1
|
Singh H, Singh H, Sharma S, Kaur H, Kaur A, Kaur S, Kaur S, Sahajpal NS, Chaubey A, Shahtaghi NR, Kaur I, Jain SK. Genotoxic and mutagenic potential of 7-methylxanthine: an investigational drug molecule for the treatment of myopia. Drug Chem Toxicol 2024; 47:264-273. [PMID: 36594462 DOI: 10.1080/01480545.2022.2164011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
7-Methylxanthine (7-MX, CAS No. 552-62-5, purity 99.46%) is the first orally administered drug candidate, which showed anti-myopic activity in different pre-clinical studies. In the present study, we investigated the in-vivo genotoxic and mutagenic toxicity of 7-MX in Wistar rats using comet/single-cell gel electrophoresis, chromosomal aberration and micronucleus assays after oral administration. For the single-dose study (72 h), two doses of 7-MX 300 and 2000 mg/kg body weight were selected. For a repeated dose 28 d study, three doses (250, 500, and 1000 mg/kg) of 7-MX were selected. The doses were administered via oral gavage in the suspension form. Blood and major vital organs such as bone marrow, lung and liver were used to perform comet/single cell gel electrophoresis, chromosomal aberration, and micronucleus assays. The in-vitro Ames test was performed on TA98 and TA100 strains. In the chromosomal aberration study, a non-significant increase in deformities such as stickiness, ring chromosome, and endoreduplication was observed in bone marrow cells of 7-MX treated groups. These chromosomal alterations were observed upon treatment with doses of 2000 mg/kg single dose for 72 h and 1000 mg/kg repeated dose for 28 d. At a dose of 500 mg/kg, DNA damage in terms of tail length, tail moment, % tail DNA and the olive tail moment was also found to be non-significant in 7-MX treated groups. The Ames test showed the non-mutagenic nature of 7-MX in both strains of TA98 and TA100 of Salmonella typhimurium with or without metabolic activation. Thus, the present work is interesting in view of the non- genotoxicity and non-mutagenicity of repeated doses of 7-MX.
Collapse
Affiliation(s)
- Harjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Pharmacy, Government Polytechnic College, Amritsar, India
| | - Harmanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Pathology, Augusta University, Georgia, USA
| | - Sunil Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Harmanpreet Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Arvinder Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar India
| | - Sandeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar India
| | - Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Pathology, Augusta University, Georgia, USA
| | - Alka Chaubey
- Department of Molecular Genetics, Bionano Genomics Inc., San Diego, CA, USA
| | - Navid Reza Shahtaghi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Inderjeet Kaur
- Department of Ophthalmology, Baba Farid University of Health Sciences, Faridkot, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
- Center for Basic and Translational Research in Health Science, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
2
|
Marqueze LFB, Costa AK, Pedroso GS, Vasconcellos FF, Pilger BI, Kindermann S, Andrade VM, Alves ACB, Nery T, Silva AA, Carvalhal SRS, Zazula MF, Naliwaiko K, Fernandes LC, Radak Z, Pinho RA. Regulation of Redox Profile and Genomic Instability by Physical Exercise Contributes to Neuroprotection in Mice with Experimental Glioblastoma. Antioxidants (Basel) 2023; 12:1343. [PMID: 37507883 PMCID: PMC10376052 DOI: 10.3390/antiox12071343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive, common brain cancer known to disrupt redox biology, affecting behavior and DNA integrity. Past research remains inconclusive. To further understand this, an investigation was conducted on physical training's effects on behavior, redox balance, and genomic stability in GBMA models. Forty-seven male C57BL/6J mice, 60 days old, were divided into GBM and sham groups (n = 15, n = 10, respectively), which were further subdivided into trained (Str, Gtr; n = 10, n = 12) and untrained (Sut, Gut; n = 10, n = 15) subsets. The trained mice performed moderate aerobic exercises on a treadmill five to six times a week for a month while untrained mice remained in their enclosures. Behavior was evaluated using open-field and rotarod tests. Post training, the mice were euthanized and brain, liver, bone marrow, and blood samples were analyzed for redox and genomic instability markers. The results indicated increased latency values in the trained GBM (Gtr) group, suggesting a beneficial impact of exercise. Elevated reactive oxygen species in the parietal tissue of untrained GBM mice (Gut) were reduced post training. Moreover, Gtr mice exhibited lower tail intensity, indicating less genomic instability. Thus, exercise could serve as a promising supplemental GBM treatment, modulating redox parameters and reducing genomic instability.
Collapse
Affiliation(s)
- Luis F B Marqueze
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-200, Brazil
| | - Amanda K Costa
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-200, Brazil
| | - Giulia S Pedroso
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-200, Brazil
| | - Franciane F Vasconcellos
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-200, Brazil
| | - Bruna I Pilger
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-200, Brazil
| | - Schellen Kindermann
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma 88806-000, Brazil
| | - Vanessa M Andrade
- Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma 88806-000, Brazil
| | - Ana C B Alves
- Department of Physical Therapy, Federal University of Santa Catarina, Araranguá 88905-120, Brazil
| | - Tatyana Nery
- Department of Physical Therapy, Federal University of Santa Catarina, Araranguá 88905-120, Brazil
| | - Aderbal A Silva
- Department of Physical Therapy, Federal University of Santa Catarina, Araranguá 88905-120, Brazil
| | | | - Matheus F Zazula
- Department of Physiology, Federal University of Parana, Curitiba 81531-970, Brazil
| | - Katya Naliwaiko
- Department of Physiology, Federal University of Parana, Curitiba 81531-970, Brazil
| | - Luiz C Fernandes
- Department of Physiology, Federal University of Parana, Curitiba 81531-970, Brazil
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Alkotas u. 44, H-1123 Budapest, Hungary
| | - Ricardo A Pinho
- Graduate Program in Health Sciences, School of Life Sciences and Medicine, Pontifical Catholic University of Paraná, Curitiba 80215-200, Brazil
| |
Collapse
|
3
|
Lummertz Magenis M, Souza de Marcos P, Paganini Damiani A, Ricardo Cantareli da Silva A, Martins Longaretti L, Bahia Franca I, Da Silva J, Rodrigues Boeck C, Moraes de Andrade V. Genotoxic effects of caffeine in female mice exposed during pregnancy and lactation period and their offspring. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 41:36-60. [PMID: 37243358 DOI: 10.1080/26896583.2023.2213613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Caffeine is a widely consumed substance, and there is a discussion about its effects when ingested by women during pregnancy and lactation. We aimed to identify the genotoxic effects of caffeine in female mice that consumed it during pregnancy and lactation periods and its consequences in their offspring. Thirty-six couples of Swiss mice received water or caffeine (0.3 and 1.0 mg/mL) treatment during pregnancy and lactation. The male and female offspring were divided into 12 groups according to the treatment administered to the female mice. Genotoxicity was assessed using the comet assay and the micronucleus test. Both doses of caffeine showed genotoxic effects in pregnant and lactating mice groups compared to groups not administered caffeine. In relation to offspring, it can be observed that females and males of the offspring had low weight in early life. In both female and male offspring, genotoxicity was detected in the blood, liver, and kidney tissues. Thus, from the present study, we can suggest that the caffeine consumed by female mice during the periods of pregnancy and lactation led to genotoxic effects in their offspring.
Collapse
Affiliation(s)
- Marina Lummertz Magenis
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Pamela Souza de Marcos
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Adriani Paganini Damiani
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Anderson Ricardo Cantareli da Silva
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Luiza Martins Longaretti
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Ive Bahia Franca
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Juliana Da Silva
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, Canoas, Rio Grande do Sul, Brazil
- La Salle University, Canoas, Rio Grande do Sul, Brazil
| | - Carina Rodrigues Boeck
- Graduate Program in Nanosciences, Master Degree in Health and Life Science, Franciscan University, Santa Maria, Rio Grande do Sul, Brazil
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
4
|
Yu J, Zhang W, Huo W, Meng X, Zhong T, Su Y, Liu Y, Liu J, Wang Z, Song F, Zhang S, Li Z, Yu X, Yu X, Hua S. Regulation of host factor γ-H2AX level and location by enterovirus A71 for viral replication. Virulence 2022; 13:241-257. [PMID: 35067196 PMCID: PMC8786350 DOI: 10.1080/21505594.2022.2028482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Numerous viruses manipulate host factors for viral production. We demonstrated that human enterovirus A71 (EVA71), a primary causative agent for hand, foot, and mouth disease (HFMD), increased the level of the DNA damage response (DDR) marker γ-H2AX. DDR is primarily mediated by the ataxia telangiectasia mutated (ATM), ATM and Rad3-related (ATR), or DNA-dependent protein kinase (DNA-PK) pathways. Upregulation of γ-H2AX by EVA71 was dependent on the ATR but not the ATM or DNA-PK pathway. As a nuclear factor, there is no previous evidence of cytoplasmic distribution of γ-H2AX. However, the present findings demonstrated that EVA71 encouraged the localization of γ-H2AX to the cytoplasm. Of note, γ-H2AX formed a complex with structural protein VP3, non-structural protein 3D, and the viral genome. Treatment with an inhibitor or CRISPR/Cas9 technology to decrease or silence the expression of γ-H2AX decreased viral genome replication in host cells; this effect was accompanied by decreased viral protein expression and virions. In animal experiments, caffeine was used to inhibit DDR; the results revealed that caffeine protected neonatal mice from death after infection with EVA71, laying the foundation for new therapeutic applications of caffeine. More importantly, in children with HFMD, γ-H2AX was upregulated in peripheral blood lymphocytes. The consistent in vitro and in vivo data on γ-H2AX from this study suggested that caffeine or other inhibitors of DDR might be novel therapeutic agents for HFMD.
Collapse
Affiliation(s)
- Jinghua Yu
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Wenbo Huo
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Xiangling Meng
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Ting Zhong
- Medicinal Chemistry, College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ying Su
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Yumeng Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Jinming Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Zengyan Wang
- Department of Internal Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Fengmei Song
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Shuxia Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiaoyan Yu
- Department of Experimental Pharmacology and Toxicology, School of Pharmacy, Jilin University, Changchun, China
| | - Xiaofang Yu
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shucheng Hua
- Department of Internal Medicine, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
5
|
Sousa HG, Uchôa VT, Cavalcanti SMG, de Almeida PM, Chaves MH, Lima Neto JDS, Nunes PHM, da Costa Júnior JS, Rai M, Do Carmo IS, de Sousa EA. Phytochemical screening, phenolic and flavonoid contents, antioxidant and cytogenotoxicity activities of Combretum leprosum Mart. (Combretaceae). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:399-417. [PMID: 33494643 DOI: 10.1080/15287394.2021.1875345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Combretum leprosum Mart. (Combretaceae), a shrub popularly known as mofumbo, is used in folk medicine for treatment of uterine bleeding, pertussis, gastric pain, and as a sedative. The aim of this study was to (1) determine the phytochemical profile,(2) identify chemical constituents and (3) examine antioxidant and cytogenotoxic activity of ethanolic extracts and fractions of stem bark and leaves. The plant material (leaf and stem bark) was submitted to extraction with ethanol, followed by partition using hexane, chloroform, and ethyl acetate. It was possible to identify and quantify the epicatechin in the ethanolic stem bark extract (0.065 mg/g extract) and rutin in the leaf extract (3.33 mg/g extract). Based upon in vitro tests a significant relationship was noted between findings from antioxidant tests and levels of total phenolic and flavonoid. Comparing all samples (extracts and fractions), the ethyl acetate fractions of stem bark (411.40 ± 15.38 GAE/g) and leaves (225.49 ± 9.47 GAE/g) exhibited higher phenolic content, whereas hexanic fraction of stem bark (124.28 ± 56 mg/g sample) and ethyl acetate fraction of leaves (238.91 ± 1.73 mg/g sample) demonstrated a higher content of flavonoids. Among the antioxidant tests, the intermediate fraction of stem bark (28.5 ± 0.60 μg/ml) and ethyl acetate fraction of leaves (40 ± 0.56 μg/ml) displayed a higher % inhibition of free radical DPPH activity, whereas intermediate fraction of stem bark (27.5 ± 0.9 μg/ml) and hydromethanol fraction of leaves (81 ± 1.4 μg/ml) demonstrated inhibition of the free radical ABTS. In biological tests (Allium cepa and micronucleus in peripheral blood), data showed that none of the tested concentrations of ethanolic extracts of leaves and stem bark produced significant cytotoxicity, genotoxicity, and mutagenic activity.Abbreviations AA%: percentage of antioxidant activity; ABTS: 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid); CEUA: Ethics Committee in the Use of Animals; TLC: Thin Layer Chromatography; DNA: deoxyribonucleic acid; DPPH: 1,1-diphenyl-2-picrylhydrazyl; ROS: Reactive oxygen species; EEB: ethanol extract of the stem bark; HFB: Hexanic fraction of stem bark; IFB: Intermediate fraction of stem bark; CFB: Chloroform fraction of stem bark; EAFB: Ethyl acetate fraction of stem bark; HMFB: Hydromethanol fraction of the stem bark; EEL: Ethanol extract from leaves; HFL: Hexane fraction of leaves; CFL: Chloroform fraction of leaves; EAFL: Ethyl acetate fraction of leaves; HMFL: Hydromethanol fraction of leaves; GAE: Gallic Acid Equivalent; IC50: 50% inhibition concentration; HCOOH: Formic acid; HCl: hydrochloric acid; HPLC: High-performance liquid chromatography; MN: micronucleus; WHO: World Health Organization; UFLC: Ultra-Fast Liquid Chromatography; UESPI: State University of Piauí.
Collapse
Affiliation(s)
- Herbert Gonzaga Sousa
- Department of Chemistry, Natural Sciences Center, State University of Piauí, Teresina, Piauí, Brazil
| | - Valdiléia Teixeira Uchôa
- Department of Chemistry, Natural Sciences Center, State University of Piauí, Teresina, Piauí, Brazil
| | | | - Pedro Marcos de Almeida
- Health Sciences Center, Department of Genetics, State University of Piauí, Teresina, Piauí, Brazil
| | - Mariana Helena Chaves
- Department of Organic Chemistry, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | | | - Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University Amravati, Maharashtra, India
| | | | | |
Collapse
|
6
|
Damiani AP, Strapazzon G, de Oliveira Sardinha TT, Rohr P, Gajski G, de Pinho RA, de Andrade VM. Melatonin supplementation over different time periods until ageing modulates genotoxic parameters in mice. Mutagenesis 2020; 35:465-478. [PMID: 32720686 DOI: 10.1093/mutage/geaa017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
The ageing process is a multifactorial phenomenon, associated with decreased physiological and cellular functions and an increased propensity for various degenerative diseases. Studies on melatonin (N-acetyl-5-methoxytryptamine), a potent antioxidant, are gaining attention since melatonin production declines with advancing age. Hence, the aim of this study was to evaluate the effects of chronic melatonin consumption on genotoxic and mutagenic parameters of old Swiss mice. Herein, 3-month-old Swiss albino male mice (n = 240) were divided into eight groups and subdivided into two experiments: first (three groups): natural ageing experiment; second (five groups): animals that started water or melatonin supplementation at different ages (3, 6, 12 and 18 months) until 21 months. After 21 months, the animals from the second experiment were euthanized to perform the comet assay, micronucleus test and western blot analysis. The results demonstrated that melatonin prolonged the life span of the animals. Relative to genomic instability, melatonin was effective in reducing DNA damage caused by ageing, presenting antigenotoxic and antimutagenic activities, independently of initiation age. The group receiving melatonin for 18 months had high levels of APE1 and OGG1 repair enzymes. Conclusively, melatonin presents an efficient antioxidant mechanism aiding modulating genetic and physiological alterations due to ageing.
Collapse
Affiliation(s)
- Adriani Paganini Damiani
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Giulia Strapazzon
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Thanielly Thais de Oliveira Sardinha
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Paula Rohr
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia, Croatia
| | - Ricardo Aurino de Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imac. Conceição - Curitiba - PR, Brazil
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Graduate Programme of Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| |
Collapse
|
7
|
Caffeine Neuroprotection Decreases A2A Adenosine Receptor Content in Aged Mice. Neurochem Res 2019; 44:787-795. [PMID: 30610653 DOI: 10.1007/s11064-018-02710-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/14/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
Abstract
Caffeine is a bioactive compound worldwide consumed with effect into the brain. Part of its action in reducing incidence or delaying Alzheimer's and Parkinson's diseases symptoms in human is credited to the adenosine receptors properties. However, the impact of caffeine consumption during aging on survival of brain cells remains debatable. This work, we investigated the effect of low-dose of caffeine on the ectonucleotidase activities, adenosine receptors content, and paying particular attention to its pro-survival effect during aging. Male young adult and aged Swiss mice drank water or caffeine (0.3 g/L) ad libitum for 4 weeks. The results showed that long-term caffeine treatment did not unchanged ATP, ADP or AMP hydrolysis in hippocampus when compared to the mice drank water. Nevertheless, the ATP/ADP hydrolysis ratio was higher in young adult (3:1) compared to the aged (1:1) animals regardless of treatment. The content of A1 receptors did not change in any groups of mice, but the content of A2A receptors was reduced in hippocampus of mice that consumed caffeine. Moreover, the cell viability results indicated that aged mice not only had increased pyknotic neurons in the hippocampus but also had reduced damage after caffeine treatment. Overall, these findings indicate a potential neuroprotective effect of caffeine during aging through the adenosinergic system.
Collapse
|
8
|
Costa-Valle MT, Tonieto BD, Altknecht L, Cunha CD, Fão N, Cestonaro LV, Göethel G, Garcia SC, Leal MB, Dallegrave E, Arbo MD. Energy drink and alcohol combination leads to kidney and liver alterations in rats. Toxicol Appl Pharmacol 2018; 355:138-146. [DOI: 10.1016/j.taap.2018.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
|
9
|
Selected Literature Watch. JOURNAL OF CAFFEINE RESEARCH 2017. [DOI: 10.1089/jcr.2017.29005.slw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|