1
|
Ridolfo S, Amato F, Querol X. Particle number size distributions and concentrations in transportation environments: a review. ENVIRONMENT INTERNATIONAL 2024; 187:108696. [PMID: 38678934 DOI: 10.1016/j.envint.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Ambient air ultrafine particles (UFP, particles with a diameter <100 nm) have gained significant attention in World Health Organization (WHO) air quality guidelines and European legislation. This review explores UFP concentrations and particle number size distributions (PNC-PNSD) in various transportation hotspots, including road traffic, airports, harbors, trains, and urban commuting modes (walking, cycling, bus, tram, and subway). The results highlight the lack of information on personal exposure at harbors and railway stations, inside airplanes and trains, and during various other commuting modes. The different lower particle size limits of the reviewed measurements complicate direct comparisons between them. Emphasizing the use of instruments with detection limits ≤10 nm, this review underscores the necessity of following standardized UFP measurement protocols. Road traffic sites are shown to exhibit the highest PNC within cities, with PNC and PNSD in commuting modes driven by the proximity to road traffic and weather conditions. In closed environments, such as cars, buses, and trams, increased external air infiltration for ventilation correlates with elevated PNC and a shift in PNSD toward smaller diameters. Airports exhibit particularly elevated PNCs near runways, raising potential concerns about occupational exposure. Recommendations from this study include maintaining a substantial distance between road traffic and other commuting modes, integrating air filtration into ventilation systems, implementing low-emission zones, and advocating for a general reduction in road traffic to minimize daily UFP exposure. Our findings provide important insights for policy assessments and underscore the need for additional research to address current knowledge gaps.
Collapse
Affiliation(s)
- S Ridolfo
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - F Amato
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
2
|
Eberhard T, Casillas G, Zarus GM, Barr DB. Systematic review of microplastics and nanoplastics in indoor and outdoor air: identifying a framework and data needs for quantifying human inhalation exposures. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:185-196. [PMID: 38184724 PMCID: PMC11142917 DOI: 10.1038/s41370-023-00634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Humans are likely exposed to microplastics (MPs) in a variety of places including indoor and outdoor air. Research to better understand how exposure to MPs correlates to health is growing. To fully understand the possible impacts of MPs on human health, it is necessary to quantify MP exposure and identify what critical data gaps exist. OBJECTIVES The current paper provides a human exposure assessment of microplastics in the air using systematically reviewed literature that provided concentration of MPs in air as well as doses used in toxicology studies to calculate inhalation exposure dose. METHODS All published peer-reviewed journal articles, non-published papers, and grey literature that focused on micro- or nano-plastics in indoor and outdoor air were systematically searched using PRISMA guidelines. Literature that defined specific concentrations and size of MPs in air or exposed to human lung cells, animals, or humans with measurable health impacts were included in data extraction. Inhalational exposures were calculated for different age groups using published MP concentrations from the included literature using exposure dose equations and values from U.S. ATSDR and EPA. RESULTS Calculated mean indoor inhalational exposures from passive sampling methods were higher than those calculated from active sampling methods. When comparing indoor and outdoor sampling, calculated inhalation exposures from indoor samples were greater than those from outdoor samples. Inhalation exposures of MPs differed between age groups with infants having the highest calculated dose values for all locations followed by preschool age children, middle-school aged children, pregnant women, adolescents, and non-pregnant adults. MP doses used in toxicology studies produced higher calculated mean inhalational exposures than those from environmental samples. IMPACT This study is the first known systematic review of inhalational MP exposure from indoor and outdoor air. It also provides inhalational exposures calculated from previously published environmental samples of MPs as well as from toxicology studies.
Collapse
Affiliation(s)
- Tiffany Eberhard
- Gangarosa Department of Environmental Health, Rollins School of Public Health of Emory University, Atlanta, GA, USA.
| | - Gaston Casillas
- Agency of Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, GA, USA
| | - Gregory M Zarus
- Agency of Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health of Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Han M, Choi SJ, Jeong Y, Lee K, Lee TH, Lee SH, Kim TH. Association between Concentration of Air Pollutants and Prevalence of Inflammatory Sinonasal Diseases: A Nationwide Cross-sectional Study. Am J Rhinol Allergy 2022; 36:649-660. [PMID: 35535390 DOI: 10.1177/19458924221099373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Air pollution is a serious health concern and affects inflammatory sinonasal diseases such as allergic rhinitis (AR) and chronic rhinosinusitis (CRS). Clarifying the relationship between air pollutants and upper respiratory diseases could help the patients. OBJECTIVE To evaluate the association between the concentration of air pollutants and the prevalence of AR and CRS among South Koreans. METHODS In this cross-sectional study, nationwide data were reviewed for participants of the Korean National Health and Nutrition Examination Survey (KNHANES) 2008 to 2012. Participants were surveyed with health questionnaires, examined with endoscopies by otolaryngologists, and tested with serum immunoglobulin E levels. The concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and particulate matter with aerodynamic diameters ≤10 µm (PM10) were measured in 16 areas of South Korea. Air pollutant concentrations of geographic districts were matched to each participant's residence. Logistic regression analysis was performed. RESULTS Among 27 863 eligible adults, 3359 and 1606 participants had AR or CRS, respectively. In multivariable logistic regression analysis for AR, PM10 showed statistically significant results (odds ratio [OR] = 1.145, 95% confidence interval [CI] = 1.042-1.258). No air pollutants showed statistically significant differences in the prevalence of CRS. In AR, PM10 (OR = 1.458, 95% CI = 1.201-1.770) was associated with endoscopic findings of watery rhinorrhea, whereas SO2 (OR = 1.202, 95% CI = 1.100-1.313) was associated with pale mucosa. CONCLUSION The prevalence of AR was significantly associated with PM10 concentration. In patients with AR, endoscopic findings of watery rhinorrhea were associated with PM10. However, CRS was not associated with the air pollutant concentrations. Lower concentration of PM10 might help managing the clinical symptoms in patients of AR.
Collapse
Affiliation(s)
- Munsoo Han
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, 36899Korea University, Seoul, Republic of Korea
| | - Soo Jeong Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, 36899Korea University, Seoul, Republic of Korea
| | - Yujin Jeong
- Department of Biostatistics, 218725Korea University College of Medicine, Seoul, Republic of Korea
| | - Kijeong Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, 36899Korea University, Seoul, Republic of Korea
| | - Tae Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, 36899Korea University, Seoul, Republic of Korea
| | - Sang Hag Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, 36899Korea University, Seoul, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, 36899Korea University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Sripada K, Wierzbicka A, Abass K, Grimalt JO, Erbe A, Röllin HB, Weihe P, Díaz GJ, Singh RR, Visnes T, Rautio A, Odland JØ, Wagner M. A Children's Health Perspective on Nano- and Microplastics. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:15001. [PMID: 35080434 PMCID: PMC8791070 DOI: 10.1289/ehp9086] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Pregnancy, infancy, and childhood are sensitive windows for environmental exposures. Yet the health effects of exposure to nano- and microplastics (NMPs) remain largely uninvestigated or unknown. Although plastic chemicals are a well-established research topic, the impacts of plastic particles are unexplored, especially with regard to early life exposures. OBJECTIVES This commentary aims to summarize the knowns and unknowns around child- and pregnancy-relevant exposures to NMPs via inhalation, placental transfer, ingestion and breastmilk, and dermal absorption. METHODS A comprehensive literature search to map the state of the science on NMPs found 37 primary research articles on the health relevance of NMPs during early life and revealed major knowledge gaps in the field. We discuss opportunities and challenges for quantifying child-specific exposures (e.g., NMPs in breastmilk or infant formula) and health effects, in light of global inequalities in baby bottle use, consumption of packaged foods, air pollution, hazardous plastic disposal, and regulatory safeguards. We also summarize research needs for linking child health and NMP exposures and address the unknowns in the context of public health action. DISCUSSION Few studies have addressed child-specific sources of exposure, and exposure estimates currently rely on generic assumptions rather than empirical measurements. Furthermore, toxicological research on NMPs has not specifically focused on child health, yet children's immature defense mechanisms make them particularly vulnerable. Apart from few studies investigating the placental transfer of NMPs, the physicochemical properties (e.g., polymer, size, shape, charge) driving the absorption, biodistribution, and elimination in early life have yet to be benchmarked. Accordingly, the evidence base regarding the potential health impacts of NMPs in early life remains sparse. Based on the evidence to date, we provide recommendations to fill research gaps, stimulate policymakers and industry to address the safety of NMPs, and point to opportunities for families to reduce early life exposures to plastic. https://doi.org/10.1289/EHP9086.
Collapse
Affiliation(s)
- Kam Sripada
- Centre for Digital Life Norway, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Global Health Inequalities Research (CHAIN), NTNU, Trondheim, Norway
| | - Aneta Wierzbicka
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- Centre for Healthy Indoor Environments, Lund University, Lund, Sweden
| | - Khaled Abass
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Pesticides, Menoufia University, Menoufia, Egypt
| | - Joan O. Grimalt
- Institute of Environmental Assessment and Water Research, Barcelona, Catalonia, Spain
| | - Andreas Erbe
- Department of Materials Science and Engineering, NTNU, Trondheim, Norway
| | - Halina B. Röllin
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Environment and Health Research Unit, Medical Research Council, Johannesburg, South Africa
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Faroe Islands
| | - Gabriela Jiménez Díaz
- Department of Public Health and Nursing, Faculty of Medicine and Health Science, NTNU, Trondheim, Norway
| | - Randolph Reyes Singh
- Laboratoire Biogéochimie des Contaminants Organiques, Institut français de recherche pour l’exploitation de la mer, Nantes, France
| | - Torkild Visnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Arja Rautio
- Arctic Health, Thule Institute, University of Oulu and University of the Arctic, Oulu, Finland
| | - Jon Øyvind Odland
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Public Health and Nursing, Faculty of Medicine and Health Science, NTNU, Trondheim, Norway
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | |
Collapse
|
5
|
Hou X, Huang H, Hu H, Wang D, Sun B, Zhang XD. Short-term exposure to ambient air pollution and hospital visits for IgE-mediated allergy: A time-stratified case-crossover study in southern China from 2012 to 2019. EClinicalMedicine 2021; 37:100949. [PMID: 34386741 PMCID: PMC8343265 DOI: 10.1016/j.eclinm.2021.100949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Because of the limited epidemiological evidence on the association between acute air pollutants and allergy, there is a need to investigate this association, especially between the short-term exposure to air pollution and the serum Immunoglobulin E (IgE)-mediated allergy. METHODS A total of 39,569 IgE test results and demographic characteristics were obtained in the First Affiliated Hospital of Guangzhou Medical University between August 2012 and September 2019. Ninety-nine specific allergens were tested according to clinical diagnosis. The logistic regression was used to assess the effects of CO, NO2 and PM2.5 exposure on the risk of sensitization to specific inhalant/food allergens. Generalized additive models with multivariate adjustments were utilized to model the exposure-response relationship. Stratified analyses were performed to estimate the reliability of correlations in various subgroups. FINDINGS Single-pollutant models indicate that the 3-day moving average (lag2-4) of CO, PM2.5 or NO2 is associated with the increased risk for allergic diseases related to specific inhaled allergens. In multi-pollutant models, the adjusted Odds Ratio (OR) 95% (Confidence Interval, CI) increases by 8% (95% CI, 2%-15%) for per increment of 0.2 mg/m3 in CO levels, and rises by 8% (95% CI, 2%-13%) for each increase of 16.3 μg/m3 in PM2.5 concentration. The associations are stronger in youngsters (<18, years) but not significantly different by gender. Particularly, a significantly stronger association between PM2.5 exposure and hospital visits for inhaled allergy is observed in patients who are exposed to lower concentration of SO2 (<10.333 μg/m3) and higher levels of NO2 (≥42.0 μg/m3), as well as patients enrolled after 2017. INTERPRETATION The short-term exposure to CO/PM2.5 increases the number of hospital visits for IgE-mediated allergy, especially for the sensitization to specific inhalant allergens. Therefore, to prevent inhaled allergies, the public policy for controlling air pollution needs to be considered seriously. FUNDING This study was supported by the University of Macau (grant numbers: FHS-CRDA-029-002-2017 and MYRG2018-00,071-FHS) as well as the Science and Technology Development Fund, Macau SAR (File no. 0004/2019/AFJ and 0011/2019/AKP). This work was also supported by the National Natural Science Foundation of China (81,871,736), the National Key Technology R&D Program (2018YFC1311902), the Guangdong Science and Technology Foundation (2019B030316028), the Guangzhou Municipal Health Foundation (20191A011073), and the Guangzhou Science and Technology Foundation (201,804,020,043).
Collapse
Affiliation(s)
- Xiangqing Hou
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Huimin Huang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangdong, China
| | - Haisheng Hu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangdong, China
| | - Dandan Wang
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangdong, China
- Corresponding author.
| | | |
Collapse
|
6
|
Melén E, Standl M, Gehring U, Altug H, Antó JM, Berdel D, Bergström A, Bousquet J, Heinrich J, Koppelman GH, Kull I, Lupinek C, Markevych I, Schikowski T, Thiering E, Valenta R, van Hage M, von Berg A, Vonk JM, Wickman M, Wijga A, Gruzieva O. Air pollution and IgE sensitization in 4 European birth cohorts-the MeDALL project. J Allergy Clin Immunol 2020; 147:713-722. [PMID: 32926877 DOI: 10.1016/j.jaci.2020.08.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Whether long-term exposure air to pollution has effects on allergic sensitization is controversial. OBJECTIVE Our aim was to investigate associations of air pollution exposure at birth and at the time of later biosampling with IgE sensitization against common food and inhalant allergens, or specific allergen molecules, in children aged up to 16 years. METHODS A total of 6163 children from 4 European birth cohorts participating in the Mechanisms of the Development of ALLergy [MeDALL] consortium were included in this meta-analysis of the following studies: Children, Allergy, Milieu, Stockholm, Epidemiology (BAMSE) (Sweden), Influences of Lifestyle-Related Factors on the Human Immune System and Development of Allergies in Childhood (LISA)/German Infant Study on the Influence of Nutrition Intervention PLUS Environmental and Genetic Influences on Allergy Development (GINIplus) (Germany), and Prevention and Incidence of Asthma and Mite Allergy (PIAMA) (The Netherlands). The following indicators were modeled by land use regression: individual residential outdoor levels of particulate matter with aerodynamic diameters less than 2.5 μm, less than 10 μm, and between 2.5 and 10 μm; PM2.5 absorbance (a measurement of the blackness of PM2.5 filters); and nitrogen oxides levels. Blood samples drawn at ages 4 to 6 (n = 5989), 8 to 10 (n = 6603), and 15 to 16 (n = 5825) years were analyzed for IgE sensitization to allergen extracts by ImmunoCAP. Additionally, IgE against 132 allergen molecules was measured by using the MedALL microarray chip (n = 1021). RESULTS Air pollution was not consistently associated with IgE sensitization to any common allergen extract up to age 16 years. However, allergen-specific analyses suggested increased risks of sensitization to birch (odds ratio [OR] = 1.12 [95% CI = 1.01-1.25] per 10-μg/m3 increase in NO2 exposure). In a subpopulation with microarray data, IgE to the major timothy grass allergen Phleum pratense 1 (Phl p 1) and the cat allergen Felis domesticus 1 (Fel d 1) greater than 3.5 Immuno Solid-phase Allergen Chip standardized units for detection of IgE antibodies were related to PM2.5 exposure at birth (OR = 3.33 [95% CI = 1.40-7.94] and OR = 4.98 [95% CI = 1.59-15.60], respectively, per 5-μg/m3 increase in exposure). CONCLUSION Air pollution exposure does not seem to increase the overall risk of allergic sensitization; however, sensitization to birch as well as grass pollen Phl p 1 and cat Fel d 1 allergen molecules may be related to specific pollutants.
Collapse
Affiliation(s)
- Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs Children's Hospital, Stockholm, Sweden
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hicran Altug
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Josep Maria Antó
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain; Hospital de Mar Medical Research Institute, Barcelona, Spain
| | - Dietrich Berdel
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jean Bousquet
- MACVIA-France, Contre les Maladies Chroniques pour un Vieillissement Actif en France European Innovation Partnership on Active and Healthy Ageing Reference Site, Montpellier, France; INSERM U 1168, VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, Villejuif, Université Versailles St-Quentin-en-Yvelines, Montigny le Bretonneux, France
| | - Joachim Heinrich
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Inger Kull
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs Children's Hospital, Stockholm, Sweden
| | - Christian Lupinek
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Iana Markevych
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany; Institute of Psychology, Jagielonian University, Cracow, Poland
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Elisabeth Thiering
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Division of Metabolic and Nutritional Medicine, Dr von Hauner Children's Hospital, University Hospital, LMU of Munich, Munich, Germany
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia; National Research Center-Institute of Immunology FMBA of Russia, Moscow, Russia; Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Andrea von Berg
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Magnus Wickman
- Centre for Clinical Research Sörmland, Uppsala University, Eskilstuna, Sweden
| | - Alet Wijga
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden.
| |
Collapse
|
7
|
Collins MK, Shotland AM, Wade MF, Atif SM, Richards DK, Torres-Llompart M, Mack DG, Martin AK, Fontenot AP, McKee AS. A role for TNF-α in alveolar macrophage damage-associated molecular pattern release. JCI Insight 2020; 5:134356. [PMID: 32255768 DOI: 10.1172/jci.insight.134356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/01/2020] [Indexed: 01/22/2023] Open
Abstract
Chronic beryllium disease (CBD) is a metal hypersensitivity/autoimmune disease in which damage-associated molecular patterns (DAMPs) promote a break in T cell tolerance and expansion of Be2+/self-peptide-reactive CD4+ T cells. In this study, we investigated the mechanism of cell death induced by beryllium particles in alveolar macrophages (AMs) and its impact on DAMP release. We found that phagocytosis of Be led to AM cell death independent of caspase, receptor-interacting protein kinases 1 and 3, or ROS activity. Before cell death, Be-exposed AMs secreted TNF-α that boosted intracellular stores of IL-1α followed by caspase-8-dependent fragmentation of DNA. IL-1α and nucleosomal DNA were subsequently released from AMs upon loss of plasma membrane integrity. In contrast, necrotic AMs released only unfragmented DNA and necroptotic AMs released only IL-1α. In mice exposed to Be, TNF-α promoted release of DAMPs and was required for the mobilization of immunogenic DCs, the expansion of Be-reactive CD4+ T cells, and pulmonary inflammation in a mouse model of CBD. Thus, early autocrine effects of particle-induced TNF-α on AMs led to a break in peripheral tolerance. This potentially novel mechanism may underlie the known relationship between fine particle inhalation, TNF-α, and loss of peripheral tolerance in T cell-mediated autoimmune disease and hypersensitivities.
Collapse
Affiliation(s)
- Morgan K Collins
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Abigail M Shotland
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Morgan F Wade
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Shaikh M Atif
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | | | | | - Douglas G Mack
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Allison K Martin
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Andrew P Fontenot
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine.,Department of Immunology and Microbiology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amy S McKee
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine.,Department of Immunology and Microbiology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Thurston GD, Balmes JR, Garcia E, Gilliland FD, Rice MB, Schikowski T, Van Winkle LS, Annesi-Maesano I, Burchard EG, Carlsten C, Harkema JR, Khreis H, Kleeberger SR, Kodavanti UP, London SJ, McConnell R, Peden DB, Pinkerton KE, Reibman J, White CW. Outdoor Air Pollution and New-Onset Airway Disease. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2020; 17:387-398. [PMID: 32233861 PMCID: PMC7175976 DOI: 10.1513/annalsats.202001-046st] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although it is well accepted that air pollution exposure exacerbates preexisting airway disease, it has not been firmly established that long-term pollution exposure increases the risk of new-onset asthma or chronic obstruction pulmonary disease (COPD). This Workshop brought together experts on mechanistic, epidemiological, and clinical aspects of airway disease to review current knowledge regarding whether air pollution is a causal factor in the development of asthma and/or COPD. Speakers presented recent evidence in their respective areas of expertise related to air pollution and new airway disease incidence, followed by interactive discussions. A writing committee summarized their collective findings. The Epidemiology Group found that long-term exposure to air pollution, especially metrics of traffic-related air pollution such as nitrogen dioxide and black carbon, is associated with onset of childhood asthma. However, the evidence for a causal role in adult-onset asthma or COPD remains insufficient. The Mechanistic Group concluded that air pollution exposure can cause airway remodeling, which can lead to asthma or COPD, as well as asthma-like phenotypes that worsen with long-term exposure to air pollution, especially fine particulate matter and ozone. The Clinical Group concluded that air pollution is a plausible contributor to the onset of both asthma and COPD. Available evidence indicates that long-term exposure to air pollution is a cause of childhood asthma, but the evidence for a similar determination for adult asthma or COPD remains insufficient. Further research is needed to elucidate the exact biological mechanism underlying incident childhood asthma, and the specific air pollutant that causes it.
Collapse
|
9
|
Meldrum K, Guo C, Marczylo EL, Gant TW, Smith R, Leonard MO. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol 2017; 14:45. [PMID: 29157272 PMCID: PMC5697410 DOI: 10.1186/s12989-017-0228-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/10/2017] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic respiratory disease known for its high susceptibility to environmental exposure. Inadvertent inhalation of engineered or incidental nanomaterials is a concern for human health, particularly for those with underlying disease susceptibility. In this review we provide a comprehensive analysis of those studies focussed on safety assessment of different nanomaterials and their unique characteristics on asthma and allergic airway disease. These include in vivo and in vitro approaches as well as human and population studies. The weight of evidence presented supports a modifying role for nanomaterial exposure on established asthma as well as the development of the condition. Due to the variability in modelling approaches, nanomaterial characterisation and endpoints used for assessment in these studies, there is insufficient information for how one may assign relative hazard potential to individual nanoscale properties. New developments including the adoption of standardised models and focussed in vitro and in silico approaches have the potential to more reliably identify properties of concern through comparative analysis across robust and select testing systems. Importantly, key to refinement and choice of the most appropriate testing systems is a more complete understanding of how these materials may influence disease at the cellular and molecular level. Detailed mechanistic insight also brings with it opportunities to build important population and exposure susceptibilities into models. Ultimately, such approaches have the potential to more clearly extrapolate relevant toxicological information, which can be used to improve nanomaterial safety assessment for human disease susceptibility.
Collapse
Affiliation(s)
- Kirsty Meldrum
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Chang Guo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Emma L Marczylo
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Timothy W Gant
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Rachel Smith
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK
| | - Martin O Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Harwell Campus, OX11 0RQ, UK.
| |
Collapse
|
10
|
Aammi S, Karaca F, Petek M. A toxicological and genotoxicological indexing study of ambient aerosols (PM 2.5-10) using in vitro bioassays. CHEMOSPHERE 2017; 174:490-498. [PMID: 28189894 DOI: 10.1016/j.chemosphere.2017.01.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 01/22/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
This study evaluates the toxicity and genotoxicity levels of atmospheric particulate matter (PM) samples collected at several locations of a megacity (Istanbul, Turkey) with different urban and industrial characteristics. The ambient air samples, in the form of a coarse fraction of inhalable particulates, PM2.5-10, were collected on Teflon filters using a passive sampling method on a monthly basis during a one-year period. Later, they were extracted into both the lipophilic and hydrophilic phases using dimethyl sulfoxide (DMSO) and ultra-pure water, respectively. The obtained aqueous extracts were tested for acute toxicity and genotoxicity using the photo-luminescent bacterium Vibrio fischeri Microtox® and SOS Chromotest® assays, respectively. Statistically significant differences greater than background levels were obtained in both measurements, indicating the presence of toxic substances absorbed on particulate matter. The PM2.5-10 extracts identified significant seasonal and locational differences in the toxicity and genotoxicity levels. Local anthropogenic activities and factors were associated with the quantified higher levels. Finally, a qualitative inner comparison study of regional toxicity and genotoxicity indexes was suggested to provide a clearer picture of the pollution and risk levels (or occurrences) in the Istanbul urban area. In this indexing study, the threshold levels for the urban background and episodic occurrences of the toxicity and genotoxicity levels in PM2.5-10 samples were identified to be 1.11 TU (Toxicity Unit) and 8.73 TU and 0.72 IF (Induction Factor) and 1.38 IF, respectively.
Collapse
Affiliation(s)
- Saida Aammi
- Istanbul University, Biotechnology Department, Beyazit, 34452, Fatih, Istanbul, Turkey.
| | - Ferhat Karaca
- Nazarbayev University, Civil Engineering Department, 010000, Astana, Kazakhstan
| | - Mustafa Petek
- Fatih University, Department of Genetic and Biomedical Engineering, 34500, Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
11
|
Andreassen M, Bøhn T, Wikmark OG, Bodin J, Traavik T, Løvik M, Nygaard UC. Investigations of immunogenic, allergenic and adjuvant properties of Cry1Ab protein after intragastric exposure in a food allergy model in mice. BMC Immunol 2016; 17:10. [PMID: 27141950 PMCID: PMC4855866 DOI: 10.1186/s12865-016-0148-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 04/28/2016] [Indexed: 11/29/2022] Open
Abstract
Background In genetically modified (GM) crops there is a risk that the inserted genes may introduce new allergens and/or adjuvants into the food and feed chain. The MON810 maize, expressing the insecticidal Cry1Ab toxin, is grown in many countries worldwide. In animal models, intranasal and intraperitoneal immunisations with the purified Cry1Ab proteins have induced immune responses, and feeding trials with Cry1Ab-containing feed have revealed some altered immune responses. Previous investigations have primarily measured antibody responses to the protein, while investigations of clinical food allergy symptoms, or allergy promotion (adjuvant effect) associated with the Cry1Ab protein are largely missing. We aimed to investigate immunogenic, allergenic and adjuvant properties of purified Cry1Ab toxin (trypCry1Ab, i.e., trypsin activated Cry1Ab) in a mouse model of food allergy. Method Female C3H/HeJ mice were immunized by intragastric gavage of 10 μg purified, trypsin activated Cry1Ab toxin (trypCry1Ab) alone or together with the food allergen lupin. Cholera toxin was added as a positive control for adjuvant effect to break oral tolerance. Clinical symptoms (anaphylaxis) as well as humoral and cellular responses were assessed. Results In contrast to results from previous airway investigations, we observed no indication of immunogenic properties of trypCry1Ab protein after repeated intragastric exposures to one dose, with or without CT as adjuvant. Moreover, the results indicated that trypCry1Ab given by the intragastric route was not able to promote allergic responses or anaphylactic reactions against the co-administered allergen lupin at the given dose. Conclusion The study suggests no immunogenic, allergenic or adjuvant capacity of the given dose of trypCry1Ab protein after intragastric exposure of prime aged mice. Electronic supplementary material The online version of this article (doi:10.1186/s12865-016-0148-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monica Andreassen
- GenØk - Centre for biosafety, Tromsø, Norway. .,Norwegian Institute of Public Health, Oslo, Norway. .,Present address: Department of Food, Water and Cosmetics, Norwegian Institute of Public Health, PO Box 4404, 0403, Oslo, Norway.
| | - Thomas Bøhn
- GenØk - Centre for biosafety, Tromsø, Norway.,UiT The Arctic University of Norway, Tromsø, Norway
| | - Odd-Gunnar Wikmark
- GenØk - Centre for biosafety, Tromsø, Norway.,North West University, Potchefstroom, South Africa
| | | | - Terje Traavik
- GenØk - Centre for biosafety, Tromsø, Norway.,UiT The Arctic University of Norway, Tromsø, Norway
| | - Martinus Løvik
- Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
12
|
Li N, Georas S, Alexis N, Fritz P, Xia T, Williams MA, Horner E, Nel A. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol 2016; 138:386-96. [PMID: 27130856 DOI: 10.1016/j.jaci.2016.02.023] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/30/2016] [Accepted: 02/24/2016] [Indexed: 01/08/2023]
Abstract
Ultrafine particles (UFPs) are airborne particulates of less than 100 nm in aerodynamic diameter. Examples of UFPs are diesel exhaust particles, products of cooking, heating, and wood burning in indoor environments, and, more recently, products generated through the use of nanotechnology. Studies have shown that ambient UFPs have detrimental effects on both the cardiovascular and respiratory systems, including a higher incidence of atherosclerosis and exacerbation rate of asthma. UFPs have been found to alter in vitro and in vivo responses of the immune system to allergens and can also play a role in allergen sensitization. The inflammatory properties of UFPs can be mediated by a number of different mechanisms, including the ability to produce reactive oxygen species, leading to the generation of proinflammatory cytokines and airway inflammation. In addition, because of their small size, UFPs also have unique distribution characteristics in the respiratory tree and circulation and might be able to alter cellular function in ways that circumvent normal signaling pathways. Additionally, UFPs can penetrate intracellularly and potentially cause DNA damage. The recent advances in nanotechnology, although opening up new opportunities for the advancement of technology and medicine, could also lead to unforeseen adverse health effects in exposed human subjects. Further research is needed to clarify the safety of nanoscale particles, as well as the elucidation of the possible beneficial use of these particulates to treat disease.
Collapse
Affiliation(s)
- Ning Li
- Department of Pathology & Diagnostic Investigation, CVM, Michigan State University, East Lansing, Mich.
| | - Steve Georas
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY
| | - Neil Alexis
- Center for Environmental Medicine and Lung Biology, University of North Carolina, Chapel Hill, NC
| | | | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, Calif
| | - Marc A Williams
- US Army Public Health Command, Toxicology Portfolio, Health Effects Research Program, Aberdeen Proving Ground, Aberdeen, Md
| | | | - Andre Nel
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, Calif.
| |
Collapse
|
13
|
Barfod KK, Vrankx K, Mirsepasi-Lauridsen HC, Hansen JS, Hougaard KS, Larsen ST, Ouwenhand AC, Krogfelt KA. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment. Open Microbiol J 2015; 9:167-79. [PMID: 26668669 PMCID: PMC4676059 DOI: 10.2174/1874285801509010167] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022] Open
Abstract
Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances
in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic
microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis
of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota
can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon
nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was
extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that:
the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can
change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome
detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure
does not. These observations should be considered in future studies of the causal relationship between lung microbiota
and lung diseases.
Collapse
Affiliation(s)
| | - Katleen Vrankx
- Applied Maths, Keistraat 120, 9830 Sint-Martens-Latem, Belgium
| | | | - Jitka Stilund Hansen
- National Research Centre for the Working Environment, Lersø parkallé 105, 2100 Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Lersø parkallé 105, 2100 Denmark
| | - Søren Thor Larsen
- National Research Centre for the Working Environment, Lersø parkallé 105, 2100 Denmark
| | - Arthur C Ouwenhand
- Active Nutrition, Dupont Nutrition & Health, Sokeritehtaantie 20, 02460 Kantvik Finland
| | | |
Collapse
|
14
|
Nygaard UC, Vinje NE, Samuelsen M, Andreassen M, Groeng EC, Bølling AK, Becher R, Lovik M, Bodin J. Early life exposure to bisphenol A investigated in mouse models of airway allergy, food allergy and oral tolerance. Food Chem Toxicol 2015; 83:17-25. [DOI: 10.1016/j.fct.2015.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/04/2015] [Accepted: 05/10/2015] [Indexed: 12/25/2022]
|