial damage, and 60 ppm, caused death of NHBEs 0 h post-exposure. Analysis of the basolateral medium indicated that NHBEs metabolize diacetyl and 2,3-pentanedione to acetoin and 2-hydroxy-3-pentanone, respectively. The results indicate that ion transport is inhibited transiently in airway epithelial cells by lower concentrations of the flavorings than those that result in morphological changes of the cells in vivo or in vitro.
Collapse
Affiliation(s)
- Eric J Zaccone
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - W Travis Goldsmith
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael J Shimko
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - J R Wells
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diane Schwegler-Berry
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Patsy A Willard
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Shannon L Case
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Janet A Thompson
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jeffrey S Fedan
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA; Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
17
|
Clark S, Winter CK. Diacetyl in Foods: A Review of Safety and Sensory Characteristics. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12150] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephanie Clark
- Dept. of Food Science and Human Nutrition; Iowa State Univ; Ames IA 515294-7346 U.S.A
| | - Carl K. Winter
- Dept. of Food Science and Technology; Univ. of California; Davis CA U.S.A
| |
Collapse
|