1
|
Azouz AA, Abdel-Rahman DM, Messiha BAS. Balancing renal Ang-II/Ang-(1-7) by xanthenone; an ACE2 activator; contributes to the attenuation of Ang-II/p38 MAPK/NF-κB p65 and Bax/caspase-3 pathways in amphotericin B-induced nephrotoxicity in rats. Toxicol Mech Methods 2023:1-11. [PMID: 36747322 DOI: 10.1080/15376516.2023.2177218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite the great importance of amphotericin B for the management of life-threatening systemic fungal infections, its nephrotoxic effect restricts its repeated administration. This study was designed to examine the prospective modulatory effects of xanthenone, an ACE2 activator, against amphotericin B nephrotoxicity. Male Wistar rats were allocated into four groups; control (1st), Xanthenone (2nd), Amphotericin B (3rd), and Xanthenone + Amphotericin B (4th). The second and fourth groups received xanthenone (2 mg/kg; s.c.) daily for 14 consecutive days. Amphotericin B (18.5 mg/kg; i.p.) was administered to the third and fourth groups daily starting from day 8. After 2 weeks, samples were withdrawn for analysis. The histopathological findings, molecular and biochemical markers showed that amphotericin B caused marked renal injury. Pretreatment with xanthenone ameliorated amphotericin B-induced deterioration in kidney function biomarkers (creatinine, urea, cystatin C, KIM-1) and guarded against the disturbance of serum electrolytes (Na+, K+, Mg2+) due to amphotericin B-induced tubular dysfunction. Besides, the ACE2 activator xanthenone-balanced renal Ang-II/Ang-(1-7), and so the inflammatory signaling p38 MAPK/NF-κB p65 and its downstream inflammatory cytokines (TNF-α, IL-6) were attenuated. Meanwhile, the anti-oxidant signaling Nrf2/HO-1 and glutathione content were preserved, but the lipid peroxidation marker MDA was declined. These regulatory effects of xanthenone eventually enhanced Bcl-2 (anti-apoptotic), but reduced Bax (pro-apoptotic) and cleaved caspase-3 (apoptotic executioner) protein expressions. Collectively, the regulatory effects of xanthenone on renal Ang-II/Ang-(1-7) could at least partially contribute to the mitigation of amphotericin B nephrotoxicity by attenuating inflammatory signaling, oxidative stress, and apoptosis, thus improving the tolerability to amphotericin B.
Collapse
Affiliation(s)
- Amany A Azouz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Doaa M Abdel-Rahman
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
3
|
Usuda D, Higashikawa T, Hotchi Y, Usami K, Shimozawa S, Tokunaga S, Osugi I, Katou R, Ito S, Yoshizawa T, Asako S, Mishima K, Kondo A, Mizuno K, Takami H, Komatsu T, Oba J, Nomura T, Sugita M. Angiotensin receptor blocker neprilysin inhibitors. World J Cardiol 2021; 13:325-339. [PMID: 34589168 PMCID: PMC8436684 DOI: 10.4330/wjc.v13.i8.325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/09/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a clinical syndrome that results from a structural or functional cardiac disorder that reduces the ability of the ventricle of the heart to fill with, or eject, blood. It is a multifaceted clinical condition that affects up to 2% of the population in the developed world, and is linked to significant morbidity and mortality; it is therefore considered a major concern for public health. Regarding the mechanism of HF, three neurohumoral factors - the renin-angiotensin-aldosterone system, the sympathetic nervous system, and natriuretic peptides - are related to the pathology of chronic HF (CHF), and the targets of treatment. Angiotensin receptor blocker and neprilysin inhibitor (angiotensin-receptor neprilysin inhibitor), namely sacubitril/valsartan (SAC/VAL), has been introduced as a treatment for CHF. SAC/VAL is an efficacious, safe, and cost-effective therapy that improves quality of life and longevity in patients with HF with reduced ejection fraction (HFrEF), and reduces hospital admissions. An in-hospital initiation strategy offers a potential new avenue to improve the clinical uptake of SAC/VAL. In the last five years, SAC/VAL has been established as a cornerstone component of comprehensive disease-modifying medical therapy in the management of chronic HFrEF. On the other hand, further work, with carefully designed and controlled preclinical studies, is necessary for understanding the molecular mechanisms, effects, and confirmation of issues such as long-term safety in both human and animal models.
Collapse
Affiliation(s)
- Daisuke Usuda
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan.
| | - Toshihiro Higashikawa
- Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Himi-shi 935-8531, Toyama, Japan
| | - Yuta Hotchi
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Kenki Usami
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Shintaro Shimozawa
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Shungo Tokunaga
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Ippei Osugi
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Risa Katou
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Sakurako Ito
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Toshihiko Yoshizawa
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Suguru Asako
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Kentaro Mishima
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Akihiko Kondo
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Keiko Mizuno
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Hiroki Takami
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Takayuki Komatsu
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Jiro Oba
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Tomohisa Nomura
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| | - Manabu Sugita
- Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima-ku 177-8521, Tokyo, Japan
| |
Collapse
|
4
|
Rex DAB, Arun Kumar ST, Modi PK, Keshava Prasad TS. Broadening COVID-19 Interventions to Drug Innovation: Neprilysin Pathway as a Friend, Foe, or Promising Molecular Target? OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:408-416. [PMID: 34191617 DOI: 10.1089/omi.2021.0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is anticipated to transition to an endemic state as vaccines are providing relief in some, but not all, countries. Drug discovery for COVID-19 can offer another tool in the fight against the pandemic. Additionally, COVID-19 impacts multiple organs that call for a systems medicine approach to planetary health and therapeutics innovation. In this context, innovation for drugs that prevent and treat COVID-19 is timely and much needed. As the virus variants emerge under different ecological conditions and contexts in the long haul, a broad array of vaccine and drug options will be necessary. This expert review article argues for a need to expand the COVID-19 interventions, including and beyond vaccines, to stimulate discovery and development of novel medicines against SARS-CoV-2 infection. The Renin-Angiotensin-Aldosterone System (RAAS) is known to play a major role in SARS-CoV-2 infection. Neprilysin (NEP) and angiotensin-converting enzyme (ACE) have emerged as the pharmaceutical targets of interest in the search for therapeutic interventions against COVID-19. While the NEP/ACE inhibitors offer promise for repurposing against COVID-19, they may display a multitude of effects in different organ systems, some beneficial, and others adverse, in modulating the inflammation responses in the course of COVID-19. This expert review offers an analysis and discussion to deepen our present understanding of the pathophysiological function of neprilysin in multiple organs, and the possible effects of NEP inhibitor-induced inflammatory responses in COVID-19-infected patients.
Collapse
Affiliation(s)
- Devasahayam Arokia Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | - Sumaithangi Thattai Arun Kumar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
5
|
Sankhe R, Rathi E, Manandhar S, Kumar A, Pai SRK, Kini SG, Kishore A. Repurposing of existing FDA approved drugs for Neprilysin inhibition: An in-silico study. J Mol Struct 2020; 1224:129073. [PMID: 32834116 PMCID: PMC7422802 DOI: 10.1016/j.molstruc.2020.129073] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022]
Abstract
Drug repurposing of FDA approved drugs from ZINC 12 database was done using the crystal structure of extracellular domain of human NEP (PDB ID: 5JMY) The interactions with catalytic triad of HIS583, HIS587 and GLU646 are important for NEP inhibition. Based on XP molecular docking, binding energy, IFD-SP and MD simulation top 4 NEP inhibitors were identified. ZINC000000601283 and ZINC000003831594 were found to be stable during MD simulation and may act as NEP inhibitors.
Neprilysin (NEP) is a neutral endopeptidase with diverse physiological roles in the body. NEP's role in degradation of diverse classes of peptides such as amyloid beta, natriuretic peptide, substance P, angiotensin, endothelins, etc., is associated with pathologies of alzheimer's, kidney and heart diseases, obesity, diabetes and certain malignancies. Hence, the functional inhibition of NEP in the above systems can be a good therapeutic target. In the present study, in-silico drug repurposing approach was used to identify NEP inhibitors. Molecular docking was carried out using GLIDE tool. 2934 drugs from the ZINC12 database were screened using high throughput virtual screening (HTVS) followed by standard precision (SP) and extra precision (XP) docking. Based on the XP docking score and ligand interaction, the top 8 hits were subjected to free ligand binding energy calculation, to filter out 4 hits (ZINC000000001427, ZINC000001533877, ZINC000000601283, and ZINC000003831594). Further, induced fit docking-standard precision (IFD-SP) and molecular dynamics (MD) studies were performed. The results obtained from MD studies suggest that ZINC000000601283-NEP and ZINC000003831594-NEP complexes were most stable for 20ns simulation period as compared to ZINC000001533877-NEP and ZINC000000001427-NEP complexes. Interestingly, ZINC000000601283 and ZINC000003831594 showed similarity in binding with the reported NEP inhibitor sacubitrilat. Findings from this study suggest that ZINC000000601283 and ZINC000003831594 may act as NEP inhibitors. In future studies, the role of ZINC000000601283 and ZINC000003831594 in NEP inhibition should be tested in biological systems to evaluate therapeutic effect in NEP associated pathological conditions.
Collapse
Affiliation(s)
- Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ekta Rathi
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sreedhara Ranganath K Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| |
Collapse
|