1
|
de Sousa Pinto M, Fontoura LGO, da Rosa Borges I, Vieira de Melo Bisneto A, Rosa de Oliveira G, Carneiro LC, Chen Chen L, Vieira de Moraes Filho A. Evaluation of infliximab-induced genotoxicity and possible action on BCL-2 and P53 genes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:752-761. [PMID: 38922576 DOI: 10.1080/15287394.2024.2368619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Although the last pandemic created an urgency for development of vaccines, there was a continuous and concerted effort to search for therapeutic medications among existing drugs with different indications. One of the medications of interest that underwent this change was infliximab (IFM). This drug is used as an anti-inflammatory, predominantly in patients with Crohn 's disease, colitis ulcerative, and rheumatoid arthritis. In addition to these patients, individuals infected with Coronavirus Disease (COVID-19) were administered this chimeric monoclonal antibody (IMF) to act as an immunomodulator for patients in the absence of comprehensive research. Consequently, the present study aimed to examine the genotoxic effects attributed to IFM treatment employing different assays in vivo using mouse Mus musculus. Therefore, IFM was found to induce genotoxic effects as evidenced by the comet assay but did not demonstrate genotoxic potential utilizing mouse bone marrow MN test. The results of evaluating the expression of the P53 and BCL-2 genes using RT-qPCR showed stimulation of expression of these genes at 24 hr followed by a decline at 48 hr. Although the comet assay provided positive results, it is noteworthy that based upon negative findings in the micronucleus test, the data did not demonstrate significant changes in the genetic material that might affect the therapeutic use of IFM. The stimulation of expression of P53 and BCL-2 genes at 24 hr followed by a decline at 48 hr suggest a transient, if any, effect on genetic material. However, there is still a need for more research to more comprehensively understand the genotoxic profile of this medication.
Collapse
Affiliation(s)
- Murillo de Sousa Pinto
- Faculty of Pharmacy, Graduate Program in Health Assistance and Evaluation, Federal University of Goiás, Goiânia, Brazil
- Institute of Health Sciences, Alfredo Nasser University Center, Goiânia, Goiás, Brazil
| | | | | | - Abel Vieira de Melo Bisneto
- Institute of Biological Sciences, Department of Genetics, Laboratory of Radiobiology and Mutagenesis, Federal University of Goiás, Goiânia, Brazil
| | | | - Lílian Carla Carneiro
- Department of Biotechnology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Lee Chen Chen
- Institute of Biological Sciences, Department of Genetics, Laboratory of Radiobiology and Mutagenesis, Federal University of Goiás, Goiânia, Brazil
| | - Aroldo Vieira de Moraes Filho
- Faculty of Pharmacy, Graduate Program in Health Assistance and Evaluation, Federal University of Goiás, Goiânia, Brazil
- Institute of Health Sciences, Alfredo Nasser University Center, Goiânia, Goiás, Brazil
| |
Collapse
|
2
|
Seo JE, Le Y, Revollo J, Miranda-Colon J, Xu H, McKinzie P, Mei N, Chen T, Heflich RH, Zhou T, Robison T, Bonzo JA, Guo X. Evaluating the mutagenicity of N-nitrosodimethylamine in 2D and 3D HepaRG cell cultures using error-corrected next generation sequencing. Arch Toxicol 2024; 98:1919-1935. [PMID: 38584193 PMCID: PMC11106104 DOI: 10.1007/s00204-024-03731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Human liver-derived metabolically competent HepaRG cells have been successfully employed in both two-dimensional (2D) and 3D spheroid formats for performing the comet assay and micronucleus (MN) assay. In the present study, we have investigated expanding the genotoxicity endpoints evaluated in HepaRG cells by detecting mutagenesis using two error-corrected next generation sequencing (ecNGS) technologies, Duplex Sequencing (DS) and High-Fidelity (HiFi) Sequencing. Both HepaRG 2D cells and 3D spheroids were exposed for 72 h to N-nitrosodimethylamine (NDMA), followed by an additional incubation for the fixation of induced mutations. NDMA-induced DNA damage, chromosomal damage, and mutagenesis were determined using the comet assay, MN assay, and ecNGS, respectively. The 72-h treatment with NDMA resulted in concentration-dependent increases in cytotoxicity, DNA damage, MN formation, and mutation frequency in both 2D and 3D cultures, with greater responses observed in the 3D spheroids compared to 2D cells. The mutational spectrum analysis showed that NDMA induced predominantly A:T → G:C transitions, along with a lower frequency of G:C → A:T transitions, and exhibited a different trinucleotide signature relative to the negative control. These results demonstrate that the HepaRG 2D cells and 3D spheroid models can be used for mutagenesis assessment using both DS and HiFi Sequencing, with the caveat that severe cytotoxic concentrations should be avoided when conducting DS. With further validation, the HepaRG 2D/3D system may become a powerful human-based metabolically competent platform for genotoxicity testing.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Javier Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jaime Miranda-Colon
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Page McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, 20855, USA
| | - Timothy Robison
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Jessica A Bonzo
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
3
|
Guo X, Xu H, Seo JE. Application of HepaRG cells for genotoxicity assessment: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:214-237. [PMID: 38566478 DOI: 10.1080/26896583.2024.2331956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
There has been growing interest in the use of human-derived metabolically competent cells for genotoxicity testing. The HepaRG cell line is considered one of the most promising cell models because it is TP53-proficient and retains many characteristics of primary human hepatocytes. In recent years, HepaRG cells, cultured in both a traditional two-dimensional (2D) format and as more advanced in-vivo-like 3D spheroids, have been employed in assays that measure different types of genetic toxicity endpoints, including DNA damage, mutations, and chromosomal damage. This review summarizes published studies that have used HepaRG cells for genotoxicity assessment, including cell model evaluation studies and risk assessment for various compounds. Both 2D and 3D HepaRG models can be adapted to several high-throughput genotoxicity assays, generating a large number of data points that facilitate quantitative benchmark concentration modeling. With further validation, HepaRG cells could serve as a unique, human-based new alternative methodology for in vitro genotoxicity testing.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
4
|
Wahyuni I, Aulifa DL, Rosdianto AM, Levita J. The pharmacology activities of Angelica keiskei Koidzumi and its efficacy and safety in humans. Heliyon 2024; 10:e24119. [PMID: 38357325 PMCID: PMC10865877 DOI: 10.1016/j.heliyon.2024.e24119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic exposure to elevated levels of pro-oxidant factors may cause structural failings at the mitochondrial DNA level and alteration of antioxidant enzymes (glutathione peroxidase, catalase, and superoxide dismutase). Oxidative stress is an imbalance between the capacity of endogenous non-enzymatic antioxidants (glutathione, alpha-lipoic acid, uric acid, ferritin, metallothionein, melatonin, and bilirubin) and the occurrence of pro-oxidant factors which may lead to the pathogenesis of various diseases that affects the kidneys, pancreas, central nervous system, and cardiovascular system. Therefore, the utilization of medicinal plants with antioxidant activity, e.g., Angelica keiskei Koidzumi which contains chalcones, is interesting to be explored. Chalcones exhibit direct and indirect antioxidant activity and prevent oxidative stress by decreasing ROS, RNS, and superoxide production. In this review, we discuss the pharmacology activities of A. keiskei Koidzumi and its efficacy in humans. The articles were explored on PubMed and Google Scholar databases and based on the titles and abstracts related to the topic of interest, and 55 articles were selected. Two main chalcones of this plant, 4-hydroxyderricin and xanthoangelol, have been reported for their various pharmacology activities. The efficacy of A. keiskei was confirmed in anti-obesity, hepatoprotective, anti-diabetes mellitus, and increasing plasma antioxidants in patients with metabolic syndrome. A keiskei is safe as proven by only mild or no adverse events reported, thus it is prospective to be further developed as an antioxidant nutraceutical.
Collapse
Affiliation(s)
- Ika Wahyuni
- Master Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, West Java, Indonesia
- Faculty of Health, Universitas Nahdlatul Ulama, Mataram, West Nusa Tenggara, Indonesia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Aziiz Mardanarian Rosdianto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Veterinary Medicine Study Program, Faculty of Medicine, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
5
|
Solan ME, Schackmuth B, Bruce ED, Pradhan S, Sayes CM, Lavado R. Effects of short-chain per- and polyfluoroalkyl substances (PFAS) on toxicologically relevant gene expression profiles in a liver-on-a-chip model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122610. [PMID: 37742859 DOI: 10.1016/j.envpol.2023.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Short-chain per- and polyfluoroalkyl substances (PFAS) are highly stable and widely used environmental contaminants that pose potential health risks to humans. Aggregating reliable mechanistic information for safety assessments necessitates physiologically relevant high-throughput screening approaches. Here, we demonstrated the utility of a liver-on-a-chip model to investigate the effects of five short-chain PFAS at low (1 nM) and high (1 μM) concentrations on toxicologically-relevant gene expression profiles using the QuantiGene® Plex Assay. We found that the short-chain PFAS tested in this study modulated the expression of ABCG2, a gene encoding for the breast cancer resistance protein (BCRP), with marked and significant upregulation (up to 4-fold) observed for all but one of the short-chain PFAS tested. PFBS and HFPO-DA repressed SLCO1B3 expression, a gene that encodes for an essential liver-specific organic anion transporter. High concentrations of PFBS, PFHxA, and PFHxS upregulated the expression of genes encCYP1A1,CYP2B6 and CYP2C19 with the same treatments resulting in the repression of the expression of the gene encoding CYP1A2. This dysregulation could have consequences for the clearance of endogenous compounds and xenobiotics. However, we acknowledge that increased expression of genes encoding for transporters and biotransformation enzymes may or may not indicate changes to their protein expression or activity. Overall, our study provides important insights into the effects of short-chain PFAS on liver function and their potential implications for human health. The use of the liver-on-a-chip model in combination with the QuantiGene® Plex Assay may be a valuable tool for future high-throughput screening and gene expression profiling in toxicology studies.
Collapse
Affiliation(s)
- Megan E Solan
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Bennett Schackmuth
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Erica D Bruce
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Sahar Pradhan
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
6
|
di Vito R, Acito M, Fatigoni C, Schiesser CH, Davies MJ, Mangiavacchi F, Villarini M, Santi C, Moretti M. Genotoxicity assessment of 1,4-anhydro-4-seleno-D-talitol (SeTal) in human liver HepG2 and HepaRG cells. Toxicology 2023; 499:153663. [PMID: 37924933 DOI: 10.1016/j.tox.2023.153663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
1,4-Anhydro-4-seleno-D-talitol (SeTal) is a highly water-soluble selenosugar with interesting antioxidant and skin-tissue-repair properties; it is highly stable in simulated gastric and gastrointestinal fluids and is a potential pharmaceutical ingredient that may be administered orally. Hepatic toxicity is often a major problem with novel drugs and can result in drug withdrawal from the market. Predicting hepatotoxicity is therefore essential to minimize late failure in the drug-discovery process. Herein, we report in vitro studies to evaluate the cytotoxic and genotoxic potential of SeTal in HepG2 and hepatocyte-like differentiated HepaRG cells. Except for extremely high concentrations (10 mM, 68 h-treatment in HepG2), SeTal did not affect the viability of each cell type. While the highest examined concentrations (0.75 and 1 mM in HepG2; 1 mM in HepaRG) were observed to induce primary DNA damage, SeTal did not exhibit clastogenic or aneugenic activity toward either HepG2 or HepaRG cells. Moreover, no significant cytostasis variations were observed in any experiment. The clearly negative results observed in the CBMN test suggest that SeTal might be used as a potential active pharmaceutical ingredient. The present study will be useful for the selection of non-toxic concentrations of SeTal in future investigations.
Collapse
Affiliation(s)
- Raffaella di Vito
- Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Mattia Acito
- Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Carl H Schiesser
- Seleno Therapeutics Pty. Ltd., Brighton East, Victoria 3187, Australia.
| | - Michael J Davies
- Seleno Therapeutics Pty. Ltd., Brighton East, Victoria 3187, Australia; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| | - Francesca Mangiavacchi
- Department of Pharmaceutical Sciences (Group of Catalysis Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 06123 Perugia, Italy.
| | - Milena Villarini
- Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Claudio Santi
- Department of Pharmaceutical Sciences (Group of Catalysis Synthesis and Organic Green Chemistry), University of Perugia, Via del Liceo, 06123 Perugia, Italy.
| | - Massimo Moretti
- Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| |
Collapse
|
7
|
Seo JE, Yu JZ, Xu H, Li X, Atrakchi AH, McGovern TJ, Bruno KLD, Mei N, Heflich RH, Guo X. Genotoxicity assessment of eight nitrosamines using 2D and 3D HepaRG cell models. Arch Toxicol 2023; 97:2785-2798. [PMID: 37486449 DOI: 10.1007/s00204-023-03560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
N-nitrosamine impurities have been increasingly detected in human drugs. This is a safety concern as many nitrosamines are mutagenic in bacteria and carcinogenic in rodent models. Typically, the mutagenic and carcinogenic activity of nitrosamines requires metabolic activation by cytochromes P450 enzymes (CYPs), which in many in vitro models are supplied exogenously using rodent liver homogenates. There are only limited data on the genotoxicity of nitrosamines in human cell systems. In this study, we used metabolically competent human HepaRG cells, whose metabolic capability is comparable to that of primary human hepatocytes, to evaluate the genotoxicity of eight nitrosamines [N-cyclopentyl-4-nitrosopiperazine (CPNP), N-nitrosodibutylamine (NDBA), N-nitrosodiethylamine (NDEA), N-nitrosodimethylamine (NDMA), N-nitrosodiisopropylamine (NDIPA), N-nitrosoethylisopropylamine (NEIPA), N-nitroso-N-methyl-4-aminobutyric acid (NMBA), and N-nitrosomethylphenylamine (NMPA)]. Under the conditions we used to culture HepaRG cells, three-dimensional (3D) spheroids possessed higher levels of CYP activity compared to 2D monolayer cells; thus the genotoxicity of the eight nitrosamines was investigated using 3D HepaRG spheroids in addition to more conventional 2D cultures. Genotoxicity was assessed as DNA damage using the high-throughput CometChip assay and as aneugenicity/clastogenicity in the flow-cytometry-based micronucleus (MN) assay. Following a 24-h treatment, all the nitrosamines induced DNA damage in 3D spheroids, while only three nitrosamines, NDBA, NDEA, and NDMA, produced positive responses in 2D HepaRG cells. In addition, these three nitrosamines also caused significant increases in MN frequency in both 2D and 3D HepaRG models, while NMBA and NMPA were positive only in the 3D HepaRG MN assay. Overall, our results indicate that HepaRG spheroids may provide a sensitive, human-based cell system for evaluating the genotoxicity of nitrosamines.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Joshua Z Yu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
- Wiess School of Natural Sciences, Rice University, Houston, TX, 77005, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Aisar H Atrakchi
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Timothy J McGovern
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Karen L Davis Bruno
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
8
|
Marzougui Z, Le Hegarat L, Hogeveen K, Huet S, Kharrat R, Marrouchi R, Fessard V. An Evaluation of the Cytotoxic and Genotoxic Effects of the Marine Toxin C17-SAMT in Human TK6 and HepaRG Cell Lines. Int J Mol Sci 2023; 24:ijms24097805. [PMID: 37175512 PMCID: PMC10177896 DOI: 10.3390/ijms24097805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
This study investigates the genotoxicity and cytotoxicity of C17-sphinganine analog mycotoxin (C17-SAMT) using in vitro assays. C17-SAMT was previously identified as the cause of unusual toxicity in cultured mussels from the Bizerte Lagoon in northern Tunisia. While a previous in vivo genotoxicity study was inconclusive, in vitro results demonstrated that C17-SAMT induced an increase in micronucleus formation in human lymphoblastoid TK6 cells at concentrations of 0.87 µM and 1.74 µM. In addition, multiparametric cytotoxicity assays were performed in the human hepatoma HepaRG cell line, which showed that C17-SAMT induced mitochondrial dysfunction, decreased cellular ATP levels, and altered the expression of various proteins, including superoxide dismutase SOD2, heme oxygenase HO-1, and NF-κB. These results suggest that C17-SAMT is mutagenic in vitro and can induce mitochondrial dysfunction in HepaRG cells. However, the exact mode of action of this toxin requires further investigation. Overall, this study highlights the potential toxicity of C17-SAMT and the need for further research to better understand its effects.
Collapse
Affiliation(s)
- Zeineb Marzougui
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, B.P. 74, Tunis-Belvédère 1002, Tunisia
- Institut National Agronomique de Tunisie, Université de Carthage, Tunis 1082, Tunisia
| | - Ludovic Le Hegarat
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Kevin Hogeveen
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Sylvie Huet
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Riadh Kharrat
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, B.P. 74, Tunis-Belvédère 1002, Tunisia
| | - Riadh Marrouchi
- Laboratoire des Venins et Biomolécules Thérapeutiques, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, B.P. 74, Tunis-Belvédère 1002, Tunisia
| | - Valérie Fessard
- Unité de Toxicologie des Contaminants, Agence Nationale de Sécurité Sanitaire (ANSES), 10 B rue Claude Bourgelat, 35306 Fougères, France
| |
Collapse
|
9
|
Seo JE, Li X, Le Y, Mei N, Zhou T, Guo X. High-throughput micronucleus assay using three-dimensional HepaRG spheroids for in vitro genotoxicity testing. Arch Toxicol 2023; 97:1163-1175. [PMID: 36847820 DOI: 10.1007/s00204-023-03461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
The in vitro micronucleus (MN) assay is a component of most test batteries used in assessing potential genotoxicity. Our previous study adapted metabolically competent HepaRG cells to the high-throughput (HT) flow-cytometry-based MN assay for genotoxicity assessment (Guo et al. in J Toxicol Environ Health A 83:702-717, 2020b, https://doi.org/10.1080/15287394.2020.1822972 ). We also demonstrated that, compared to HepaRG cells grown as two-dimensional (2D) cultures, 3D HepaRG spheroids have increased metabolic capacity and improved sensitivity in detecting DNA damage induced by genotoxicants using the comet assay (Seo et al. in ALTEX 39:583-604, 2022, https://doi.org/10.14573/altex.22011212022 ). In the present study, we have compared the performance of the HT flow-cytometry-based MN assay in HepaRG spheroids and 2D HepaRG cells by testing 34 compounds, including 19 genotoxicants or carcinogens and 15 compounds that show different genotoxic responses in vitro and in vivo. 2D HepaRG cells and spheroids were exposed to the test compounds for 24 h, followed by an additional 3- or 6-day incubation with human epidermal growth factor to stimulate cell division. The results demonstrated that HepaRG spheroids showed generally higher sensitivity in detecting several indirect-acting genotoxicants (require metabolic activation) compared to 2D cultures, with 7,12-dimethylbenzanthracene and N-nitrosodimethylamine inducing higher % MN formation along with having significantly lower benchmark dose values for MN induction in 3D spheroids. These data suggest that 3D HepaRG spheroids can be adapted to the HT flow-cytometry-based MN assay for genotoxicity testing. Our findings also indicate that integration of the MN and comet assays improved the sensitivity for detecting genotoxicants that require metabolic activation. These results suggest that HepaRG spheroids may contribute to New Approach Methodologies for genotoxicity assessment.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tong Zhou
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD, 20855, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
10
|
Carpentier N, Urbani L, Dubruel P, Van Vlierberghe S. The native liver as inspiration to create superior in vitro hepatic models. Biomater Sci 2023; 11:1091-1115. [PMID: 36594602 DOI: 10.1039/d2bm01646j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Drug induced liver injury (DILI) is one of the major reasons of drug withdrawal during the different phases of drug development. The later in the drug development a drug is discovered to be toxic, the higher the economical as well as the ethical impact will be. In vitro models for early detection of drug liver toxicity are under constant development, however to date a superior model of the liver is still lacking. Ideally, a highly reliable model should be established to maintain the different hepatic cell functionalities to the greatest extent possible, during a period of time long enough to allow for tracking of the toxicity of compounds. In the case of DILI, toxicity can appear even after months of exposure. To reach this goal, an in vitro model should be developed that mimics the in vivo liver environment, function and response to external stimuli. The different approaches for the development of liver models currently used in the field of tissue engineering will be described in this review. Combining different technologies, leading to optimal materials, cells and 3D-constructs will ultimately lead to an ideal superior model that fully recapitulates the liver.
Collapse
Affiliation(s)
- Nathan Carpentier
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| | - Luca Urbani
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Mišík M, Nersesyan A, Ferk F, Holzmann K, Krupitza G, Herrera Morales D, Staudinger M, Wultsch G, Knasmueller S. Search for the optimal genotoxicity assay for routine testing of chemicals: Sensitivity and specificity of conventional and new test systems. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503524. [PMID: 36031336 DOI: 10.1016/j.mrgentox.2022.503524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Many conventional in vitro tests that are currently widely used for routine screening of chemicals have a sensitivity/specificity in the range between 60 % and 80 % for the detection of carcinogens. Most procedures were developed 30-40 years ago. In the last decades several assays became available which are based on the use of metabolically competent cell lines, improvement of the cultivation conditions and development of new endpoints. Validation studies indicate that some of these models may be more reliable for the detection of genotoxicants (i.e. many of them have sensitivity and specificity values between 80 % and 95 %). Therefore, they could replace conventional tests in the future. The bone marrow micronucleus (MN) assay with rodents is at present the most widely used in vivo test. The majority of studies indicate that it detects only 5-6 out of 10 carcinogens while experiments with transgenic rodents and comet assays seem to have a higher predictive value and detect genotoxic carcinogens that are negative in MN experiments. Alternatives to rodent experiments could be MN experiments with hen eggs or their replacement by combinations of new in vitro tests. Examples for promising candidates are ToxTracker, TGx-DDI, multiplex flow cytometry, γH2AX experiments, measurement of p53 activation and MN experiments with metabolically competent human derived liver cells. However, the realization of multicentric collaborative validation studies is mandatory to identify the most reliable tests.
Collapse
Affiliation(s)
- M Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - A Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - F Ferk
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - K Holzmann
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Krupitza
- Department of Pathology, Medical University of Vienna, A-1090 Vienna, Austria
| | - D Herrera Morales
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - M Staudinger
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - G Wultsch
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - S Knasmueller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|
12
|
Model-based translation of DNA damage signaling dynamics across cell types. PLoS Comput Biol 2022; 18:e1010264. [PMID: 35802572 PMCID: PMC9269748 DOI: 10.1371/journal.pcbi.1010264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/30/2022] [Indexed: 12/14/2022] Open
Abstract
Interindividual variability in DNA damage response (DDR) dynamics may evoke differences in susceptibility to cancer. However, pathway dynamics are often studied in cell lines as alternative to primary cells, disregarding variability. To compare DDR dynamics in the cell line HepG2 with primary human hepatocytes (PHHs), we developed a HepG2-based computational model that describes the dynamics of DDR regulator p53 and targets MDM2, p21 and BTG2. We used this model to generate simulations of virtual PHHs and compared the results to those for PHH donor samples. Correlations between baseline p53 and p21 or BTG2 mRNA expression in the absence and presence of DNA damage for HepG2-derived virtual samples matched the moderately positive correlations observed for 50 PHH donor samples, but not the negative correlations between p53 and its inhibitor MDM2. Model parameter manipulation that affected p53 or MDM2 dynamics was not sufficient to accurately explain the negative correlation between these genes. Thus, extrapolation from HepG2 to PHH can be done for some DDR elements, yet our analysis also reveals a knowledge gap within p53 pathway regulation, which makes such extrapolation inaccurate for the regulator MDM2. This illustrates the relevance of studying pathway dynamics in addition to gene expression comparisons to allow reliable translation of cellular responses from cell lines to primary cells. Overall, with our approach we show that dynamical modeling can be used to improve our understanding of the sources of interindividual variability of pathway dynamics. Susceptibility to develop cancer varies among people, partially due to differences in genetic background. Ideally, healthy human-derived cells are used to investigate intracellular signaling pathways and their interindividual variability contributing to cancer susceptibility. Because cells from healthy human tissue are difficult to obtain and culture for periods longer than a few days, cell lines are often used as substitute. However, it is unclear to what extent signaling dynamics in cell lines represent dynamics in healthy human tissue. We asked whether we could reproduce interindividual variability in DNA damage response gene expression in a set of 50 human liver cell donors. Therefore, we built a mathematical model that simulates temporal expression dynamics of the DNA damage response in the HepG2 liver cell line upon chemical activation and used the simulations to create virtual donors. Our virtual donors displayed similar relations between genes as the samples from human donors, provided that we adjusted the strength of specific molecular interactions. Thus, our approach can be used to examine the applicability of widely used cell systems to healthy human tissue in terms of their dynamic responses.
Collapse
|
13
|
Rodrigues-Souza I, Pessatti JBK, da Silva LR, de Lima Bellan D, de Souza IR, Cestari MM, de Assis HCS, Rocha HAO, Simas FF, da Silva Trindade E, Leme DM. Protective potential of sulfated polysaccharides from tropical seaweeds against alkylating- and oxidizing-induced genotoxicity. Int J Biol Macromol 2022; 211:524-534. [PMID: 35577199 DOI: 10.1016/j.ijbiomac.2022.05.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/18/2022]
Abstract
Sulfated polysaccharides (SPs) from seaweeds are potential bioactive natural compounds, but their DNA protective activity is poorly explored. This article aimed to evaluate the genotoxic/antigenotoxic potentials of a sulfated heterofucan from brown seaweed Spatoglossum schröederi (Fucan A - FA) and a sulfated galactan from green seaweed Codium isthomocladum (3G4S) using in vitro Comet assay (alkaline and oxidative versions) with HepG2 cells. The antioxidant activity of these SPs was evaluated by total antioxidant capacity, radical scavenging, metal chelating, and antioxidant enzyme activity assays. Both SPs were not genotoxic. FA and 3G4S displayed strong antigenotoxic activity against oxidizing chemical (H2O2) but not against alkylating chemical (MMS). The DNA damage reduction after a pre-treatment of 72 h with these SPs was 81.42% to FA and 81.38% to 3G4S. In simultaneous exposure to FA or 3G4S with H2O2, HepG2 cells presented 48.04% and 55.41% of DNA damage reduction compared with the control, respectively. The antigenotoxicity of these SPs relates to direct antioxidant activity by blockage of the initiation step of the oxidative chain reaction. Therefore, we conclude that FA and 3G4S could be explored as functional natural compounds with antigenotoxic activity due to their great protection against oxidative DNA damage.
Collapse
Affiliation(s)
| | | | | | - Daniel de Lima Bellan
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | | | | | | | | | - Daniela Morais Leme
- Departament of Genetics, Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
14
|
Verma N, Pandit S, Gupta PK, Kumar S, Kumar A, Giri SK, Yadav G, Priya K. Occupational health hazards and wide spectrum of genetic damage by the organic solvent fumes at the workplace: A critical appraisal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30954-30966. [PMID: 35102507 DOI: 10.1007/s11356-022-18889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Long-term exposure to organic solvents is known to affect human health posing serious occupational hazards. Organic solvents are genotoxic, and they can cause genetic changes in the exposed employees' somatic or germ cells. Chemicals such as benzene, toluene, and gasoline induce an excessive amount of genotoxicity results either in genetic polymorphism or culminates in deleterious mutations when concentration crosses the threshold limits. The impact of genotoxicity is directly related to the time of exposure, types, and quantum of solvent. Genotoxicity affects almost all the physiological systems, but the most vulnerable ones are the nervous system, reproductive system, and blood circulatory system. Based on the available literature report, we propose to evaluate the outcomes of such chemicals on the exposed humans at the workplace. Attempts would be made to ascertain if the long-term exposure makes a person resistant to such chemicals. This may seem to be a far-fetched idea but has not been studied. The health prospect of this study is envisaged to complement the already existing data facilitating a deeper understanding of the genotoxicity across the population. This would also demonstrate if it correlates with the demographic profile of the population and contributes to comorbidity and epidemiology.
Collapse
Affiliation(s)
- Neha Verma
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Soumya Pandit
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Piyush Kumar Gupta
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Sanjay Kumar
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India
| | - Anil Kumar
- Center of Medical Biotechnology, Maharishi Dayanand University, Rohtak Haryana, HR, 124001, India
| | - Shiv Kumar Giri
- Department of Biotechnology, Maharaja Agrasen University, Baddi, HP, India
| | - Gulab Yadav
- Department of Biotechnology, Maharaja Agrasen University, Baddi, HP, India
| | - Kanu Priya
- Deptt. of Life Sciences, SBSR, Sharda University, Greater Noida, UP, 201310, India.
| |
Collapse
|
15
|
Kim GH, Cha DH, Nepal MR, Jeong TC. A convenient fluorometric test method for skin sensitization using glutathione in chemico. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:783-799. [PMID: 34196263 DOI: 10.1080/15287394.2021.1944939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A convenient fluorometrical test method to identify skin sensitizers in chemico was developed using reactivity with glutathione (GSH), a low molecular weight endogenous substance. Following incubation of test chemicals with GSH, the remaining GSH was quantitated fluorometrically by using monobromobimane (mBBr), a thiol-detecting agent, for determining % depletion of this endogenous substance by test chemicals. The experimental conditions optimized were: (1) reactivity of thiol compounds including GSH with mBBr, (2) effects of vehicles on reactivity, (3) molar ratios of GSH to test chemicals, and (4) reactivity of endogenous substance with test substances under different incubation times. When an optimized condition with DMSO as a vehicle for test chemicals and in 1:60 ratio for 24 hr at 4°C was applied to classify 48 well-known skin sensitizers and non-sensitizers, the predictive capacity was as follows: 88.2% sensitivity, 78.6% specificity, and 85.4% accuracy with 95.8% consistency of three trials when 10.3% depletion of GSH was used as a cutoff value. Because the present method employed relatively simple GSH as an acceptor for sensitizers and/or a relatively convenient fluorometric detection system in 96-well plates for a high throughput test, it would be a useful test tool for screening skin sensitization potential of test chemicals.
Collapse
Affiliation(s)
- Geon Ho Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Dong Ho Cha
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Mahesh R Nepal
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
16
|
Seo JE, Davis K, Malhi P, He X, Bryant M, Talpos J, Burks S, Mei N, Guo X. Genotoxicity evaluation using primary hepatocytes isolated from rhesus macaque (Macaca mulatta). Toxicology 2021; 462:152936. [PMID: 34509578 DOI: 10.1016/j.tox.2021.152936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Non-human primates (NHPs) have played a vital role in fundamental, pre-clinical, and translational studies because of their high physiological and genetic similarity to humans. Here, we report a method to isolate primary hepatocytes from the livers of rhesus macaques (Macaca mulatta) after in situ whole liver perfusion. Isolated primary macaque hepatocytes (PMHs) were treated with various compounds known to have different pathways of genotoxicity/carcinogenicity and the resulting DNA damage was evaluated using the high-throughput CometChip assay. The comet data were quantified using benchmark dose (BMD) modeling and the BMD50 values for treatments of PMHs were compared with those generated from primary human hepatocytes (PHHs) in our previous study (Seo et al. Arch Toxicol 2020, 2207-2224). The results showed that despite varying CYP450 enzyme activities, PMHs had the same sensitivity and specificity as PHHs in detecting four indirect-acting (i.e., requiring metabolic activation) and seven direct-acting genotoxicants/carcinogens, as well as five non-carcinogens that are negative or equivocal for genotoxicity in vivo. The BMD50 estimates and their confidence intervals revealed species differences for DNA damage potency, especially for direct-acting compounds. The present study provides a practical method for maximizing the use of animal tissues by isolating primary hepatocytes from NHPs. Our data support the use of PMHs as a reliable surrogate of PHHs for evaluating the genotoxic hazards of chemical substances for humans.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Pritpal Malhi
- Toxicologic Pathology Associates, Jefferson, AR 72079, USA
| | - Xiaobo He
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Matthew Bryant
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - John Talpos
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Susan Burks
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| |
Collapse
|
17
|
Meng F, Mei N, Yan J, Guo X, Richter PA, Chen T, De M. Comparative potency analysis of whole smoke solutions in the bacterial reverse mutation test. Mutagenesis 2021; 36:321-329. [PMID: 34131742 PMCID: PMC8742878 DOI: 10.1093/mutage/geab021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Short-term in vitro genotoxicity assays are useful tools to assess whether new and emerging tobacco products potentially have reduced toxicity. We previously demonstrated that potency ranking by benchmark dose (BMD) analysis quantitatively identifies differences among several known carcinogens and toxic chemicals representing different chemical classes found in cigarette smoke. In this study, six whole smoke solution (WSS) samples containing both the particulate and gas phases of tobacco smoke were generated from two commercial cigarette brands under different smoking-machine regimens. Sixty test cigarettes of each brand were machine-smoked according to the International Organization for Standardization (ISO) puffing protocol. In addition, either 60 or 20 test cigarettes of each brand were machine-smoked with the Canadian Intense (CI) puffing protocol. All six WSSs were evaluated in the bacterial reverse mutation (Ames) test using Salmonella typhimurium strains, in the presence or absence of S9 metabolic activation. The resulting S9-mediated mutagenic concentration-responses for the four WSSs from 60 cigarettes were then compared using BMD modelling analysis and the mutagenic potency expressed as number of revertants per μl of the WSS. The quantitative approaches resulted in a similar rank order of mutagenic potency for the Ames test in both TA98 and TA100. Under the conditions of this study, these results indicate that quantitative analysis of the Ames test data can discriminate between the mutagenic potencies of WSSs on the basis of smoking-machine regimen (ISO vs. CI), and cigarette product (differences in smoke chemistry).
Collapse
Affiliation(s)
- Fanxue Meng
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
- Present address: 7870 Reflection Cove Dr., Fort Myers, FL 33907, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Patricia A. Richter
- Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
- Present address: Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Mamata De
- Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
18
|
Seo JE, Guo X, Petibone DM, Shelton SD, Chen Y, Li X, Tryndyak V, Smith-Roe SL, Witt KL, Mei N, Manjanatha MG. Mechanistic Evaluation of Black Cohosh Extract-Induced Genotoxicity in Human Cells. Toxicol Sci 2021; 182:96-106. [PMID: 33856461 DOI: 10.1093/toxsci/kfab044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Black cohosh extract (BCE) is marketed to women as an alternative to hormone replacement therapy for alleviating menopausal symptoms. Previous studies by the National Toxicology Program revealed that BCE induced micronuclei (MN) and a nonregenerative macrocytic anemia in rats and mice, likely caused by disruption of the folate metabolism pathway. Additional work using TK6 cells showed that BCE induced aneugenicity by destabilizing microtubules. In the present study, BCE-induced MN were confirmed in TK6 and HepG2 cells. We then evaluated BCE-induced DNA damage using the comet assay at multiple time points (0.5-24 h). Following a 0.5-h exposure, BCE induced significant, concentration-dependent increases in %tail DNA in TK6 cells only. Although DNA damage decreased in TK6 cells over time, likely due to repair, small but statistically significant levels of DNA damage were observed after 2 and 4 h exposures to 250 µg/ml BCE. A G1/S arrest in TK6 cells exposed to 125 µg/ml BCE (24 h) was accompanied by apoptosis and increased expression of γH2A.X, p-Chk1, p-Chk2, p53, and p21. Conditioning TK6 cells to physiological levels of folic acid (120 nM) did not increase the sensitivity of cells to BCE-induced DNA damage. BCE did not alter global DNA methylation in TK6 and HepG2 cells cultured in standard medium. Our results suggest that BCE induces acute DNA strand breaks which are quickly repaired in TK6 cells, whereas DNA damage seen at 4 and 24 h may reflect apoptosis. The present study supports that BCE is genotoxic mainly by inducing MN with an aneugenic mode of action.
Collapse
Affiliation(s)
- Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Dayton M Petibone
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Sharon D Shelton
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Stephanie L Smith-Roe
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina 27709, USA
| | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina 27709, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| |
Collapse
|
19
|
Mišík M, Nersesyan A, Kment M, Ernst B, Setayesh T, Ferk F, Holzmann K, Krupitza G, Knasmueller S. Micronucleus assays with the human derived liver cell line (Huh6): A promising approach to reduce the use of laboratory animals in genetic toxicology. Food Chem Toxicol 2021; 154:112355. [PMID: 34147571 DOI: 10.1016/j.fct.2021.112355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 01/22/2023]
Abstract
The inadequate representation of enzymes which catalyze the activation/detoxification of xenobiotics in cells that are currently used in genotoxicity testing of chemicals leads to a high number of false positive results and the number of follow up studies with rodents could be reduced by use of more reliable in vitro models. We found earlier that several xenobiotic drug metabolizing enzymes are represented in the human derived liver cell line Huh6 and developed a protocol for micronucleus (MN) experiments which is in agreement with the current OECD guideline. This protocol was used to test 23 genotoxic and non-genotoxic reference chemicals; based on these results and of earlier findings (with 9 chemicals) we calculated the predictive value of the assay for the detection of genotoxic carcinogens. We found a sensitivity of 80% and a specificity of 94% for a total number of 32 chemicals; comparisons with results obtained with other in vitro assays show that the validity of MN tests with Huh6 is higher as that of other experimental models. These results are promising and indicate that the use of Huh6 cells in genetic toxicology may contribute to the reduction of the use of laboratory rodents; further experimental work to confirm this assumption is warranted.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Kment
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Benjamin Ernst
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Tahereh Setayesh
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Franziska Ferk
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Klaus Holzmann
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, Vienna, 1090, Austria
| | | |
Collapse
|