1
|
Cui H, Huang X, Yu Z, Chen P, Cao X. Application progress of enhanced coagulation in water treatment. RSC Adv 2020; 10:20231-20244. [PMID: 35520422 PMCID: PMC9059168 DOI: 10.1039/d0ra02979c] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/19/2020] [Indexed: 11/30/2022] Open
Abstract
Water industries worldwide consider coagulation/flocculation to be one of the major treatment methods for improving the overall efficiency and cost effectiveness of water and wastewater treatment. Enhancing the coagulation process is currently a popular research topic. In this review article, the latest developments in enhanced coagulation are summarized. In addition, the mechanisms of enhanced coagulation and the effect of process parameters on processing efficiency are discussed from the perspective of ballast-enhanced coagulation, preoxidation, ultrasound, and composite coagulants. Finally, improvements and new directions for enhanced coagulation are proposed.
Collapse
Affiliation(s)
- Hongmei Cui
- School of Civil Engineering and Architecture, Northeast Petroleum University China
- Key Laboratory of Disaster Prevention and Mitigation, Projective Engineering of Heilongjiang Province Daqing 163318 China
| | - Xing Huang
- School of Civil Engineering and Architecture, Northeast Petroleum University China
| | - Zhongchen Yu
- School of Civil Engineering and Architecture, Northeast Petroleum University China
- Key Laboratory of Disaster Prevention and Mitigation, Projective Engineering of Heilongjiang Province Daqing 163318 China
| | - Ping Chen
- School of Civil Engineering and Architecture, Northeast Petroleum University China
- Key Laboratory of Disaster Prevention and Mitigation, Projective Engineering of Heilongjiang Province Daqing 163318 China
| | - Xiaoling Cao
- School of Civil Engineering and Architecture, Northeast Petroleum University China
| |
Collapse
|
2
|
Dong S, Mu Y, Sun X. Removal of toxic metals using ferrate(VI): a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1213-1225. [PMID: 31850873 DOI: 10.2166/wst.2019.376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heavy metal contamination of water resources is a critical issue which adversely affects humans. Ferrate(VI) (FeVIO4 2-, Fe(VI)), as a new type of green multifunctional water treatment agent, has shown promising potential for environmental decontamination. A complete understanding of the interactions between ferrate(VI) and toxic metals can be conducive to the further development of ferrate(VI) technology for application to wastewater treatment. This review first introduces the purification of ferrate(VI) technology for toxic metals including free heavy metals and metal complexes briefly. The effective parameters are then analyzed and discussed in detail. Subsequently, the reactivity and mechanisms of ferrate(VI) with toxic metals are emphatically described. Finally, possible research challenges and directions for ferrate(VI) technology applied to wastewater treatment in the future are summarized.
Collapse
Affiliation(s)
- Shuyu Dong
- School of Chemical Engineering, Northeast Electric Power University, Jilin City, 132012, China E-mail:
| | - Yao Mu
- School of Chemical Engineering, Northeast Electric Power University, Jilin City, 132012, China E-mail:
| | - Xuhui Sun
- School of Chemical Engineering, Northeast Electric Power University, Jilin City, 132012, China E-mail:
| |
Collapse
|
3
|
Micic R, Jokic A, Simonovic R, Arsic B, Mitic M, Galonja-Coghill T, Cekerevac M, Nikolic-Bujanovic L. Application of Electrochemically Synthesized Ferrates (VI) for the Removal of Th(IV) From Natural Water Samples. J WATER CHEM TECHNO+ 2019. [DOI: 10.3103/s1063455x19020061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Kolařík J, Prucek R, Tuček J, Filip J, Sharma VK, Zbořil R. Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions. WATER RESEARCH 2018; 141:357-365. [PMID: 29804022 DOI: 10.1016/j.watres.2018.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/27/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
Arsenic compounds are carcinogenic to humans and are typically removed from contaminated water using various sorbents. The ionic composition plays a significant role in arsenate removal efficiency during the process of water remediation. Here, we quantify the effects of natural ions (chlorides, nitrates, carbonates, sulfates, and phosphates) and humic acid on the removal of arsenates by ferrate(VI) at pH = 6.6. In the experiments, the initial concentration of arsenates was 10 mg L-1 (as As) and the concentrations of ions varied in the range from 5 to 100 mg L-1 of element in ionic form and humic acid. The achieved results show that only phosphate ions had principle influence on the efficiency of arsenate removal by ferrate(VI). The effect of phosphates was elucidated by applying transmission electron microscopy, energy-dispersive X-ray spectroscopy, and low temperature in-field 57Fe Mössbauer spectroscopy to solid samples, prepared under different weight ratios of ferrate(VI), arsenates, and phosphates. These results show three crucial effects of phosphates on the arsenate removal mechanisms. At low P:As weight ratio (up to 1:1), the incorporation of arsenate ions into the crystalline structure of γ-Fe2O3/γ-FeOOH nanoparticles was found to be suppressed by the presence of phosphates. Thus, arsenates were mainly adsorbed onto the surface of γ-Fe2O3/γ-FeOOH nanoparticles. Further increase in the P:As weight ratio (more than 1:1) resulted in the competition between arsenates and phosphates sorption. With the increased concentration of phosphate ions, the number of arsenates on the surface of γ-Fe2O3/γ-FeOOH nanoparticles was reduced. Finally, the complexation of iron(III) ions with phosphate ions occurred, leading to a decrease in the arsenates removal efficiency, which resulted from a lower content of precipitated γ-Fe2O3/γ-FeOOH nanoparticles. All these aspects need to be considered prior to application of ferrate(VI) for arsenates removal in real natural waters.
Collapse
Affiliation(s)
- Jan Kolařík
- Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Robert Prucek
- Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| | - Jiří Tuček
- Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jan Filip
- Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Virender K Sharma
- Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic; Program for the Environment and Sustainability, Department of Environmental and Occupational Health, School of Rural Public Health, Texas A&M University, 1266 TAMU, College Station, TX 77843, USA
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University in Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.
| |
Collapse
|
5
|
Rai PK, Lee J, Kailasa SK, Kwon EE, Tsang YF, Ok YS, Kim KH. A critical review of ferrate(VI)-based remediation of soil and groundwater. ENVIRONMENTAL RESEARCH 2018; 160:420-448. [PMID: 29073572 DOI: 10.1016/j.envres.2017.10.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/15/2017] [Accepted: 10/09/2017] [Indexed: 05/04/2023]
Abstract
Over the past few decades, diverse chemicals and materials such as mono- and bimetallic nanoparticles, metal oxides, and zeolites have been used for soil and groundwater remediation. Ferrate (FeVIO42-) has been widely employed due to its high-valent iron (VI) oxo compound with high oxidation/reduction potentials. Ferrate has received attention for wide environmental applications including water purification and sewage sludge treatment. Ferrate provides great potential for diverse environmental applications without any environmental problems. Therefore, this paper provides comprehensive information on the recent progress on the use of (FeVIO42-) as a green material for use in sustainable treatment processes, especially for soil and water remediation. We reviewed diverse synthesis recipes for ferrates (FeVIO42-) and their associated physicochemical properties as oxidants, coagulants, and disinfectants for the elimination of a diverse range of chemical and biological species from water/wastewater samples. A summary of the eco-sustainable performance of ferrate(VI) in water remediation is also provided and the future of ferrate(VI) is discussed in this review.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Jechan Lee
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Applied Chemistry, S.V. National Institute of Technology, Surat 395007, Gujarat, India
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea.
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
6
|
Review on the Stability of Ferrate (VI) Species in Aqueous Medium and Oxidation of Pharmaceuticals and Personal Care Products (PPCPs) by Ferrate (VI): Identification of Transformation By-Products. ACTA ACUST UNITED AC 2016. [DOI: 10.1021/bk-2016-1238.ch012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
7
|
Petrov VG, Perfiliev YD, Dedushenko SK, Kuchinskaya TS, Kalmykov SN. Radionuclide removal from aqueous solutions using potassium ferrate(VI). J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4867-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Complex Electrolytic Unit for Producing Anode Liquor and Ferrate to Treat Waters Contaminated by Oil-Refining Products and Harmful Admixtures. CHEMICAL AND PETROLEUM ENGINEERING 2016. [DOI: 10.1007/s10556-016-0164-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Lacina P, Goold S. Use of the ferrates (FeIV-VI) in combination with hydrogen peroxide for rapid and effective remediation of water--laboratory and pilot study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:1869-1878. [PMID: 26540550 DOI: 10.2166/wst.2015.414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, particles of iron in higher oxidation states (Fe(IV-VI)), commonly called ferrates, have been presented theoretically as very effective oxidants. They can potentially be used for elimination of a wide range of organic and inorganic contaminants. However, so far the majority of applications have been carried out only as laboratory tests using model samples in many cases. The application of ferrates in remediation programs has so far proved to be more complicated with results failing to meet expectations. Therefore there is a necessity to consider the suitability of their use or consider their possible combination with other agents in order to reach required removal efficiencies in remediation. This study is focused on laboratory experiments using industrial groundwater leading to the proposal of a pilot field application realized as an ex-situ remediation. The combination of ferrates with hydrogen peroxide was used in this study in order to enhance the removal efficiency during pilot remediation of groundwater strongly contaminated by a wide range of organic contaminants. This combination has been shown to be very effective. During the 24-hour reaction time the majority of detected contaminants were removed by approximately 60-80%. Moreover, the unpleasant odor of the water was suppressed and suspended particles were removed by the flocculation effect of ferric sludge.
Collapse
Affiliation(s)
- Petr Lacina
- GEOtest, a.s., Smahova 1244/112, 627 00 Brno, Czech Republic E-mail:
| | - Scott Goold
- GEOtest, a.s., Smahova 1244/112, 627 00 Brno, Czech Republic E-mail:
| |
Collapse
|
10
|
Prucek R, Tuček J, Kolařík J, Filip J, Marušák Z, Sharma VK, Zbořil R. Ferrate(VI)-induced arsenite and arsenate removal by in situ structural incorporation into magnetic iron(III) oxide nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3283-3292. [PMID: 23451768 DOI: 10.1021/es3042719] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report the first example of arsenite and arsenate removal from water by incorporation of arsenic into the structure of nanocrystalline iron(III) oxide. Specifically, we show the capability to trap arsenic into the crystal structure of γ-Fe2O3 nanoparticles that are in situ formed during treatment of arsenic-bearing water with ferrate(VI). In water, decomposition of potassium ferrate(VI) yields nanoparticles having core-shell nanoarchitecture with a γ-Fe2O3 core and a γ-FeOOH shell. High-resolution X-ray photoelectron spectroscopy and in-field (57)Fe Mössbauer spectroscopy give unambiguous evidence that a significant portion of arsenic is embedded in the tetrahedral sites of the γ-Fe2O3 spinel structure. Microscopic observations also demonstrate the principal effect of As doping on crystal growth as reflected by considerably reduced average particle size and narrower size distribution of the "in-situ" sample with the embedded arsenic compared to the "ex-situ" sample with arsenic exclusively sorbed on the iron oxide nanoparticle surface. Generally, presented results highlight ferrate(VI) as one of the most promising candidates for advanced technologies of arsenic treatment mainly due to its environmentally friendly character, in situ applicability for treatment of both arsenites and arsenates, and contrary to all known competitive technologies, firmly bound part of arsenic preventing its leaching back to the environment. Moreover, As-containing γ-Fe2O3 nanoparticles are strongly magnetic allowing their separation from the environment by application of an external magnet.
Collapse
Affiliation(s)
- Robert Prucek
- Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
11
|
Perfil’ev YD, Kalmykov SN, Potapova EE, Dedushenko SK. Interaction of Sr(II) and Np(V) with potassium ferrate(VI) reduction products in aqueous solution. RADIOCHEMISTRY 2013. [DOI: 10.1134/s1066362213010190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Jiang JQ. Research progress in the use of ferrate(VI) for the environmental remediation. JOURNAL OF HAZARDOUS MATERIALS 2007; 146:617-23. [PMID: 17531376 DOI: 10.1016/j.jhazmat.2007.04.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The aim of this paper is to review the research progress of using ferrate(VI) in following fields of environmental remediation: (1) water disinfection; (2) degradation of synthetic organic pollutants; (3) treatment of emerging organic pollutants; (4) oxidation of inorganic pollutants; (5) removing humic substance; (6) wastewater treatment and disinfection; and (7) sewage sludge treatment. Whilst the superior performance of potassium ferrate(VI) as an oxidant/disinfectant for the environmental remediation has been demonstrated in various recent researches, challenges have existed to the implementation of ferrate(VI) technology in full-scale water, wastewater and sewage sludge treatment owing to either the instability property of a ferrate(VI) solution or a high preparation cost of a solid ferrate(VI). In addition to this, there are some fundamental issues which have not yet been studied thoroughly which are crucial for the implementation of ferrate(VI)-these lead to the future research work recommended by this paper.
Collapse
Affiliation(s)
- J Q Jiang
- School of Engineering, C5, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.
| |
Collapse
|
13
|
Jiang JQ, Panagoulopoulos A, Bauer M, Pearce P. The application of potassium ferrate for sewage treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2006; 79:215-20. [PMID: 16182439 DOI: 10.1016/j.jenvman.2005.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 05/07/2005] [Accepted: 06/20/2005] [Indexed: 05/04/2023]
Abstract
The comparative performance of potassium ferrate(VI), ferric sulphate and aluminium sulphate for the removal of turbidity, chemical oxygen demand (COD), colour (as Vis400-abs) and bacteria in sewage treatment was evaluated. For coagulation and disinfection of sewage, potassium ferrate(VI) can remove more organic contaminants, COD and bacteria in comparison with the other two coagulants for the same doses used. Also, potassium ferrate(VI) produces less sludge volume and removes more contaminants, which should make subsequent sludge treatment easier.
Collapse
Affiliation(s)
- Jia-Qian Jiang
- School of Engineering (C5), University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | | | | | | |
Collapse
|
14
|
Sharma VK, Burnett CR, Yngard RA, Cabelli DE. Iron(VI) and iron(V) oxidation of copper(I) cyanide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:3849-54. [PMID: 15952395 DOI: 10.1021/es048196g] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Copper(Il) cyanide (Cu(CN)4(3-)) in the gold mine industry presentsthe biggest concern in cyanide management because it is much more stable than free cyanide. Cu(CN)4(3-) is highlytoxic to aquatic life; therefore, environmentally friendly techniques are required for the removal of Cu(CN)4(3-) from gold mine effluent. The oxidation of Cu(CN)4(3-) by iron-(VI) (FeVIO4(2-), Fe(VI)) and iron(V) (FeVO4(3-), Fe(V)) was studied using stopped-flow and premix pulse radiolysis techniques. The stoichiometry with Fe(VI) was determined to be 5HFeO(4-) + Cu(CN)4(3-) + 8H2O - > 5Fe(OH)3 + Cu2+ + 4CNO- +3/202 + 6OH-. The rate law for the oxidation of Cu(CN)4(3-) by Fe(VI) was found to be first-order with each reactant. The rates decreased with increasing pH and were mostly related to a decrease in concentration of reactive protonated Fe(VI) species, HFeO4-. A mechanism is proposed that agrees with the observed reaction stoichiometry and rate law. The rate constant for the oxidation of Cu(CN)4(3-) by Fe(V) was determined at pH 12.0 as 1.35 +/- 0.02 x 10(7) M(-1) s(-1), which is approximately 3 orders of magnitude larger than Fe(VI). Results indicate that Fe(VI) is highly efficient for removal of cyanides in gold mill effluent.
Collapse
Affiliation(s)
- Virender K Sharma
- Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901, USA.
| | | | | | | |
Collapse
|
15
|
Lee Y, Yoon J, von Gunten U. Spectrophotometric determination of ferrate (Fe(VI)) in water by ABTS. WATER RESEARCH 2005; 39:1946-53. [PMID: 15876448 DOI: 10.1016/j.watres.2005.03.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 02/16/2005] [Indexed: 05/02/2023]
Abstract
A new method for the determination of low concentrations (0.03-35 microM) of the aqueous ferrate (Fe(VI)) was developed. The method is based on the reaction of Fe(VI) with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) which forms a green radical cation (ABTS(+)) that can be measured spectrophotometrically at 415 nm (ABTS method). The reaction of Fe(VI) with ABTS has a stoichiometry of 1 : 1 in excess of ABTS (73 microM). The increase in absorbance at 415 nm for ABTS*+ generation was linear with respect to Fe(VI) added (0.03-35 microM) in buffered solutions (acetate/phosphate buffer at pH = 4.3) and was (3.40+/-0.05) x 10(4) M(-1) cm(-1). The reaction of Fe(VI) with ABTS was very rapid with a half-life time below 0.01 s at pH 4.3 and 73 microM of ABTS. This enables the ABTS method to measure Fe(VI) selectively. The residual absorbance of ABTS*+ was found to be stable in several water matrices (synthetic buffer solution and natural waters) and concentrations of Fe(VI) spiked in natural waters could be determined with high accuracy. The ABTS method can also be used as a tool to determine rate constants of reactions of Fe(VI). The second-order rate constant for the reaction of phenol with Fe(VI) was determined to be 90 M(-1) s(-1) at pH 7.
Collapse
Affiliation(s)
- Yunho Lee
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742, Korea
| | | | | |
Collapse
|
16
|
Lee Y, Um IH, Yoon J. Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2003; 37:5750-5756. [PMID: 14717190 DOI: 10.1021/es034203+] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We investigated the stoichiometry, kinetics, and mechanism of arsenite [As(III)] oxidation by ferrate [Fe(VI)] and performed arsenic removal tests using Fe(VI) as both an oxidant and a coagulant. As(III) was oxidized to As(V) (arsenate) by Fe(VI), with a stoichiometry of 3:2 [As(III):Fe(VI)]. Kinetic studies showed that the reaction of As(III) with Fe(VI) was first-order with respect to both reactants, and its observed second-order rate constant at 25 degrees C decreased nonlinearly from (3.54 +/- 0.24) x 10(5) to (1.23 +/- 0.01) x 10(3) M(-1) s(-1) with an increase of pH from 8.4 to 12.9. A reaction mechanism by oxygen transfer has been proposed for the oxidation of As(III) by Fe(VI). Arsenic removal tests with river water showed that, with minimum 2.0 mg L(-1) Fe(VI), the arsenic concentration can be lowered from an initial 517 to below 50 microg L(-1), which is the regulation level for As in Bangladesh. From this result, Fe(VI) was demonstrated to be very effective in the removal of arsenic species from water at a relatively low dose level (2.0 mg L(-1)). In addition, the combined use of a small amount of Fe(VI) (below 0.5 mg L(-1)) and Fe(III) as a major coagulant was found to be a practical and effective method for arsenic removal.
Collapse
Affiliation(s)
- Yunho Lee
- School of Chemical Engineering, College of Engineering, Seoul National University, San 56-1, Shilim-dong, Gwanak-gu, Seoul 151-742, Korea
| | | | | |
Collapse
|
17
|
Jiang JQ, Lloyd B. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. WATER RESEARCH 2002; 36:1397-408. [PMID: 11996330 DOI: 10.1016/s0043-1354(01)00358-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This paper reviews the progress in preparing and using ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. The literature revealed that due to its unique properties (viz. strong oxidizing potential and simultaneous generation of ferric coagulating species), ferrate(VI) salt can disinfect microorganisms, partially degrade and/or oxidise the organic and inorganic impurities, and remove suspended/colloidal particulate materials in a single dosing and mixing unit process. However, these findings have not yet lead to the full-scale application of ferrate(VI) in the water industry owing to difficulties associated with the relatively low yield of ferrate(VI), the instability of the chemical depending on its method of preparation, and the lack of adequate studies that have demonstrated its capabilities and advantages over existing water and wastewater treatment methods. Fundamental study is thus required to explore the new preparation methods focusing on increasing the production yield and product's stability and avoiding using hypochlorite or chlorine as the oxidant. Also, the application of ferrate(VI) in drinking water treatment has not been studied systematically and future work in this field is recommended.
Collapse
Affiliation(s)
- Jia-Qian Jiang
- Department of Civil Engineering, University of Surrey, Guildford, UK.
| | | |
Collapse
|
18
|
|