1
|
Hickson SE, Brekke E, Schwerk J, Saluhke I, Zaver S, Woodward J, Savan R, Hyde JL. Sequence Diversity in the 3' Untranslated Region of Alphavirus Modulates IFIT2-Dependent Restriction in a Cell Type-Dependent Manner. J Interferon Cytokine Res 2025; 45:133-149. [PMID: 40079162 DOI: 10.1089/jir.2024.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Alphaviruses (family Togaviridae) are a diverse group of positive-sense RNA (+ssRNA) viruses that are transmitted by arthropods and are the causative agent of several significant human and veterinary diseases. Interferon (IFN)-induced proteins with tetratricopeptide repeats (IFITs) are a family of RNA-binding IFN-stimulated genes (ISGs) that are highly upregulated following viral infection and have been identified as potential restrictors of alphaviruses. The mechanism by which IFIT1 restricts RNA viruses is dependent on self and non-self-discrimination of RNA, and alphaviruses evade this recognition via their 5' untranslated region (UTR). However, the role of IFIT2 during alphavirus replication and the mechanism of viral replication inhibition is unclear. In this study, we identify IFIT2 as a restriction factor for Venezuelan equine encephalitis virus (VEEV) and show that IFIT2 binds the 3' 3'UTR of the virus. We investigated the potential role of variability in the 3'UTR of the virus affecting IFIT2 antiviral activity by studying infection with VEEV. Comparison of recombinant VEEV clones containing 3'UTR sequences derived from epizootic and enzootic isolates exhibited differential sensitivity to IFIT2 restriction in vitro infection studies, suggesting that the alphavirus 3'UTR sequence may function in part to evade IFIT2 restriction. In vitro binding assays demonstrate that IFIT2 binds to the VEEV 3'UTR; however, in contrast to previous studies, VEEV restriction did not appear to be dependent on the ability of IFIT2 to inhibit translation of viral RNA, suggesting a novel mechanism of IFIT2 restriction. Our study demonstrates that IFIT2 is a restriction factor for alphaviruses and variability in the 3'UTR of VEEV can modulate viral restriction by IFIT2. Ongoing studies are exploring the biological consequences of IFIT2-VEEV RNA interaction in viral pathogenesis and defining sequence and structural features of RNAs that regulate IFIT2 recognition.
Collapse
Affiliation(s)
- Sarah E Hickson
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Eden Brekke
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Johannes Schwerk
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Indraneel Saluhke
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Shivam Zaver
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua Woodward
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jennifer L Hyde
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Glasner DR, Todd C, Cook B, D’Urso A, Khosla S, Estrada E, Wagner JD, Bartels MD, Ford P, Prych J, Hatch K, Yee BA, Ego KM, Liang Q, Holland SR, Case JB, Corbett KD, Diamond MS, Yeo GW, Herzik MA, Van Nostrand EL, Daugherty MD. Short 5' UTRs serve as a marker for viral mRNA translation inhibition by the IFIT2-IFIT3 antiviral complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637299. [PMID: 39990370 PMCID: PMC11844544 DOI: 10.1101/2025.02.11.637299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Recognition of "non-self" nucleic acids, including cytoplasmic dsDNA, dsRNA, or mRNAs lacking proper 5' cap structures, is critical for the innate immune response to viruses. Here, we demonstrate that short 5' untranslated regions (UTRs), a characteristic of many viral mRNAs, can also serve as a molecular pattern for innate immune recognition via the interferon-induced proteins IFIT2 and IFIT3. The IFIT2-IFIT3 heterodimer, formed through an intricate domain swap structure resolved by cryo-EM, mediates viral mRNA 5' end recognition, translation inhibition, and ultimately antiviral activity. Critically, 5' UTR lengths <50 nucleotides are necessary and sufficient to sensitize an mRNA to translation inhibition by the IFIT2-IFIT3 complex. Accordingly, diverse viruses whose mRNAs contain short 5' UTRs, such as vesicular stomatitis virus and parainfluenza virus 3, are sensitive to IFIT2-IFIT3-mediated antiviral activity. Our work thus reveals a pattern of antiviral nucleic acid immune recognition that takes advantage of the inherent constraints on viral genome size.
Collapse
Affiliation(s)
- Dustin R. Glasner
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Candace Todd
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Brian Cook
- Department of Chemistry and Biochemistry, University of California, San Diego, CA USA
| | - Agustina D’Urso
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Shivani Khosla
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Elena Estrada
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Jaxon D. Wagner
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Mason D. Bartels
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas, USA
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Pierce Ford
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Jordan Prych
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Katie Hatch
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - Brian A. Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Kaori M. Ego
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA USA
| | - Qishan Liang
- Department of Chemistry and Biochemistry, University of California, San Diego, CA USA
| | - Sarah R. Holland
- School of Biological Sciences, University of California, San Diego, CA, USA
| | - James Brett Case
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin D. Corbett
- School of Biological Sciences, University of California, San Diego, CA, USA
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Laboratories for Innovative Medicines, La Jolla, CA, USA
| | - Mark A. Herzik
- Department of Chemistry and Biochemistry, University of California, San Diego, CA USA
| | - Eric L. Van Nostrand
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas, USA
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
3
|
Kuzminska J, Szyk P, Mlynarczyk DT, Bakun P, Muszalska-Kolos I, Dettlaff K, Sobczak A, Goslinski T, Jelinska A. Curcumin Derivatives in Medicinal Chemistry: Potential Applications in Cancer Treatment. Molecules 2024; 29:5321. [PMID: 39598712 PMCID: PMC11596437 DOI: 10.3390/molecules29225321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/20/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Curcumin, a naturally occurring compound found in the rhizome of Curcuma plants, particularly in turmeric (Curcuma longa L.), exhibits a broad range of biological activities, including anti-inflammatory, antioxidant, and anticancer properties. Curcumin has demonstrated effectiveness in inhibiting tumor growth, arousing interest for its potential in treating various cancers, such as breast, lung, prostate, and brain cancers. However, the clinical application of curcumin is limited due to its low chemical stability, poor water solubility, and low bioavailability. In response to these challenges, structural modifications of curcumin have been explored to improve its pharmacological properties, including enhanced anticancer selectivity index and bioavailability. This review highlights promising chemical modifications of curcumin that could lead to the development of more effective anticancer therapies. By functionalizing the parent curcumin molecule, researchers aim to create more stable and bioavailable compounds with enhanced therapeutic potential, making curcumin derivatives promising candidates for medical applications.
Collapse
Affiliation(s)
- Joanna Kuzminska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
| | - Piotr Szyk
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland;
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.T.M.); (P.B.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.T.M.); (P.B.)
| | - Pawel Bakun
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.T.M.); (P.B.)
| | - Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
| | - Katarzyna Dettlaff
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
| | - Agnieszka Sobczak
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (D.T.M.); (P.B.)
| | - Anna Jelinska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (I.M.-K.); (K.D.); (A.S.); (A.J.)
| |
Collapse
|
4
|
Liu D, Li M, Zhao Z, Zhou L, Zhi F, Guo Z, Cui J. Targeting the TRIM14/USP14 Axis Enhances Immunotherapy Efficacy by Inducing Autophagic Degradation of PD-L1. Cancer Res 2024; 84:2806-2819. [PMID: 38924473 DOI: 10.1158/0008-5472.can-23-3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Immunotherapy has greatly improved cancer treatment in recent years by harnessing the immune system to target cancer cells. The first immunotherapeutic agent approved by the FDA was IFNα. Treatment with IFNα can lead to effective immune activation and attenuate tumor immune evasion, but persistent treatment has been shown to elicit immunosuppressive effects. Here, we identified an autophagy-dependent mechanism by which IFNα triggers tumor immune evasion by upregulating PD-L1 to suppress the antitumor activity of CD8+ T cells. Mechanistically, IFNα increased the transcription of TRIM14, which recruited the deubiquitinase USP14 to inhibit the autophagic degradation of PD-L1. USP14 removed K63-linked ubiquitin chains from PD-L1, impairing its recognition by the cargo receptor p62 (also known as SQSTM1) for subsequent autophagic degradation. Combining the USP14 inhibitor IU1 with IFNα and anti-CTLA4 treatment effectively suppressed tumor growth without significant toxicity. This work suggests a strategy for targeting selective autophagy to abolish PD-L1-mediated cancer immune evasion. Significance: IFNα-induced TRIM14 transcription suppresses antitumor immunity by recruiting USP14 to inhibit autophagic degradation of PD-L1, indicating that targeting this axis could be an effective immunotherapeutic approach for treating cancer.
Collapse
Affiliation(s)
- Di Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Mengqiu Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiyao Zhao
- Greater Bay Area Institute of Precision Medicine, Guangzhou, China
| | - Liang Zhou
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Feng Zhi
- Department of Neurosurgery, Third Affiliated Hospital of Soochow University, Changzhou, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Zhiyong Guo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Medicine, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, Joint Lab of First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Kaur C, Sahu SK, Bansal K, DeLiberto LK, Zhang J, Tewari D, Bishayee A. Targeting Peroxisome Proliferator-Activated Receptor-β/δ, Reactive Oxygen Species and Redox Signaling with Phytocompounds for Cancer Therapy. Antioxid Redox Signal 2024; 41:342-395. [PMID: 38299535 DOI: 10.1089/ars.2023.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Significance: Peroxisome proliferator-activated receptors (PPARs) have a moderately preserved amino-terminal domain, an extremely preserved DNA-binding domain, an integral hinge region, and a distinct ligand-binding domain that are frequently encountered with the other nuclear receptors. PPAR-β/δ is among the three nuclear receptor superfamily members in the PPAR group. Recent Advances: Emerging studies provide an insight on natural compounds that have gained increasing attention as potential anticancer agents due to their ability to target multiple pathways involved in cancer development and progression. Critical Issues: Modulation of PPAR-β/δ activity has been suggested as a potential therapeutic strategy for cancer management. This review focuses on the ability of bioactive phytocompounds to impact reactive oxygen species (ROS) and redox signaling by targeting PPAR-β/δ for cancer therapy. The rise of ROS in cancer cells may play an important part in the initiation and progression of cancer. However, excessive levels of ROS stress can also be toxic to the cells and cancer cells with increased oxidative stress are likely to be more vulnerable to damage by further ROS insults induced by exogenous agents, such as phytocompounds and therapeutic agents. Therefore, redox modulation is a way to selectively kill cancer cells without causing significant toxicity to normal cells. However, use of antioxidants together with cancer drugs may risk the effect of treatment as both act through opposite mechanisms. Future Directions: It is advisable to employ more thorough and detailed methodologies to undertake mechanistic explorations of numerous phytocompounds. Moreover, conducting additional clinical studies is recommended to establish optimal dosages, efficacy, and the impact of different phytochemicals on PPAR-β/δ.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sanjeev Kumar Sahu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Keshav Bansal
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Lindsay K DeLiberto
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
6
|
Li TH, Zhao BB, Qin C, Wang YY, Li ZR, Cao HT, Yang XY, Zhou XT, Wang WB. IFIT1 modulates the proliferation, migration and invasion of pancreatic cancer cells via Wnt/β-catenin signaling. Cell Oncol (Dordr) 2024; 47:1253-1265. [PMID: 38536650 DOI: 10.1007/s13402-024-00925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVES Previously, Interferon-induced Protein with Tetratricopeptide Repeats 1 (IFIT1) has been shown to promote cancer development. Here, we aimed to explore the role of IFIT1 in the development and progression of pancreatic cancer, including the underlying mechanisms. METHODS We explored IFIT1 expression in pancreatic cancer samples using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cell Counting Kit-8 (CCK8), colony formation, scratch wound-healing and Transwell assays were performed to assess the proliferation, migration and invasion abilities of pancreatic cancer cells. Gene Set Enrichment Analysis (GSEA) and Western blotting were performed to assess the regulatory effect of IFIT1 on the Wnt/β-catenin pathway. RESULTS We found that upregulation of IFIT1 expression is common in pancreatic cancer and is negatively associated with overall patient survival. Knockdown of IFIT1 expression led to decreased proliferation, migration and invasion of pancreatic cancer cells. We also found that IFIT1 could regulate Wnt/β-catenin signaling, and that a Wnt/β-catenin agonist could reverse this effect. In addition, we found that IFIT1 can promote epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. CONCLUSIONS Our data indicate that IFIT1 increases pancreatic cancer cell proliferation, migration and invasion by activating the Wnt/β-catenin pathway. In addition, we found that EMT could be regulated by IFIT1. IFIT1 may serve as a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Tian-Hao Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bang-Bo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan-Yang Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ze-Ru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hong-Tao Cao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiao-Ying Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xing-Tong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei-Bin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Ognibene M, De Marco P, Amoroso L, Cangelosi D, Zara F, Parodi S, Pezzolo A. Multiple Genes with Potential Tumor Suppressive Activity Are Present on Chromosome 10q Loss in Neuroblastoma and Are Associated with Poor Prognosis. Cancers (Basel) 2023; 15:cancers15072035. [PMID: 37046696 PMCID: PMC10093755 DOI: 10.3390/cancers15072035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Neuroblastoma (NB) is a tumor affecting the peripheral sympathetic nervous system that substantially contributes to childhood cancer mortality. Despite recent advances in understanding the complexity of NB, the mechanisms determining its progression are still largely unknown. Some recurrent segmental chromosome aberrations (SCA) have been associated with poor survival. However, the prognostic role of most SCA has not yet been investigated. We examined a cohort of 260 NB primary tumors at disease onset for the loss of chromosome 10q, by array-comparative genomic hybridization (a-CGH) and Single Nucleotide Polymorphism (SNP) array and we found that 26 showed 10q loss, while the others 234 displayed different SCA. We observed a lower event-free survival for NB patients displaying 10q loss compared to patients with tumors carrying other SCA. Furthermore, analyzing the region of 10q loss, we identified a cluster of 75 deleted genes associated with poorer outcome. Low expression of six of these genes, above all CCSER2, was significantly correlated to worse survival using in silico data from 786 NB patients. These potential tumor suppressor genes can be partly responsible for the poor prognosis of NB patients with 10q loss.
Collapse
|
8
|
Zhou Y, Kong Y, Jiang M, Kuang L, Wan J, Liu S, Zhang Q, Yu K, Li N, Le A, Zhang Z. Curcumin activates NLRC4, AIM2, and IFI16 inflammasomes and induces pyroptosis by up-regulated ISG3 transcript factor in acute myeloid leukemia cell lines. Cancer Biol Ther 2022; 23:328-335. [PMID: 35435150 PMCID: PMC9037542 DOI: 10.1080/15384047.2022.2058862] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Curcumin, the primary bioactive component isolated from turmeric, has been found to possess a variety of biological functions, including anti-leukemia activity. However, the effect of curcumin in different leukemia cells vary. In this study, we demonstrated that curcumin induced the expression of AIM2, IFI16, and NLRC4 inflammasomes in leukemia cells U937 by increasing the expression levels of ISG3 transcription factor complex, which activated caspase 1, promoted cleavage of GSDMD, and induced pyroptosis. We also found that pyroptosis executor GSDMD was not expressed in two curcumin-insensitive cells HL60 and K562 cells. In addition, exogenous overexpression of GSDMD by lentiviral transduction in K562 cells increased the anti-cancer activity of curcumin, and inhibiting the expression of GSDMD by shRNA enhanced U937 cells to resist curcumin. The results showed that inducing pyroptosis is a novel mechanism underlying the anti-leukemia effects of curcumin.
Collapse
Affiliation(s)
- Yuru Zhou
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,JiangXi Key Laboratory of Transfusion Medicine, Nanchang, Jiangxi, China
| | - Yunyuan Kong
- Department of Physical Examination, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mei Jiang
- Departments of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Linju Kuang
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinhua Wan
- Departments of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shuyuan Liu
- Departments of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qian Zhang
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,JiangXi Key Laboratory of Transfusion Medicine, Nanchang, Jiangxi, China
| | - Kuai Yu
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,JiangXi Key Laboratory of Transfusion Medicine, Nanchang, Jiangxi, China
| | - Na Li
- Departments of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Aiping Le
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,JiangXi Key Laboratory of Transfusion Medicine, Nanchang, Jiangxi, China
| | - Zhanglin Zhang
- Departments of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,JiangXi Key Laboratory of Transfusion Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Sanlier N, Kocabas Ş, Erdogan K, Sanlier NT. Effects of curcumin, its analogues, and metabolites on various cancers: focusing on potential mechanisms. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Şule Kocabas
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Kadriye Erdogan
- Department of Obstetrics and Gynecology, Ankara Gulhane Health Application and Research Center, Health Sciences University, Ankara, Turkey
| | - Nazlı Tunca Sanlier
- Department of Obstetrics and Gynecology, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
10
|
Zou L, Liu Z, Li X, Liu L, Zhu Y. Knockdown of G1P3 inhibits cell proliferation and enhances the cytotoxicity of dexamethasone in acute lymphoblastic leukemia. Open Life Sci 2022. [DOI: 10.1515/biol-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Drug resistance contributes to treatment failure and relapse in acute lymphoblastic leukemia (ALL). G1P3 (also known as IFI6, interferon, alpha-inducible protein 6) has been regarded as an antiapoptotic protein in myeloma cells and contributes to chemoresistance in breast cancer. However, the role of G1P3 in the proliferation and chemosensitivity of ALL is largely unknown. Data from colony formation and bromo-deoxyuridine (BrdU) incorporation assays showed that siRNA-mediated downregulation of G1P3 repressed cell proliferation of glucocorticoids-resistant human leukemic cells (CEM-C1), while overexpression of G1P3 promoted the cell proliferation. Cell apoptosis of CEM-C1 was suppressed by G1P3 overexpression accompanied by a decrease in cleaved caspase-3 and caspase-9. Knockdown of G1P3 increased protein expression of cleaved caspase-3 and caspase-9 to promote the cell apoptosis of CEM-C1. Moreover, silencing of G1P3 reduced cell viability and promoted cell apoptosis of CEM-C1 exposed to dexamethasone. The proapoptotic protein B-cell lymphoma 2 interacting mediator of cell death (Bim) was enhanced by the interference of G1P3 in CEM-C1. Silencing of Bim attenuated G1P3 interference-induced decrease in cell viability and increase in cell apoptosis in CEM-C1 exposed to dexamethasone. Conclusively, knockdown of G1P3 inhibited cell proliferation of ALL and sensitized glucocorticoid-resistant ALL cells to dexamethasone through upregulation of Bim-mediated cell apoptosis.
Collapse
Affiliation(s)
- Liping Zou
- Department of Blood Transfusion, First Affiliated Hospital of Gannan Medical University , Zhanggong District , Ganzhou , Jiangxi Province, 341000 , China
| | - Zhirui Liu
- Human Aging Research Institute (HARI), Nanchang University , Nanchang , Jiangxi Province, 330031 , China
| | - Xueer Li
- Human Aging Research Institute (HARI), Nanchang University , Nanchang , Jiangxi Province, 330031 , China
| | - Liping Liu
- Department of Hematology, First Affiliated Hospital of Gannan Medical University , Ganzhou , Jiangxi Province, 341000 , China
| | - Ying Zhu
- Department of Blood Transfusion, First Affiliated Hospital of Gannan Medical University , Zhanggong District , Ganzhou , Jiangxi Province, 341000 , China
- Human Aging Research Institute (HARI), School of Life Science, Nanchang University , Nanchang , Jiangxi Province, 330031 , China
| |
Collapse
|
11
|
Li TH, Zhao BB, Qin C, Wang YY, Li ZR, Cao HT, Yang XY, Zhou XT, Wang WB. IFIT1 modulates the proliferation, migration and invasion of pancreatic cancer cells via Wnt/β-catenin signaling. Cell Oncol (Dordr) 2021; 44:1425-1437. [PMID: 34791638 PMCID: PMC8648688 DOI: 10.1007/s13402-021-00651-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Previously, Interferon-induced Protein with Tetratricopeptide Repeats 1 (IFIT1) has been shown to promote cancer development. Here, we aimed to explore the role of IFIT1 in the development and progression of pancreatic cancer, including the underlying mechanisms. METHODS We explored IFIT1 expression in pancreatic cancer samples using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Cell Counting Kit-8 (CCK8), colony formation, scratch wound-healing and Transwell assays were performed to assess the proliferation, migration and invasion abilities of pancreatic cancer cells. Gene Set Enrichment Analysis (GSEA) and Western blotting were performed to assess the regulatory effect of IFIT1 on the Wnt/β-catenin pathway. RESULTS We found that upregulation of IFIT1 expression is common in pancreatic cancer and is negatively associated with overall patient survival. Knockdown of IFIT1 expression led to decreased proliferation, migration and invasion of pancreatic cancer cells. We also found that IFIT1 could regulate Wnt/β-catenin signaling, and that a Wnt/β-catenin agonist could reverse this effect. In addition, we found that IFIT1 can promote epithelial-mesenchymal transition (EMT) of pancreatic cancer cells. CONCLUSIONS Our data indicate that IFIT1 increases pancreatic cancer cell proliferation, migration and invasion by activating the Wnt/β-catenin pathway. In addition, we found that EMT could be regulated by IFIT1. IFIT1 may serve as a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Tian-Hao Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bang-Bo Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan-Yang Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ze-Ru Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hong-Tao Cao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiao-Ying Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xing-Tong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei-Bin Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Singh RK, Kumar S, Tomar MS, Verma PK, Kumar A, Kumar S, Kumar N, Singh JP, Acharya A. Putative role of natural products as Protein Kinase C modulator in different disease conditions. ACTA ACUST UNITED AC 2021; 29:397-414. [PMID: 34216003 DOI: 10.1007/s40199-021-00401-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Protein kinase C (PKC) is a promising drug target for various therapeutic areas. Natural products derived from plants, animals, microorganisms, and marine organisms have been used by humans as medicine from prehistoric times. Recently, several compounds derived from plants have been found to modulate PKC activities through competitive binding with ATP binding site, and other allosteric regions of PKC. As a result fresh race has been started in academia and pharmaceutical companies to develop an effective naturally derived small-molecule inhibitor to target PKC activities. Herein, in this review, we have discussed several natural products and their derivatives, which are reported to have an impact on PKC signaling cascade. METHODS All information presented in this review article regarding the regulation of PKC by natural products has been acquired by a systematic search of various electronic databases, including ScienceDirect, Scopus, Google Scholar, Web of science, ResearchGate, and PubMed. The keywords PKC, natural products, curcumin, rottlerin, quercetin, ellagic acid, epigallocatechin-3 gallate, ingenol 3 angelate, resveratrol, protocatechuic acid, tannic acid, PKC modulators from marine organism, bryostatin, staurosporine, midostaurin, sangivamycin, and other relevant key words were explored. RESULTS The natural products and their derivatives including curcumin, rottlerin, quercetin, ellagic acid, epigallocatechin-3 gallate, ingenol 3 angelate, resveratrol, bryostatin, staurosporine, and midostaurin play a major role in the management of PKC activity during various disease progression. CONCLUSION Based on the comprehensive literature survey, it could be concluded that various natural products can regulate PKC activity during disease progression. However, extensive research is needed to circumvent the challenge of isoform specific regulation of PKC by natural products.
Collapse
Affiliation(s)
- Rishi Kant Singh
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | | | - Munendra Singh Tomar
- Department of Pharmaceutical Science, School of Pharmacy, University of Colorado, Denver, USA
| | | | - Amit Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Sandeep Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Naveen Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Jai Prakash Singh
- Department of Panchkarma, Institute of Medical Science, BHU, Varanasi, India, 221005
| | - Arbind Acharya
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India.
| |
Collapse
|
13
|
Zhou Y, Ou L, Xu J, Yuan H, Luo J, Shi B, Li X, Yang S, Wang Y. FAM64A is an androgen receptor-regulated feedback tumor promoter in prostate cancer. Cell Death Dis 2021; 12:668. [PMID: 34215720 PMCID: PMC8253826 DOI: 10.1038/s41419-021-03933-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/10/2022]
Abstract
Endocrine therapy for prostate cancer (PCa) mainly inhibits androgen receptor (AR) signaling, due to increased androgen synthesis and AR changes, PCa evolved into castration-resistant prostate cancer (CRPC). The function of Family With Sequence Similarity 64 Member A (FAM64A) and its association with prostate cancer has not been reported. In our research, we first reported that FAM64A is up-regulated and positively associated with poor prognosis of patients with prostate cancer (PCa) by TCGA database and immunohistochemistry staining. Moreover, knockdown of FAM64A significantly suppressed the proliferation, migration, invasion, and cell cycle of PCa cells in vitro. Mechanistically, FAM64A expression was increased by dihydrotestosterone (DHT) through direct binding of AR to FAM64A promoter, and notably promoted the proliferation, migration, invasion, and cell cycle of androgen-dependent cell line of PCa. In addition, abnormal expression of FAM64A affects the immune and interferon signaling pathway of PCa cells. In conclusion, FAM64A was up-regulated by AR through directly binding to its specific promoter region to promote the development of PCa, and was associated with the immune mechanism and interferon signaling pathway, which provided a better understanding and a new potential for treating PCa.
Collapse
Affiliation(s)
- Yingchen Zhou
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China.,Department of Surgery, Fuwai Hospital Chinese Academic of Medical Science Shenzhen, University of South China, Shenzhen, China
| | - Longhua Ou
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jinming Xu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haichao Yuan
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Junhua Luo
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Bentao Shi
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xianxin Li
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China. .,Department of Urology, Taikang Qianhai International Hospital, Shenzhen, China.
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China.
| | - Yan Wang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China.
| |
Collapse
|
14
|
El-Far AH, Darwish NHE, Mousa SA. Senescent Colon and Breast Cancer Cells Induced by Doxorubicin Exhibit Enhanced Sensitivity to Curcumin, Caffeine, and Thymoquinone. Integr Cancer Ther 2021; 19:1534735419901160. [PMID: 32054357 PMCID: PMC7025418 DOI: 10.1177/1534735419901160] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a process of physiological growth arrest that can be induced by intrinsic or extrinsic stress signals. Some cancer therapies are associated with senescence of cancer cells with a typical cell cycle arrest. Doxorubicin (Dox) induces senescence by a p53-dependent pathway and telomere dysfunction of numerous cancers. However, cellular senescence induces suppression in proliferation activity, and these cells will remain metabolically active and play an important role in tumor relapse and development of drug resistance. In the current study, we investigated the apoptotic effect of curcumin (Cur), caffeine (Caff), and thymoquinone (TQ) on senescent colon cancer HCT116 and breast cancer MCF7 cell lines treated with Dox. Results showed typical senescence markers including decreased bromodeoxyuridine incorporation, increased accumulation of senescence-associated β-galactosidase (SA-β-gal), cell cycle arrest, and upregulation of p53, P-p53, and p21 proteins. Annexin-V analysis by flow cytometry revealed 2- to 6-fold increases in annexin-V–positive cells in Dox-treated MCF7 and HCT116 cells by Cur (15 µM), Caff (10 mM), and TQ (50 µM; P < .001). In comparison between proliferative and senescent of either HCT116 or MCF7 cells, Caff at 15 mM and TQ at 25 µM induced significant increases in apoptosis of Dox-treated cells compared with proliferative cells (P < .001). Data revealed that Cur, Caff, and TQ potentially induced apoptosis of both proliferative and senescent HCT116 and MCF7 cells. In vivo and clinical trials are of great importance to validate this result.
Collapse
Affiliation(s)
- Ali H El-Far
- Damanhour University, Damanhour, El-Beheira, Egypt
| | - Noureldien H E Darwish
- Mansoura University, Mansoura, Egypt.,Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Shaker A Mousa
- Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| |
Collapse
|
15
|
SAHA Overcomes 5-FU Resistance in IFIT2-Depleted Oral Squamous Cell Carcinoma Cells. Cancers (Basel) 2020; 12:cancers12123527. [PMID: 33256074 PMCID: PMC7761248 DOI: 10.3390/cancers12123527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Simple Summary IFIT2 depletion is associated with increased epithelial-mesenchymal transition and metastasis. The main aim of our study was to understand the link between drug resistance and IFIT2 depletion. In this study, we confirmed resistance to multiple common therapeutic drugs, particularly 5-FU, which showed especially high resistance in IFIT2-depleted cells. Interestingly, combination of SAHA and 5-FU overcame 5-FU resistance in IFIT2-depleted cells. Hence, our findings suggest that IFIT2 expression may be used as a biomarker to decide whether to undergo 5-FU treatment, but also the SAHA and 5-FU combination may be a potential new treatment regimen to augment 5-FU therapy in patients with thymidylate synthase-mediated drug-resistant oral squamous cell carcinoma. Abstract Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) is a member of the interferon-stimulated gene family that contains tetratricopeptide repeats (TPRs), which mediate protein–protein interactions in various biological systems. We previously showed the depletion of IFIT2 enhanced cell migration and metastatic activity in oral squamous cell carcinoma (OSCC) cells via the activation of atypical PKC signaling. In this study, we found that IFIT2-knockdown cells displayed higher resistance to 5-fluorouracil (5-FU) than control cells. The comet assay and annexin V analysis showed decreased DNA damage and cell death in IFIT2-knockdown cells compared to control cells treated with 5-FU. Cell cycle progression was also perturbed by 5-FU treatment, with the accumulation of IFIT2-depleted cells in S phase in a time-dependent manner. We further observed the overexpression of thymidylate synthase (TS) and thymidine kinase (TK) in IFIT2-knockdown cells. Inhibition of TS alone or double inhibition of TS and TK1 using the siRNA technique increased susceptibility to 5-FU in IFIT2-knockdown cells. We further identified that suberanilohydroxamic acid (SAHA) treatment decreased the expression of TS in IFIT2-knockdown cells and demonstrated that pretreatment with SAHA sensitized IFIT2-knockdown cells to 5-FU in vitro and in vivo. In conclusion, IFIT2 knockdown enhances TS expression, which mediates 5-FU resistance, and SAHA pretreatment suppresses TS expression and hence sensitizes cells to 5-FU. SAHA will be an effective strategy for the treatment of OSCC patients with 5-FU resistance.
Collapse
|
16
|
Emerging Role of Integrative Medicine in Hematologic Malignancies: a Literature Review and Update on Current Trends in Complementary Medical Practices in Hematologic Cancers. Curr Hematol Malig Rep 2020; 14:328-336. [PMID: 31209644 DOI: 10.1007/s11899-019-00526-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This review discusses the emerging role of integrative hematology. It reinforces the growing interest of CAM among patients, and the importance of provider knowledge and participation in discussions with patients about the subject. The main question asked in this review, "Is there evidence for the use of integrative medicine practices in the field of malignant hematology?" is answered by examining current research and providing relevant summaries. RECENT FINDINGS Data suggests that practices such as meditative movement, exercise, nutrition and supplements and touch therapy can be used for symptom alleviation, preventive measures, and novel treatment development. Integrative hematology is a needed part of complete patient care, and it is the role of providers to be knowledgeable and open to ensure patients are engaging in practices that are evidence-informed and safe. More studies are needed in the field in order to make concrete and robust recommendations.
Collapse
|
17
|
Fakhri S, Moradi SZ, Farzaei MH, Bishayee A. Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Semin Cancer Biol 2020; 80:276-305. [PMID: 32081639 DOI: 10.1016/j.semcancer.2020.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Several signaling pathways and basic metabolites are responsible for the control of metabolism in both normal and cancer cells. As emerging hallmarks of cancer metabolism, the abnormal activities of these pathways are of the most noticeable events in cancer. This altered metabolism expedites the survival and proliferation of cancer cells, which have attracted a substantial amount of interest in cancer metabolism. Nowadays, targeting metabolism and cross-linked signaling pathways in cancer has been a hot topic to investigate novel drugs against cancer. Despite the efficiency of conventional drugs in cancer therapy, their associated toxicity, resistance, and high-cost cause limitations in their application. Besides, considering the numerous signaling pathways cross-linked with cancer metabolism, discovery, and development of multi-targeted and safe natural compounds has been a high priority. Natural secondary metabolites have exhibited promising anticancer effects by targeting dysregulated signaling pathways linked to cancer metabolism. The present review reveals the metabolism and cross-linked dysregulated signaling pathways in cancer. The promising therapeutic targets in cancer, as well as the critical role of natural secondary metabolites for significant anticancer enhancements, have also been highlighted to find novel/potential therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
18
|
Zhang Z, Li N, Liu S, Jiang M, Wan J, Zhang Y, Wan L, Xie C, Le A. Overexpression of IFIT2 inhibits the proliferation of chronic myeloid leukemia cells by regulating the BCR‑ABL/AKT/mTOR pathway. Int J Mol Med 2020; 45:1187-1194. [PMID: 32124954 DOI: 10.3892/ijmm.2020.4500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/06/2019] [Indexed: 11/05/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder that accounts for ~10% of all newly diagnosed leukemia cases. Early diagnosis is essential for long‑term beneficial outcomes. The present study observed that interferon‑induced protein with tetratricopeptde repeats 2 (IFIT2) expression levels were reduced in bone marrow samples from CML patients compared with control samples using RNA sequencing and reverse transcription‑PCR. IFIT2 expression levels were restored in patients treated with tyrosine kinase inhibitors. To investigate the effect of IFIT2 on CML patients, a stable IFIT2 expressing K562 cell line was established. It was demonstrated that IFIT2 overexpression in K562 cells inhibits cell proliferation and arrests the cell cycle at the G1 phase. In addition, it was demonstrated by western blotting that IFIT2 inhibits the BCR‑ABL oncoprotein and regulates its downstream AKT/mTOR signaling pathway. IFIT2 could induce cell cycle arrest‑associated gene p27kip1 by degrading cullin1‑mediated E3 ligases. In summary, the present study demonstrated that IFIT2 was efficacious in inhibiting CML and is a potential therapeutic target.
Collapse
Affiliation(s)
- Zhanglin Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Na Li
- Department of Stomatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shuyuan Liu
- Department of Clinal Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Mei Jiang
- Department of Clinal Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinghua Wan
- Department of Clinal Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yonglu Zhang
- Department of Clinal Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lagen Wan
- Department of Clinal Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Caifeng Xie
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Aiping Le
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
19
|
Pidugu VK, Pidugu HB, Wu MM, Liu CJ, Lee TC. Emerging Functions of Human IFIT Proteins in Cancer. Front Mol Biosci 2019; 6:148. [PMID: 31921891 PMCID: PMC6930875 DOI: 10.3389/fmolb.2019.00148] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
Interferon-induced protein with tetratricopeptide repeats (IFIT) genes are prominent interferon-stimulated genes (ISGs). The human IFIT gene family consists of four genes named IFIT1, IFIT2, IFIT3, and IFIT5. The expression of IFIT genes is very low in most cell types, whereas their expression is greatly enhanced by interferon treatment, viral infection, and pathogen-associated molecular patterns (PAMPs). The proteins encoded by IFIT genes have multiple tetratricopeptide repeat (TPR) motifs. IFIT proteins do not have any known enzymatic roles. However, they execute a variety of cellular functions by mediating protein-protein interactions and forming multiprotein complexes with cellular and viral proteins through their multiple TPR motifs. The versatile tertiary structure of TPR motifs in IFIT proteins enables them to be involved in distinct biological functions, including host innate immunity, antiviral immune response, virus-induced translation initiation, replication, double-stranded RNA signaling, and PAMP recognition. The current understanding of the IFIT proteins and their role in cellular signaling mechanisms is limited to the antiviral immune response and innate immunity. However, recent studies on IFIT protein functions and their involvement in various molecular signaling mechanisms have implicated them in cancer progression and metastasis. In this article, we focused on critical molecular, biological and oncogenic functions of human IFIT proteins by reviewing their prognostic significance in health and cancer. Research suggests that IFIT proteins could be novel therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
| | | | - Meei-Maan Wu
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
20
|
Appleton L, Day AS. Re: A Meta-Analysis of the Clinical Use of Curcumin for Irritable Bowel Syndrome. J Clin Med 2019; 8:E1885. [PMID: 31698718 PMCID: PMC6912727 DOI: 10.3390/jcm8111885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023] Open
Abstract
We read with interest the article by Ng et al [...].
Collapse
Affiliation(s)
| | - Andrew S. Day
- Department of Paediatrics, University of Otago Christchurch, 8140 Christchurch, New Zealand;
| |
Collapse
|
21
|
Trachtenberg A, Muduli S, Sidoryk K, Cybulski M, Danilenko M. Synergistic Cytotoxicity of Methyl 4-Hydroxycinnamate and Carnosic Acid to Acute Myeloid Leukemia Cells via Calcium-Dependent Apoptosis Induction. Front Pharmacol 2019; 10:507. [PMID: 31143124 PMCID: PMC6521573 DOI: 10.3389/fphar.2019.00507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/24/2019] [Indexed: 01/15/2023] Open
Abstract
Acute myeloid leukemia (AML) is a malignant hematopoietic disease with poor prognosis for most patients. Conventional chemotherapy has been the standard treatment approach for AML in the past 40 years with limited success. Although, several targeted drugs were recently approved, their long-term impact on survival of patients with AML is yet to be determined. Thus, it is still necessary to develop alternative therapeutic approaches for this disease. We have previously shown a marked synergistic anti-leukemic effect of two polyphenols, curcumin (CUR) and carnosic acid (CA), on AML cells in-vitro and in-vivo. In this study, we identified another phenolic compound, methyl 4-hydroxycinnamate (MHC), which among several tested phytochemicals could uniquely cooperate with CA in killing AML cells, but not normal peripheral blood mononuclear cells. Notably, our data revealed striking phenotypical and mechanistic similarities in the apoptotic effects of MHC+CA and CUR+CA on AML cells. Yet, we show that MHC is a non-fluorescent molecule, which is an important technical advantage over CUR that can interfere in various fluorescence-based assays. Collectively, we demonstrated for the first time the antileukemic activity of MHC in combination with another phenolic compound. This type of synergistically acting combinations may represent prototypes for novel antileukemic therapy.
Collapse
Affiliation(s)
- Aviram Trachtenberg
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Suchismita Muduli
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Katarzyna Sidoryk
- Chemistry Department, Pharmaceutical Research Institute, Warsaw, Poland
| | - Marcin Cybulski
- Chemistry Department, Pharmaceutical Research Institute, Warsaw, Poland
| | - Michael Danilenko
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
22
|
Mears HV, Sweeney TR. Better together: the role of IFIT protein-protein interactions in the antiviral response. J Gen Virol 2018; 99:1463-1477. [PMID: 30234477 DOI: 10.1099/jgv.0.001149] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interferon-induced proteins with tetratricopeptide repeats (IFITs) are a family of antiviral proteins conserved throughout all vertebrates. IFIT1 binds tightly to non-self RNA, particularly capped transcripts lacking methylation on the first cap-proximal nucleotide, and inhibits their translation by out-competing the cellular translation initiation apparatus. This exerts immense selection pressure on cytoplasmic RNA viruses to maintain mechanisms that protect their messenger RNA from IFIT1 recognition. However, it is becoming increasingly clear that protein-protein interactions are necessary for optimal IFIT function. Recently, IFIT1, IFIT2 and IFIT3 have been shown to form a functional complex in which IFIT3 serves as a central scaffold to regulate and/or enhance the antiviral functions of the other two components. Moreover, IFITs interact with other cellular proteins to expand their contribution to regulation of the host antiviral response by modulating innate immune signalling and apoptosis. Here, we summarize recent advances in our understanding of the IFIT complex and review how this impacts on the greater role of IFIT proteins in the innate antiviral response.
Collapse
Affiliation(s)
- Harriet V Mears
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Trevor R Sweeney
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, UK
| |
Collapse
|
23
|
Cryptotanshinone suppresses key onco-proliferative and drug-resistant pathways of chronic myeloid leukemia by targeting STAT5 and STAT3 phosphorylation. SCIENCE CHINA-LIFE SCIENCES 2018; 61:999-1009. [DOI: 10.1007/s11427-018-9324-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
|
24
|
Wang J, Wang C, Bu G. Curcumin inhibits the growth of liver cancer stem cells through the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Exp Ther Med 2018; 15:3650-3658. [PMID: 29545895 DOI: 10.3892/etm.2018.5805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells are considered as a main cause of cancer recurrence. In the present study, the effects of curcumin on the growth of liver cancer stem cells (LCSCs) were investigated. The proliferation and apoptosis of LCSCs were assessed by MTT assays and flow cytometry. Changes in the expression of apoptosis-related proteins were identified by western blotting. The results of the study demonstrated that curcumin treatment inhibited the growth of LCSCs, induced cell apoptosis, as well as regulated the expression of apoptosis-associated proteins and the release of cytochrome c. Further experiments revealed that treatment with curcumin inhibited that the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. Treatment with an activator of PI3K/AKT reversed the curcumin-induced growth inhibition of LCSCs. These results demonstrated that curcumin inhibited the growth of LCSCs through the PI3K/AKT/mTOR signaling pathway. Thus, the present study suggested that curcumin may be a potentially efficient agent in the treatment of liver cancer.
Collapse
Affiliation(s)
- Ji Wang
- Department of Liver Disease, Xuzhou Infectious Disease Hospital, Xuzhou, Jiangsu 221004, P.R. China
| | - Chunying Wang
- Department of Liver Disease, Xuzhou Infectious Disease Hospital, Xuzhou, Jiangsu 221004, P.R. China
| | - Gaofeng Bu
- Department of Liver Disease, Xuzhou Infectious Disease Hospital, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|