1
|
Kuang H, Li Y, Lu Y, Zhang L, Wei L, Wu Y. Reproductive and fetal outcomes in women with epilepsy: a systematic review and meta-analysis. J Matern Fetal Neonatal Med 2024; 37:2351196. [PMID: 38735863 DOI: 10.1080/14767058.2024.2351196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE Although early evidence shows that epilepsy can increase the risks of adverse pregnancy, some outcomes are still debatable. We performed a systematic review and meta-analysis to explore the effects of maternal and fetal adverse outcomes in pregnant women with epilepsy. METHODS PubMed, Embase, Cochrane, and Web of Science were employed to collect studies that investigated the potential risk of obstetric complications during the antenatal, intrapartum, or postnatal period, as well as any neonatal complications. The search was conducted from inception to November 16, 2022. The Newcastle-Ottawa Scale (NOS) was used to assess the quality of the included original studies. The odds ratio (OR) values were extracted after adjusting for confounders to measure the relationship between pregnant women with epilepsy and adverse maternal or fetal outcomes. The protocol for this systematic review is registered with PROSPERO ID CRD42023391539. RESULTS Of 35 articles identified, there were 142,577 mothers with epilepsy and 34,381,373 mothers without epilepsy. Our study revealed a significant association between pregnant women with epilepsy (PWWE) and the incidence of cesarean section, preeclampsia/eclampsia, gestational hypertension, induction of labor, gestational diabetes and postpartum hemorrhage compared with those without epilepsy. Regarding newborns outcomes, PWWE versus those without epilepsy had increased odds of preterm birth, small for gestational age, low birth weight (<2500 g), and congenital malformations, fetal distress. The odds of operative vaginal delivery, newborn mortality, and Apgar (≤ 7) were similar between PWWE and healthy women. CONCLUSION Pregnant women affected by epilepsy encounter a higher risk of adverse obstetric outcomes and fetal complications. Therefore, it is crucial to develop appropriate prevention and intervention strategies prior to or during pregnancy to minimize the negative impacts of epilepsy on maternal and fetal health.
Collapse
Affiliation(s)
- Huimin Kuang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yixun Li
- Department of Radiology, Guangxi International Zhuang Medical Hospital, Nanning, China
| | - Yuling Lu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Zhang
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lei Wei
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Wu
- Department of Neurology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Qu X, Metz RP, Porter WW, Neuendorff N, Earnest BJ, Earnest DJ. The clock genes period 1 and period 2 mediate diurnal rhythms in dioxin-induced Cyp1A1 expression in the mouse mammary gland and liver. Toxicol Lett 2010; 196:28-32. [PMID: 20371273 DOI: 10.1016/j.toxlet.2010.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 11/15/2022]
Abstract
Transcription factors expressing Per-Arnt-Sim (PAS) domains are key components of the mammalian circadian clockworks found in most cells and tissues. Because these transcription factors interact with other PAS genes mediating xenobiotic metabolism and because toxin responses are often marked by daily variation, we determined whether the toxin-mediated activation of the signaling pathway involving several PAS genes, the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT), fluctuates rhythmically and whether this diurnal oscillation is affected by targeted disruption of key PAS genes in the circadian clockworks, Period 1 (Per1) and Per2. Treatment with the prototypical Ahr ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), had inductive effects on a key target of AhR signaling, Cyp1A1, in both the mammary gland and liver of all animals. In wild type mice, the amplitude of this TCDD-induced Cyp1A1 expression in the mammary gland and liver was significantly greater (23-43-fold) during the night than during the daytime. However, the diurnal variation in the TCDD induction of mammary gland and liver Cyp1A1 expression was abolished in Per1(ldc), Per2(ldc) and Per1(ldc)/Per2(ldc) mutant mice, suggesting that Per1, Per2 and their timekeeping function in the circadian clockworks mediate the diurnal modulation of AhR-regulated responses to TCDD in the mammary gland and liver.
Collapse
Affiliation(s)
- Xiaoyu Qu
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | | | | | | | |
Collapse
|
3
|
Qu X, Metz RP, Porter WW, Cassone VM, Earnest DJ. Disruption of period gene expression alters the inductive effects of dioxin on the AhR signaling pathway in the mouse liver. Toxicol Appl Pharmacol 2008; 234:370-7. [PMID: 19038280 DOI: 10.1016/j.taap.2008.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/27/2008] [Accepted: 10/30/2008] [Indexed: 11/25/2022]
Abstract
The aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) are transcription factors that express Per-Arnt-Sim (PAS) DNA-binding motifs and mediate the metabolism of drugs and environmental toxins in the liver. Because these transcription factors interact with other PAS genes in molecular feedback loops forming the mammalian circadian clockworks, we determined whether targeted disruption or siRNA inhibition of Per1 and Per2 expression alters toxin-mediated regulation of the AhR signaling pathway in the mouse liver and Hepa1c1c7 hepatoma cells in vitro. Treatment with the prototypical Ahr ligand, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), had inductive effects on the primary targets of AhR signaling, Cyp1A1 and Cyp1B1, in the liver of all animals, but genotype-based differences were evident such that the toxin-mediated induction of Cyp1A1 expression was significantly greater (2-fold) in mice with targeted disruption of Per1 (Per1(ldc) and Per1(ldc)/Per2(ldc)). In vitro experiments yielded similar results demonstrating that siRNA inhibition of Per1 significantly increases the TCDD-induced expression of Cyp1A1 and Cyp1B1 in Hepa1c1c7 cells. Per2 inhibition in siRNA-infected Hepa1c1c7 cells had the opposite effect and significantly decreased both the induction of these p450 genes as well as AhR and Arnt expression in response to TCDD treatment. These findings suggest that Per1 may play a distinctive role in modulating AhR-regulated responses to TCDD in the liver.
Collapse
Affiliation(s)
- Xiaoyu Qu
- Department of Biology, College Station, Texas 77843-3258, USA; Center for Research on Biological Clocks, College Station, Texas 77843-3258, USA
| | | | | | | | | |
Collapse
|
4
|
Qu X, Metz RP, Porter WW, Cassone VM, Earnest DJ. Disruption of clock gene expression alters responses of the aryl hydrocarbon receptor signaling pathway in the mouse mammary gland. Mol Pharmacol 2007; 72:1349-58. [PMID: 17715397 DOI: 10.1124/mol.107.039305] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biological effects of many environmental toxins are mediated by genes containing Per-Arnt-Sim (PAS) domains, the aryl hydrocarbon receptor (AhR), and AhR nuclear translocator. Because these transcription factors interact with other PAS genes that form the circadian clockworks in mammals, we determined whether targeted disruption of the clock genes, Per1 and/or Per2, alters toxin-induced expression of known biological markers in the AhR signaling pathway. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a prototypical Ahr agonist, had an inductive effect on mammary gland expression of cytochrome P450, subfamily I, polypeptide 1 (Cyp1A1) mRNA regardless of genotype. However, TCDD-mediated Cyp1A1 induction in the mammary glands of Per1(ldc) and Per1(ldc)/Per2(ldc) mice was significantly (17.9- and 5.9-fold) greater than that in wild-type (WT) animals. In addition, TCDD-induced Cyp1B1 expression in Per1(ldc) and Per1(ldc)/Per2(ldc) mammary glands was significantly increased relative to that in WT mice. Similar to in vivo observations, experiments using primary cultures of mammary gland tissue demonstrated that TCDD-induced Cyp1A1 and Cyp1B1 expression in Per1(ldc) and Per1(ldc)/Per2(ldc) mutant cells was significantly greater than that in WT cultures. AhR mRNA levels were distinctively elevated in cells derived from all mutant genotypes, but they were commonly decreased in WT and mutant cultures after TCDD treatment. In WT mice, an interesting corollary is that the inductive effects of TCDD on mammary gland expression of Cyp1A1 and Cyp1B1 vary over time and are significantly greater during the night. These findings suggest that clock genes, especially Per1, may be involved in TCDD activation of AhR signaling pathways.
Collapse
Affiliation(s)
- Xiaoyu Qu
- Department of Biology and Center for Research on Biological Clocks, College Station, Texas, USA
| | | | | | | | | |
Collapse
|
5
|
Taylor MJ, Lucier GW, Mahler JF, Thompson M, Lockhart AC, Clark GC. Inhibition of acute TCDD toxicity by treatment with anti-tumor necrosis factor antibody or dexamethasone. Toxicol Appl Pharmacol 1992; 117:126-32. [PMID: 1440607 DOI: 10.1016/0041-008x(92)90227-j] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) acute toxicity is characterized in part by a wasting syndrome with depletion of adipose tissue. Tumor necrosis factor (TNF) induces a similar response during chronic infection. The similarities of these toxic effects led to a hypothesis that TNF plays a role in TCDD acute toxicity. To test this hypothesis pharmacologic doses of an antibody specific for murine TNF and the potent anti-inflammatory agent Dexamethasone (DEX) were used to inhibit TCDD toxicity in mice. TNF antibody treatment resulted in a 54% reduction in TCDD-mediated mortality while DEX treatment, a glucocorticoid agonist that inhibits transcription of TNF, reduced mortality by 92%. Cyp 1A1 induction, the most commonly measured TCDD-mediated response, was not blocked by DEX, demonstrating separation of this biochemical effect from acute toxic responses to TCDD. These data suggest that TCDD-mediated changes in the TNF pathway may be an important mechanism for acute TCDD toxicity.
Collapse
Affiliation(s)
- M J Taylor
- Syntex Research, Palo Alto, California 94303
| | | | | | | | | | | |
Collapse
|
6
|
Stohs SJ, Abbott BD, Lin FH, Birnbaum LS. Induction of ethoxyresorufin-O-deethylase and inhibition of glucocorticoid receptor binding in skin and liver of haired and hairless HRS/J mice by topically applied 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology 1990; 65:123-36. [PMID: 2274963 DOI: 10.1016/0300-483x(90)90083-s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The biochemical changes associated with the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have been reported to include alterations in glucocorticoid and epidermal growth factor receptors and mixed function oxidase (MFO) induction. TCDD induces MFO activity in skin of both haired and hairless HRS/J mice. However, epidermal hyperplasia and hyperkeratosis are produced only in the skin of hairless mice. Therefore, since steroid and growth factor responses are implicated in cell proliferation and differentiation, these mice constitute a model system for assessing the possible roles of glucocorticoid and epidermal growth factor receptors in the toxicity of TCDD. The effect of dermal TCDD application (12 micrograms/kg in 100 microliters acetone) on ethoxyresorufin-O-deethylase (EROD) activity, glucocorticoid receptor binding and epidermal growth factor receptors in liver and skin of hairless and haired mice was determined. No differences existed in the basal number of cytosolic glucocorticoid receptors (Bmax) or the apparent equilibrium binding constants (Kd) in control liver, dorsal skin and abdominal skin of male and female hairless mice and haired male mice. Seven days after topical application of TCDD, decreases of approximately 38% were observed in the hepatic Bmax of the glucocorticoid receptors in both haired and hairless mice. However, in dorsal skin, TCDD decreased Bmax by approximately 40% in hairless mice but only 18% in haired mice. The dexamethasone-glucocorticoid receptor complex from both liver and skin of control and TCDD treated mice had similar sedimentation co-efficients in sucrose density gradients. TCDD had no effect on the Kd of glucocorticoid receptors of skin or liver in haired and hairless mice. No difference was observed in the time-dependent increases in hepatic EROD activity between haired and hairless mice after dermal application of TCDD. However, the maximum induction of EROD activity in microsomes from the skin of haired mice was only 60% of the activity observed in hairless animals. The induction of EROD by TCDD did not correlate temporally with the decrease in glucocorticoid receptor binding. The application of TCDD to the skin of hairless mice resulted in epidermal hyperplasia and dermal keratinization, while little change was observed in the general morphology of the skin of haired mice following dermal application. The application of TCDD had no effect on the incidence and distribution of epidermal growth factor receptors in skin of haired and hairless mice as determined immunohistochemically. Thus, the biochemical effects of TCDD are not only strain dependent, but tissue specific. Furthermore, decreases in glucocorticoid and epidermal growth factor receptors do not appear to be general markers of TCDD toxicity.
Collapse
Affiliation(s)
- S J Stohs
- Systemic Toxicology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | | | | | | |
Collapse
|
7
|
Gorski JR, Weber LW, Rozman K. Reduced gluconeogenesis in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated rats. Arch Toxicol 1990; 64:66-71. [PMID: 2306197 DOI: 10.1007/bf01973379] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of a usually lethal dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 125 micrograms/kg) was studied on the conversion of 14C-alanine into 14C-glucose in male Sprague-Dawley rats by established procedures (determination of plasma alanine and blood glucose by enzymatic assays and isolation of 14C-alanine and 14C-glucose from whole blood by column chromatography). TCDD-treated rats converted significantly (p less than 0.05) less 14C-alanine into 14C-glucose than did their pair-fed or ad libitum-fed counterparts, indicating reduced gluconeogenesis as a result of TCDD treatment. This finding suggests that reduced gluconeogenesis in TCDD-treated rats contributed to the progressively developing, severe hypoglycemia observed in these animals. Corticosterone, a key hormone in gluconeogenesis, provides partial protection from TCDD-induced toxicity in hypophysectomized rats. Therefore, the conversion of 14C-alanine into 14C-glucose was also determined in hypophysectomized rats dosed with TCDD (125 micrograms/kg) and given corticosterone (25 micrograms/ml in drinking water). These rats also converted significantly (p less than 0.05) less 14C-alanine into 14C-glucose than did their pair-fed counterparts. However, in contrast to non-hypophysectomized TCDD-treated rats, these rats maintained marginal normoglycemia even at 64 days after dosing with TCDD, which suggests that the partial protective effect of corticosterone in hypophysectomized, TCDD-treated rats is unrelated to its effect on gluconeogenesis. The protection provided by corticosterone supplementation in TCDD toxicity is more likely due to reduced peripheral utilization of glucose enabling the animals to maintain marginal normoglycemia.
Collapse
Affiliation(s)
- J R Gorski
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City 66103
| | | | | |
Collapse
|
8
|
Muzi G, Gorski JR, Rozman K. Mode of metabolism is altered in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated rats. Toxicol Lett 1989; 47:77-86. [PMID: 2711413 DOI: 10.1016/0378-4274(89)90087-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Male Sprague-Dawley rats were fed either a high-fat (HF) or a high-carbohydrate (HC) diet and subsequently injected with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (125 micrograms/kg) or vehicle (pair-fed controls). In all TCDD-treated animals, a reduction in caloric intake was evident as early as 1 day after dosage. Respiratory quotients (RQ) were determined at 5-day intervals. Their pattern for the HC-fed but not for the HF-fed TCDD-treated rats was different from that of the corresponding pair-fed controls. After an initial parallel decrease the RQ values remained low for TCDD-treated rats whereas they increased again for pair-fed controls. Serum total thyroxine (T4) was significantly lower in TCDD-treated animals and this reduction was not influenced by the composition of the diet. Serum triiodothyronine (T3) was neither altered by diet nor by TCDD. Thymic atrophy was as severe in pair-fed as in TCDD-treated rats fed the HC diet but not in rats fed the HF diet. Our results suggest that TCDD-treated rats are in a different mode of metabolism from pair-fed rats and that this difference is related to gluconeogenesis.
Collapse
Affiliation(s)
- G Muzi
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City 66103
| | | | | |
Collapse
|
9
|
Gorski JR, Muzi G, Weber LW, Pereira DW, Arceo RJ, Iatropoulos MJ, Rozman K. Some endocrine and morphological aspects of the acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicol Pathol 1988; 16:313-20. [PMID: 3057589 DOI: 10.1177/019262338801600301] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hormonal status was evaluated in TCDD-treated rats and in pair-fed and ad libitum-fed controls in order to separate hormonal changes resulting from the toxic insult of TCDD from those arising from progressive feed deprivation as it occurs in pair-fed controls. TCDD-treated rats received either a usually non-lethal (25 micrograms/kg) or a usually lethal (125 micrograms/kg) dose of TCDD whereas pair-fed and ad libitum-fed controls were given vehicle alone. Animals were terminated at predetermined time intervals and several hormones measured in serum or plasma. In addition, the morphology of the thyroid, pancreas, and pituitary was also examined. In both dosage groups, TCDD-treatment had the following effects: decreased TT4, FT4, insulin, and glucagon; mixed effects upon TT3, FT3, TSH, and GH. Pair-feeding to the non-lethal dose of TCDD had no effect on any of the hormones measured. Pair-feeding to the lethal dose of TCDD had the the following effects: slightly decreased TT4, FT4, TT3, TSH, and insulin; no effect on FT3 and glucagon. It is concluded that the endocrine status of TCDD-treated rats was different from that of pair-fed rats suggesting that some hormonal changes represent responses to an insult other than that due to starvation stress alone. A differential response between TCDD-treated and pair-fed rats was also observable morphologically in the corresponding endocrine glands indicating the importance of this additional control for morphologic observations in instances when reduced feed intake and body weight loss are prominent features of toxicity.
Collapse
Affiliation(s)
- J R Gorski
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City 66103
| | | | | | | | | | | | | |
Collapse
|