1
|
Krajnak K, Farcas M, Richardson D, Hammer MA, Waugh S, McKinney W, Knepp A, Jackson M, Burns D, LeBouf R, Matheson J, Thomas T, Qian Y. Exposure to emissions generated by 3-dimensional printing with polycarbonate: effects on peripheral vascular function, cardiac vascular morphology and expression of markers of oxidative stress in male rat cardiac tissue. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:541-559. [PMID: 38682597 PMCID: PMC11625379 DOI: 10.1080/15287394.2024.2346938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Three-dimensional (3D) printing with polycarbonate (PC) plastic occurs in manufacturing settings, homes, and schools. Emissions generated during printing with PC stock and bisphenol-A (BPA), an endocrine disrupter in PC, may induce adverse health effects. Inhalation of 3D printer emissions, and changes in endocrine function may lead to cardiovascular dysfunction. The goal of this study was to determine whether there were any changes in markers of peripheral or cardiovascular dysfunction in animals exposed to PC-emissions. Male Sprague Dawley rats were exposed to PC-emissions generated by 3D printing for 1, 4, 8, 15 or 30 d. Exposure induced a reduction in the expression of the antioxidant catalase (Cat) and endothelial nitric oxide synthase (eNos). Endothelin and hypoxia-induced factor 1α transcripts increased after 30 d. Alterations in transcription were associated with elevations in immunostaining for estrogen and androgen receptors, nitrotyrosine, and vascular endothelial growth factor in cardiac arteries of PC-emission exposed animals. There was also a reduction eNOS immunostaining in cardiac arteries from rats exposed to PC-emissions. Histological analyses of heart sections revealed that exposure to PC-emissions resulted in vasoconstriction of cardiac arteries and thickening of the vascular smooth muscle wall, suggesting there was a prolonged vasoconstriction. These findings are consistent with studies showing that inhalation 3D-printer emissions affect cardiovascular function. Although BPA levels in animals were relatively low, exposure-induced changes in immunostaining for estrogen and androgen receptors in cardiac arteries suggest that changes in the action of steroid hormones may have contributed to the alterations in morphology and markers of cardiac function.
Collapse
Affiliation(s)
- Kristine Krajnak
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mariana Farcas
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mary Anne Hammer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey Waugh
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Alycia Knepp
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark Jackson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Dru Burns
- Respiratory Health Division, Morgantown, WV, USA
| | - Ryan LeBouf
- Respiratory Health Division, Morgantown, WV, USA
| | | | - Treye Thomas
- Consumer Product Safety Commission, Rockville, MD, USA
| | - Yong Qian
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
2
|
Farcas MT, McKinney W, Mandler WK, Knepp AK, Battelli L, Friend SA, Stefaniak AB, Service S, Kashon M, LeBouf RF, Thomas TA, Matheson J, Qian Y. Pulmonary evaluation of whole-body inhalation exposure of polycarbonate (PC) filament 3D printer emissions in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:325-341. [PMID: 38314584 PMCID: PMC11208878 DOI: 10.1080/15287394.2024.2311170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
During fused filament fabrication (FFF) 3D printing with polycarbonate (PC) filament, a release of ultrafine particles (UFPs) and volatile organic compounds (VOCs) occurs. This study aimed to determine PC filament printing emission-induced toxicity in rats via whole-body inhalation exposure. Male Sprague Dawley rats were exposed to a single concentration (0.529 mg/m3, 40 nm mean diameter) of the 3D PC filament emissions in a time-course via whole body inhalation for 1, 4, 8, 15, and 30 days (4 hr/day, 4 days/week), and sacrificed 24 hr after the last exposure. Following exposures, rats were assessed for pulmonary and systemic responses. To determine pulmonary injury, total protein and lactate dehydrogenase (LDH) activity, surfactant proteins A and D, total as well as lavage fluid differential cells in bronchoalveolar lavage fluid (BALF) were examined, as well as histopathological analysis of lung and nasal passages was performed. To determine systemic injury, hematological differentials, and blood biomarkers of muscle, metabolic, renal, and hepatic functions were also measured. Results showed that inhalation exposure induced no marked pulmonary or systemic toxicity in rats. In conclusion, inhalation exposure of rats to a low concentration of PC filament emissions produced no significant pulmonary or systemic toxicity.
Collapse
Affiliation(s)
- Mariana T. Farcas
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
- Pharmaceutical and Pharmacological Sciences, School of
Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Walter McKinney
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | - W. Kyle Mandler
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | - Alycia K. Knepp
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | - Lori Battelli
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | - Sherri A Friend
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | | | - Samantha Service
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | - Michael Kashon
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | - Ryan F. LeBouf
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| | - Treye A. Thomas
- Office of Hazard Identification and Reduction, U.S.
Consumer Product Safety Commission, Rockville, MD, USA
| | - Joanna Matheson
- Office of Hazard Identification and Reduction, U.S.
Consumer Product Safety Commission, Rockville, MD, USA
| | - Yong Qian
- National Institute for Occupational Safety and Health,
Morgantown, WV, USA
| |
Collapse
|
3
|
Krajnak K, Farcas M, McKinney W, Waugh S, Mandler K, Knepp A, Jackson M, Richardson D, Hammer M, Matheson J, Thomas T, Qian Y. Inhalation of polycarbonate emissions generated during 3D printing processes affects neuroendocrine function in male rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:575-596. [PMID: 37350301 PMCID: PMC10527863 DOI: 10.1080/15287394.2023.2226198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Three-dimensional (3D) printing of manufactured goods has increased in the last 10 years. The increased use of this technology has resulted in questions regarding the influence of inhaling emissions generated during printing. The goal of this study was to determine if inhalation of particulate and/or toxic chemicals generated during printing with polycarbonate (PC) plastic affected the neuroendocrine system. Male rats were exposed to 3D-printer emissions (592 µg particulate/m3 air) or filtered air for 4 h/day (d), 4 days/week and total exposures lengths were 1, 4, 8, 15 or 30 days. The effects of these exposures on hormone concentrations, and markers of function and/or injury in the olfactory bulb, hypothalamus and testes were measured after 1, 8 and 30 days exposure. Thirty days of exposure to 3D printer emissions resulted in reductions in thyroid stimulating hormone, follicle stimulating hormone and prolactin. These changes were accompanied by (1) elevation in markers of cell injury; (2) reductions in active mitochondria in the olfactory bulb, diminished gonadotropin releasing hormone cells and fibers as well as less tyrosine hydroxylase immunolabeled fibers in the arcuate nucleus; and (3) decrease in spermatogonium. Polycarbonate plastics may contain bisphenol A, and the effects of exposure to these 3D printer-generated emissions on neuroendocrine function are similar to those noted following exposure to bisphenol A.
Collapse
Affiliation(s)
- Kristine Krajnak
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mariana Farcas
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Walter McKinney
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Stacey Waugh
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Kyle Mandler
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Alycia Knepp
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark Jackson
- Physical Effects Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Histopathology Core, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - MaryAnne Hammer
- Histopathology Core, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Joanna Matheson
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Treye Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Bethesda, MD, USA
| | - Yong Qian
- Physiology and Pathology Research BranchHealth Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
4
|
Felici G, Lachowicz JI, Milia S, Cannizzaro E, Cirrincione L, Congiu T, Jaremko M, Campagna M, Lecca LI. A pilot study of occupational exposure to ultrafine particles during 3D printing in research laboratories. Front Public Health 2023; 11:1144475. [PMID: 37333549 PMCID: PMC10272752 DOI: 10.3389/fpubh.2023.1144475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction 3D printing is increasingly present in research environments, and could pose health risks to users due to air pollution and particulate emissions. We evaluated the nanoparticulate emissions of two different 3D printers, utilizing either fused filament fabrication with polylactic acid, or stereolithography (SLA) with light curing resin. Methods Nanoparticulate emissions were evaluated in two different research environments, both by environmental measurements in the laboratory and by personal sampling. Results The SLA printer had higher nanoparticulate emissions, with an average concentration of 4,091 parts/cm3, versus 2,203 particles/cm3 for the fused filament fabrication printer. The collected particulate matter had variable morphology and elemental composition with a preponderance of carbon, sulfur and oxygen, the main byproducts. Discussion Our study implies that when considering the health risks of particulate emissions from 3D printing in research laboratories, attention should be given to the materials used and the type of 3D printer.
Collapse
Affiliation(s)
- Giorgio Felici
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Simone Milia
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Emanuele Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D’Alessandro”, University of Palermo, Palermo, Italy
| | - Luigi Cirrincione
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D’Alessandro”, University of Palermo, Palermo, Italy
| | - Terenzio Congiu
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Luigi Isaia Lecca
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| |
Collapse
|
5
|
Almstrand AC, Bredberg A, Runström Eden G, Karlsson H, Assenhöj M, Koca H, Olin AC, Tinnerberg H. An explorative study on respiratory health among operators working in polymer additive manufacturing. Front Public Health 2023; 11:1148974. [PMID: 37151597 PMCID: PMC10155750 DOI: 10.3389/fpubh.2023.1148974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/13/2023] [Indexed: 05/09/2023] Open
Abstract
Additive manufacturing (AM), or 3D printing, is a growing industry involving a wide range of different techniques and materials. The potential toxicological effects of emissions produced in the process, involving both ultrafine particles and volatile organic compounds (VOCs), are unclear, and there are concerns regarding possible health implications among AM operators. The objective of this study was to screen the presence of respiratory health effects among people working with liquid, powdered, or filament plastic materials in AM. Methods In total, 18 subjects working with different additive manufacturing techniques and production of filament with polymer feedstock and 20 controls participated in the study. Study subjects filled out a questionnaire and underwent blood and urine sampling, spirometry, impulse oscillometry (IOS), exhaled NO test (FeNO), and collection of particles in exhaled air (PEx), and the exposure was assessed. Analysis of exhaled particles included lung surfactant components such as surfactant protein A (SP-A) and phosphatidylcholines. SP-A and albumin were determined using ELISA. Using reversed-phase liquid chromatography and targeted mass spectrometry, the relative abundance of 15 species of phosphatidylcholine (PC) was determined in exhaled particles. The results were evaluated by univariate and multivariate statistical analyses (principal component analysis). Results Exposure and emission measurements in AM settings revealed a large variation in particle and VOC concentrations as well as the composition of VOCs, depending on the AM technique and feedstock. Levels of FeNO, IOS, and spirometry parameters were within clinical reference values for all AM operators. There was a difference in the relative abundance of saturated, notably dipalmitoylphosphatidylcholine (PC16:0_16:0), and unsaturated lung surfactant lipids in exhaled particles between controls and AM operators. Conclusion There were no statistically significant differences between AM operators and controls for the different health examinations, which may be due to the low number of participants. However, the observed difference in the PC lipid profile in exhaled particles indicates a possible impact of the exposure and could be used as possible early biomarkers of adverse effects in the airways.
Collapse
Affiliation(s)
- Ann-Charlotte Almstrand
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- *Correspondence: Ann-Charlotte Almstrand,
| | - Anna Bredberg
- RISE, Research Institutes of Sweden, Gothenburg, Sweden
| | - Gunilla Runström Eden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine Center in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Maria Assenhöj
- Occupational and Environmental Medicine Center in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Hatice Koca
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna-Carin Olin
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Håkan Tinnerberg
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
6
|
Bowers LN, Stefaniak AB, Knepp AK, LeBouf RF, Martin SB, Ranpara AC, Burns DA, Virji MA. Potential for Exposure to Particles and Gases throughout Vat Photopolymerization Additive Manufacturing Processes. BUILDINGS (BASEL, SWITZERLAND) 2022; 12:10.3390/buildings12081222. [PMID: 37961074 PMCID: PMC10641710 DOI: 10.3390/buildings12081222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Vat photopolymerization (VP), a type of additive manufacturing process that cures resin to build objects, can emit potentially hazardous particles and gases. We evaluated two VP technologies, stereolithography (SLA) and digital light processing (DLP), in three separate environmental chambers to understand task-based impacts on indoor air quality. Airborne particles, total volatile organic compounds (TVOCs), and/or specific volatile organic compounds (VOCs) were monitored during each task to evaluate their exposure potential. Regardless of duration, all tasks released particles and organic gases, though concentrations varied between SLA and DLP processes and among tasks. Maximum particle concentrations reached 1200 #/cm3 and some aerosols contained potentially hazardous elements such as barium, chromium, and manganese. TVOC concentrations were highest for the isopropyl alcohol (IPA) rinsing, soaking, and drying post-processing tasks (up to 36.8 mg/m3), lowest for the resin pouring pre-printing, printing, and resin recovery post-printing tasks (up to 0.1 mg/m3), and intermediate for the curing post-processing task (up to 3 mg/m3). Individual VOCs included, among others, the potential occupational carcinogen acetaldehyde and the immune sensitizer 2-hydroxypropyl methacrylate (pouring, printing, recovery, and curing tasks). Careful consideration of all tasks is important for the development of strategies to minimize indoor air pollution and exposure potential from VP processes.
Collapse
Affiliation(s)
- Lauren N. Bowers
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | | - Alycia K. Knepp
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Ryan F. LeBouf
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Stephen B. Martin
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Anand C. Ranpara
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Dru A. Burns
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - M. Abbas Virji
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
7
|
du Plessis J, du Preez S, Stefaniak AB. Identification of effective control technologies for additive manufacturing. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:211-249. [PMID: 35758103 PMCID: PMC9420827 DOI: 10.1080/10937404.2022.2092569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Additive manufacturing (AM) refers to several types of processes that join materials to build objects, often layer-by-layer, from a computer-aided design file. Many AM processes release potentially hazardous particles and gases during printing and associated tasks. There is limited understanding of the efficacy of controls including elimination, substitution, administrative, and personal protective technologies to reduce or remove emissions, which is an impediment to implementation of risk mitigation strategies. The Medline, Embase, Environmental Science Collection, CINAHL, Scopus, and Web of Science databases and other resources were used to identify 42 articles that met the inclusion criteria for this review. Key findings were as follows: 1) engineering controls for material extrusion-type fused filament fabrication (FFF) 3-D printers and material jetting printers that included local exhaust ventilation generally exhibited higher efficacy to decrease particle and gas levels compared with isolation alone, and 2) engineering controls for particle emissions from FFF 3-D printers displayed higher efficacy for ultrafine particles compared with fine particles and in test chambers compared with real-world settings. Critical knowledge gaps identified included a need for data: 1) on efficacy of controls for all AM process types, 2) better understanding approaches to control particles over a range of sizes and gas-phase emissions, 3) obtained using a standardized collection approach to facilitate inter-comparison of study results, 4) approaches that go beyond the inhalation exposure pathway to include controls to minimize dermal exposures, and 5) to evaluate not just the engineering tier, but also the prevention-through-design and other tiers of the hierarchy of controls.
Collapse
Affiliation(s)
- Johan du Plessis
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Sonette du Preez
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Aleksandr B. Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
8
|
Väisänen A, Alonen L, Ylönen S, Hyttinen M. Volatile organic compound and particulate emissions from the production and use of thermoplastic biocomposite 3D printing filaments. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:381-393. [PMID: 35404756 DOI: 10.1080/15459624.2022.2063879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biocomposites (BCs) can be used as substitutes for unsustainable polymers in 3D printing, but their safety demands additional investigation as biological fillers may produce altered emissions during thermal processing. Commercial filament extruders can be used to produce custom feedstocks, but they are another source of airborne contaminants and demand further research. These knowledge gaps are targeted in this study. Volatile organic compound (VOC), carbonyl compound, ultrafine particle (UFP), and fine (PM2.5) and coarse (PM10) particle air concentrations were measured in this study as a filament extruder and a 3D printer were operated under an office environment using one PLA and four PLA-based BC feedstocks. Estimates of emission rates (ERs) for total VOCs (TVOC) and UFPs were also calculated. VOCs were analyzed with a GC-MS system, carbonyls were analyzed with an LC-MS/MS system, whereas real-time particle concentrations were monitored with continuously operating instruments. VOC concentrations were low throughout the experiment; TVOC ranged between 34-63 µg/m3 during filament extrusion and 41-56 µg/m3 during 3D printing, which represent calculated TVOC ERs of 2.6‒3.6 × 102 and 2.9‒3.6 × 102 µg/min. Corresponding cumulative carbonyls ranged between 60-91 and 190-253 µg/m3. Lactide and miscellaneous acids and alcohols were the dominant VOCs, while acetone, 2-butanone, and formaldehyde were the dominant carbonyls. Terpenes contributed for ca. 20-40% of TVOC during BC processing. The average UFP levels produced by the filament extruder were 0.85 × 102-1.05 × 103 #/cm3, while the 3D printer generated 6.05 × 102-2.09 × 103 #/cm3 particle levels. Corresponding particle ERs were 5.3 × 108-6.6 × 109 and 3.8 × 109-1.3 × 1010 #/min. PM2.5 and PM10 particles were produced in the following average quantities; PM2.5 levels ranged between 0.2-2.2 µg/m3, while PM10 levels were between 5-20 µg/m3 for all materials. The main difference between the pure PLA and BC feedstock emissions was terpenes, present during all BC extrusion processes. BCs are similar emission sources as pure plastics based on our findings, and a filament extruder produces contaminants at comparable or slightly lower levels in comparison to 3D printers.
Collapse
Affiliation(s)
- Antti Väisänen
- Faculty of Science and Forestry, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lauri Alonen
- School of Engineering and Technology, Savonia University of Applied Sciences, Kuopio, Finland
| | - Sampsa Ylönen
- School of Engineering and Technology, Savonia University of Applied Sciences, Kuopio, Finland
| | - Marko Hyttinen
- Faculty of Science and Forestry, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
9
|
Bowers LN, Ranpara AC, Roach KA, Knepp AK, Arnold ED, Stefaniak AB, Virji MA. Comparison of product safety data sheet ingredient lists with skin irritants and sensitizers present in a convenience sample of light-curing resins used in additive manufacturing. Regul Toxicol Pharmacol 2022; 133:105198. [PMID: 35659913 PMCID: PMC9351547 DOI: 10.1016/j.yrtph.2022.105198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
Material jetting and vat photopolymerization additive manufacturing (AM) processes use liquid resins to build objects. These resins can contain skin irritants and/or sensitizers but product safety data sheets (SDSs) might not declare all ingredients. We characterized elemental and organic skin irritants and sensitizers present in 39 commercial products; evaluated the influence of resin manufacturer, system, color, and AM process type on the presence of irritants and sensitizers; and compared product SDSs to results. Among all products, analyses identified 23 irritant elements, 54 irritant organic substances, 22 sensitizing elements, and 23 sensitizing organic substances; SDSs listed 3, 9, 4, and 6 of these ingredients, respectively. Per product, the number and total mass (an indicator of potential dermal loading) of ingredients varied: five to 17 irritant elements (8.32-4756.65 mg/kg), one to 17 irritant organics (3273 to 356,000 mg/kg), four to 17 sensitizing elements (8.27-4755.63 mg/kg), and one to seven sensitizing organics (15-382,170 mg/kg). Median numbers and concentrations of irritants and sensitizers were significantly influenced by resin system and AM process type. The presence of undeclared irritants and sensitizers in these resins supports the need for more complete information on product SDSs for comprehensive dermal risk assessments.
Collapse
Affiliation(s)
- Lauren N Bowers
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Anand C Ranpara
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Katherine A Roach
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Alycia K Knepp
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Elizabeth D Arnold
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| | - Aleksandr B Stefaniak
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA.
| | - M Abbas Virji
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV, 26505, USA
| |
Collapse
|