1
|
Sharma S, Rani H, Mahesh Y, Jolly MK, Dixit J, Mahadevan V. Loss of p53 epigenetically modulates epithelial to mesenchymal transition in colorectal cancer. Transl Oncol 2024; 43:101848. [PMID: 38412660 PMCID: PMC10907866 DOI: 10.1016/j.tranon.2023.101848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 02/29/2024] Open
Abstract
Epithelial to Mesenchymal transition (EMT) drives cancer metastasis and is governed by genetic and epigenetic alterations at multiple levels of regulation. It is well established that loss/mutation of p53 confers oncogenic function to cancer cells and promotes metastasis. Though transcription factors like ZEB1, SLUG, SNAIL and TWIST have been implied in EMT signalling, p53 mediated alterations in the epigenetic machinery accompanying EMT are not clearly understood. This work attempts to explore epigenetic signalling during EMT in colorectal cancer (CRC) cells with varying status of p53. Towards this, we have induced EMT using TGFβ on CRC cell lines with wild type, null and mutant p53 and have assayed epigenetic alterations after EMT induction. Transcriptomic profiling of the four CRC cell lines revealed that the loss of p53 confers more mesenchymal phenotype with EMT induction than its mutant counterparts. This was also accompanied by upregulation of epigenetic writer and eraser machinery suggesting an epigenetic signalling cascade triggered by TGFβ signalling in CRC. Significant agonist and antagonistic relationships observed between EMT factor SNAI1 and SNAI2 with epigenetic enzymes KDM6A/6B and the chromatin organiser SATB1 in p53 null CRC cells suggest a crosstalk between epigenetic and EMT factors. The observed epigenetic regulation of EMT factor SNAI1 correlates with poor clinical outcomes in 270 colorectal cancer patients taken from TCGA-COAD. This unique p53 dependent interplay between epigenetic enzymes and EMT factors in CRC cells may be exploited for development of synergistic therapies for CRC patients presenting to the clinic with loss of p53.
Collapse
Affiliation(s)
- Shreya Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | - Harsha Rani
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, India
| | | | | | | | | |
Collapse
|
2
|
Tissue-Based Markers as a Tool to Assess Response to Neoadjuvant Radiotherapy in Rectal Cancer-Systematic Review. Int J Mol Sci 2022; 23:ijms23116040. [PMID: 35682714 PMCID: PMC9181431 DOI: 10.3390/ijms23116040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
According to current guidelines, the current treatment for locally advanced rectal cancer is neoadjuvant therapy, followed by a total mesorectal excision. However, radiosensitivity tends to differ among patients due to tumor heterogeneity, making it difficult to predict the possible outcomes of the neoadjuvant therapy. This review aims to investigate different types of tissue-based biomarkers and their capability of predicting tumor response to neoadjuvant therapy in patients with locally advanced rectal cancer. We identified 169 abstracts in NCBI PubMed, selected 48 reports considered to meet inclusion criteria and performed this systematic review. Multiple classes of molecular biomarkers, such as proteins, DNA, micro-RNA or tumor immune microenvironment, were studied as potential predictors for rectal cancer response; nonetheless, no literature to date has provided enough sufficient evidence for any of them to be introduced into clinical practice.
Collapse
|
3
|
He L, Chang H, Qi Y, Zhang B, Shao Q. ceRNA Networks: The Backbone Role in Neoadjuvant Chemoradiotherapy Resistance/Sensitivity of Locally Advanced Rectal Cancer. Technol Cancer Res Treat 2021; 20:15330338211062313. [PMID: 34908512 PMCID: PMC8689620 DOI: 10.1177/15330338211062313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Approximately 40% of rectal cancers during initial diagnosis are identified as locally advanced rectal cancers (LARCs), for which the standardized treatment scenario is total mesorectal excision following neoadjuvant chemoradiotherapy (nCRT). nCRT can lead to discernible reductions in local relapse rate and distant metastasis rate in LARC patients, in whom previously inoperable tumors may potentially be surgically removed. However, only 4% to 20% cases can attain pathological complete response, and the remaining patients who are unresponsive to nCRT have to suffer from the side effects plus toxicities and may encounter poor survival outcomes due to the late surgical intervention. As such, employing potential biomarkers to differentiate responders from nonresponders before nCRT implementation appears to be the overarching goal. Well-defined competing endogenous RNA (ceRNA) networks include long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA and circRNA-miRNA-mRNA networks. As ceRNAs, lncRNAs, and circRNAs sponge miRNAs to indirectly suppress miRNAs downstream of oncogenic mRNAs or tumor-suppressive mRNAs. The abnormal expression of mRNAs regulates the nCRT-induced DNA damage repair process through pluralistic carcinogenic signaling pathways, thereby bringing about alterations in the nCRT resistance/sensitivity of tumors. Moreover, many molecular mechanisms relevant to cell proliferation, metastasis, or apoptosis of cancers (eg, epithelial-mesenchymal transition and caspase-9-caspase-3 pathway) are influenced by ceRNA networks. Herein, we reviewed a large group of abnormally expressed mRNAs and noncoding RNAs that are associated with nCRT resistance/sensitivity in LARC patients and ultimately pinpointed the backbone role of ceRNA networks in the molecular mechanisms of nCRT resistance/sensitivity.
Collapse
Affiliation(s)
- Lin He
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Hao Chang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Yuhong Qi
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Bing Zhang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Qiuju Shao
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
4
|
Wen Y, Zhao S, Holmqvist A, Hahn-Stromberg V, Adell G, Holmlund B, Pathak S, Peng Z, Sun XF. Predictive Role of Biopsy Based Biomarkers for Radiotherapy Treatment in Rectal Cancer. J Pers Med 2020; 10:jpm10040168. [PMID: 33066317 PMCID: PMC7712120 DOI: 10.3390/jpm10040168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose: Radiation therapy has long been contemplated as an important mode in the treatment of rectal cancer. However, there are few ideal tools available for clinicians to make a radiotherapy decision at the time of diagnosis for rectal cancer. The purpose of this study was to assess whether biomarkers expressed in the biopsy could help to choose the suitable therapy and provide predictive and/or prognostic information. Experimental Design: In total, 30 biomarkers were analyzed in 219 biopsy samples before treatment to discover the possibility of using them as an indicator for radiotherapy selection, diagnosis, survival and recurrence. Results: Twenty-two biomarkers (COX2-RT, COX2-NonRT, etc.; 36.67%) had diagnostic value. For survival, four biomarkers (NFKBP65, p130, PINCH and PPAR) were significant in regulating gene promoter activity and overall survival, while four had a trend (AEG1, LOX, SATB1 and SIRT6). Three biomarkers (COX2, PINCH and WRAP53) correlated with disease-free survival, while eight had a trend (AEG1, COX2, Ki67, LOX, NFKBP65, PPAR and SATB1). Four biomarkers (COX2-RT, NFKBP65cyto-RT, P130cyto-NonRT and PPARcyto-RT) were independent prognostic factors for recurrence. NFKBP65 and SIRT6 were significantly correlated with lymph node metastasis regardless of radiation. Patients with high AEG1, LOX, NFKBP65, PPAR and SATB1 had or showed a positive trend for better survival after radiotherapy, while those with positive PINCH and WRAP53 expression would not benefit from radiotherapy. Conclusions: AEG1, LOX, NFKBP65cyto, PPAR and SATB1 could be used as indicators for choosing radiotherapy. COX2-RT, COX2-NonRT and some other biomarkers may provide additional help for diagnosis.
Collapse
Affiliation(s)
- Yugang Wen
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China; (Y.W.); (S.Z.)
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden; (A.H.); (G.A.); (B.H.)
| | - Senlin Zhao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China; (Y.W.); (S.Z.)
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden; (A.H.); (G.A.); (B.H.)
| | - Annica Holmqvist
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden; (A.H.); (G.A.); (B.H.)
| | | | - Gunnar Adell
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden; (A.H.); (G.A.); (B.H.)
| | - Birgitta Holmlund
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden; (A.H.); (G.A.); (B.H.)
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603 103, India;
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China; (Y.W.); (S.Z.)
- Correspondence: (Z.P.); (X.-F.S.); Tel.: +86-13761010066 (Z.P.); +46-10-1032066 (X.-F.S.)
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden; (A.H.); (G.A.); (B.H.)
- Correspondence: (Z.P.); (X.-F.S.); Tel.: +86-13761010066 (Z.P.); +46-10-1032066 (X.-F.S.)
| |
Collapse
|
5
|
Meng WJ, Pathak S, Zhang X, Adell G, Jarlsfelt I, Holmlund B, Wang ZQ, Zhang AS, Zhang H, Zhou ZG, Sun XF. Expressions of miR-302a, miR-105, and miR-888 Play Critical Roles in Pathogenesis, Radiotherapy, and Prognosis on Rectal Cancer Patients: A Study From Rectal Cancer Patients in a Swedish Rectal Cancer Trial of Preoperative Radiotherapy to Big Database Analyses. Front Oncol 2020; 10:567042. [PMID: 33123477 PMCID: PMC7573294 DOI: 10.3389/fonc.2020.567042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Differential expressions and functions of various micoRNAs (miRNAs) have been intensively studied in both colon and rectal cancers. However, the importance of miRNAs on radiotherapy (RT) response and clinical outcome in rectal cancer patients remains unclear. In this study, we used real-time polymerase chain reaction to examine the expressions of miR-302a, miR-105, and miR-888 in normal mucosa and cancer tissue from rectal cancer patients with and without preoperative RT. The biological function of miR-302a, miR-105, and miR-888 expression was further analyzed and identified through the public databases: TCGA (The Cancer Genome Atlas) and GEPIA (Gene Expression Profiling Interactive Analysis). The results showed that the expression of miR-105 in rectal cancer was higher than that in normal mucosa in RT (P = 0.042) and non-RT patients (P = 0.003) and was associated with mucinous histological type (P = 0.004), COX-2 (P = 0.042), and p73 expression (P = 0.030). The expression of miR-302a was shown more frequently in cancers with necrosis (P = 0.033) and with WRAP53 expression (P = 0.015), whereas miR-888 expression occurred more frequently in tumors with protein the expression of survivin (P = 0.015), AEG-1 (astrocyte elevated gene-1) (P = 0.003), and SATB1 (special AT-rich sequence binding protein 1) (P = 0.036). Moreover, TargetScan also predicted AEG-1 and SATB1 as putative targets for miR-888. The miRNA-gene network analysis showed that ABI2 was associated with all the three miRNAs, with lower expression and good diagnostic value in rectal cancers. The TCGA database demonstrated the association of miR-105 expression with high carcinoembryonic antigen level (P = 0.048). RT reduced the expressions of miR-302a, miR-105, and miR-888. Prognostic analysis showed that miR-888 expression was independently associated with worse survival of patients without RT [overall survival, P = 0.001; disease-free survival, P = 0.009]. Analysis of biological function revealed that the protein serine/threonine kinase activity and PI3K-AKT signaling pathway were the most significantly enriched functions and pathways, respectively. Our findings suggest that miR-105 is involved in rectal cancer pathogenesis and miR-888 is associated with prognosis. MiR-302a, miR-105, and miR-888 have potential influence on the pathogenesis, RT, and prognosis of rectal cancer.
Collapse
Affiliation(s)
- Wen-Jian Meng
- Department of Oncology and Department of Biomedical and Clinical Sciences, University of Linköping, Linköping, Sweden.,Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Surajit Pathak
- Department of Oncology and Department of Biomedical and Clinical Sciences, University of Linköping, Linköping, Sweden.,Chettinad Hospital & Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Xueli Zhang
- School of Medicine, Institute of Medical Sciences, Örebro University, Örebro, Sweden
| | - Gunnar Adell
- County Council of Östergötland, University of Linköping, Linköping, Sweden
| | | | - Birgitta Holmlund
- Department of Oncology and Department of Biomedical and Clinical Sciences, University of Linköping, Linköping, Sweden
| | - Zi-Qiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Alexander S Zhang
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Hong Zhang
- School of Medicine, Institute of Medical Sciences, Örebro University, Örebro, Sweden
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, University of Linköping, Linköping, Sweden
| |
Collapse
|
6
|
Glatzel-Plucińska N, Piotrowska A, Dzięgiel P, Podhorska-Okołów M. The Role of SATB1 in Tumour Progression and Metastasis. Int J Mol Sci 2019; 20:E4156. [PMID: 31450715 PMCID: PMC6747166 DOI: 10.3390/ijms20174156] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Carcinogenesis is a long-drawn, multistep process, in which metastatic spread is an unequivocal hallmark of a poor prognosis. The progression and dissemination of epithelial cancers is commonly thought to rely on the epidermal-mesenchymal transition (EMT) process. During EMT, epithelial cells lose their junctions and apical-basal polarity, and they acquire a mesenchymal phenotype with its migratory and invasive capabilities. One of the proteins involved in cancer progression and EMT may be SATB1 (Special AT-Rich Binding Protein 1)-a chromatin organiser and a global transcriptional regulator. SATB1 organizes chromatin into spatial loops, providing a "docking site" necessary for the binding of further transcription factors and chromatin modifying enzymes. SATB1 has the ability to regulate whole sets of genes, even those located on distant chromosomes. SATB1 was found to be overexpressed in numerous malignancies, including lymphomas, breast, colorectal, prostate, liver, bladder and ovarian cancers. In the solid tumours, an elevated SATB1 level was observed to be associated with an aggressive phenotype, presence of lymph node, distant metastases, and a poor prognosis. In this review, we briefly describe the prognostic significance of SATB1 expression in most common human cancers, and analyse its impact on EMT and metastasis.
Collapse
Affiliation(s)
- Natalia Glatzel-Plucińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland.
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 51-612 Wroclaw, Poland
| | | |
Collapse
|
7
|
SATB1 Expression of Colorectal Adenomatous Polyps is Higher than that of Colorectal Carcinomas. Appl Immunohistochem Mol Morphol 2019; 28:532-537. [PMID: 31290787 DOI: 10.1097/pai.0000000000000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
"Special AT-rich sequence-binding protein-1" (SATB1) is a global genome organizer and is found to have effects on carcinogenesis and progression of various malignancies including colorectal carcinoma (CRC). We aimed to investigate the expression of SATB1 in CRC and colorectal adenomatous polyps (CAP), the correlation between clinicopathologic parameters, and overall survival. We examined 227 CRCs and 129 CAPs. SATB1 protein expression was evaluated by immunohistochemistry. We found higher SATB1 expression in adenomatous epithelium than in CRC tissues (55.0% vs. 42.7%, respectively) (P<0.05). None of the adjacent normal colorectal mucosa stained positive in CRC cases, and only one of the adjacent normal mucosa of the CAP cases was positive. SATB1 expression of left-sided CRC was higher than that of right-sided CRC (46.3% vs. 28.6%, respectively) (P<0.05), and SATB1 expression of conventional adenocarcinomas was higher than that of mucinous carcinomas (45.5% vs. 6.3%, respectively) (P<0.05). SATB1 expression was higher in CAPs consisting of high-grade dysplasia than in polyps with low-grade dysplasia (77.8% vs. 51.4%) (P<0.05). SATB1 expression did not correlate with patients' overall survival. In conclusion, due to the higher expression of SATB1 in CAP than in CRC, we think SATB1 may have a role in the early stages of carcinogenesis of CRCs. This is the first study investigating SATB1 expression in CAPs. Besides this is the first report that shows different SATB1 expressions in conventional colorectal adenocarcinoma and mucinous carcinoma, and also in right-sided and left-sided CRC. Our results, with supporting new studies, can provide SATB1 as a possible candidate for targeted therapy for CRC patients.
Collapse
|
8
|
Paul S, Brahma D. An Integrated Approach for Identification of Functionally Similar MicroRNAs in Colorectal Cancer. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:183-192. [PMID: 29990005 DOI: 10.1109/tcbb.2017.2765332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers around the globe. However, the molecular reasons for pathogenesis of CRC are still poorly understood. Recently, the role of microRNAs or miRNAs in the initiation and progression of CRC has been studied. MicroRNAs are small, endogenous noncoding RNAs found in plants, animals, and some viruses, which function in RNA silencing and posttranscriptional regulation of gene expression. Their role in CRC development is studied and they are found to be potential biomarkers in diagnosis and treatment of CRC. Therefore, identification of functionally similar CRC related miRNAs may help in the development of a prognostic tool. In this regard, this paper presents a new algorithm, called μSim. It is an integrative approach for identification of functionally similar miRNAs associated with CRC. It integrates judiciously the information of miRNA expression data and miRNA-miRNA functionally synergistic network data. The functional similarity is calculated based on both miRNA expression data and miRNA-miRNA functionally synergistic network data. The effectiveness of the proposed method in comparison to other related methods is shown on four CRC miRNA data sets. The proposed method selected more significant miRNAs related to CRC as compared to other related methods.
Collapse
|
9
|
Mirza-Aghazadeh-Attari M, Darband SG, Kaviani M, Mihanfar A, Aghazadeh Attari J, Yousefi B, Majidinia M. DNA damage response and repair in colorectal cancer: Defects, regulation and therapeutic implications. DNA Repair (Amst) 2018; 69:34-52. [PMID: 30055507 DOI: 10.1016/j.dnarep.2018.07.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/15/2018] [Accepted: 07/15/2018] [Indexed: 12/11/2022]
Abstract
DNA damage response, a key factor involved in maintaining genome integrity and stability, consists of several kinase-dependent signaling pathways, which sense and transduce DNA damage signal. The severity of damage appears to determine DNA damage responses, which can include cell cycle arrest, damage repair and apoptosis. A number of recent studies have demonstrated that defection in signaling through this network is thought to be an underlying mechanism behind the development and progression of various types of human malignancies, including colorectal cancer. In this review, colorectal cancer and its molecular pathology as well as DNA damage response is briefly introduced. Finally, the involvement of key components of this network in the initiation/progression, prognosis, response to treatment and development of drug resistance is comprehensively discussed.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Ainaz Mihanfar
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
10
|
Zhao J, Tuo Y, Luo W, He S, Chen Y. Prognostic and Clinicopathological Significance of SATB1 in Colorectal Cancer: A Meta-Analysis. Front Physiol 2018; 9:535. [PMID: 29867574 PMCID: PMC5962789 DOI: 10.3389/fphys.2018.00535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/24/2018] [Indexed: 12/23/2022] Open
Abstract
Background: A large number of studies have reported the aberrant expression of special AT-rich sequence binding protein 1 (SATB1) in colorectal cancer (CRC). However, the role of SATB1 in CRC is still controversial. Therefore, we performed this meta-analysis to elucidate the prognostic and clinical value of SATB1 in CRC patients. Methods: We searched Web of Science, EMBASE and PubMed entirely in January 2018 to identify related articles. Pooled Hazard ratio (HR) was adopted to evaluate the prognostic value of SATB1 in CRC and odd ratio (OR) was used to assess the clinicopathological significance of SATB1 in CRC. Results: Ten eligible studies containing 7 on prognosis and 9 on clinicopathological characteristics were finally included in the present meta-analysis. Results revealed that patients with high expression of SATB1 tended to have shorter overall survival (OS) (pooled HR: 1.64, 95% CI: 1.04–2.57). Besides, we also discovered that the expression of SATB1 was associated with histologic grade (OR = 1.88, 95% CI: 1.06–3.34), distant metastasis (OR = 1.43, 95% CI: 1.11–1.85) and lymph node metastasis (OR = 1.50, 95% CI: 1.03–2.19). Conclusion: Broadly speaking, our meta-analysis demonstrated that high expression level of SATB1 was related to poor prognosis in CRC patients.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, Xining, China
| | - Yajun Tuo
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, Xining, China
| | - Wei Luo
- Department of Endocrinology, Qinghai Provincial People's Hospital, Xining, China
| | - Shaojun He
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yifei Chen
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Zhang S, Tong YX, Xu XS, Lin H, Chao TF. Prognostic significance of SATB1 in gastrointestinal cancer: a meta-analysis and literature review. Oncotarget 2018; 8:48410-48423. [PMID: 28430598 PMCID: PMC5564658 DOI: 10.18632/oncotarget.16867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/24/2017] [Indexed: 01/07/2023] Open
Abstract
Background The special AT-rich sequence-binding proteins 1 (SATB1) is a major regulator involved in cell differentiation. It has been shown that SATB1 acts as an oncogenic regulator. The clinical and prognostic significance of SATB1 in gastrointestinal cancer remains controversial. The purpose of this study is to conduct a systematic review and meta-analysis to elucidate the impact of SATB1 in gastrointestinal cancer. Results A total of 3174 gastrointestinal cancer patients from 15 studies were included. The correlation between SATB1 expression and OS or RFS was investigated in 12 and 5 studies respectively. The results of meta-analysis showed that SATB1 overexpression is inversely correlated with OS (combined HR: 1.79, p = 0.0003) and RFS (combined HR: 2.46, p < 0.0001). In subgroup analysis, SATB1 expression is significantly correlated with poor prognosis in gastrointestinal cancer in Asian population. SATB1 expression is associated with stage, invasion depth, lymph node metastasis and distant metastasis. Methodology Published studies with data on overall survival (OS) and/or relapse free survival (RFS) and SATB1 expression were searched from Cochrane Library, PubMed and Embase (up to Dec 30, 2016). The outcome measurement is hazard ratio (HR) for OS or RFS related with SATB1 expression. Two reviewers independently screened the literatures, extracted the data and performed meta-analysis using RevMan 5.3.0 software. The combined HRs were calculated by fixed- or random-effect models. Conclusions The results of this meta-analysis suggest that SATB1 overexpression is related to advanced stage, lymph node metastasis and distant metastasis. SATB1 overexpression is a marker indicating poor prognosis in gastrointestinal cancer.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xin Tong
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Shang Xu
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lin
- Tongji University, School of Medicine, Shanghai, China
| | - Teng Fei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
The Special AT-rich Sequence Binding Protein 1 (SATB1) and its role in solid tumors. Cancer Lett 2018; 417:96-111. [DOI: 10.1016/j.canlet.2017.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|