1
|
Huang Q, Hu B, Zhang P, Yuan Y, Yue S, Chen X, Liang J, Tang Z, Zhang B. Neuroscience of cancer: unraveling the complex interplay between the nervous system, the tumor and the tumor immune microenvironment. Mol Cancer 2025; 24:24. [PMID: 39825376 PMCID: PMC11740516 DOI: 10.1186/s12943-024-02219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025] Open
Abstract
The study of the multifaceted interactions between neuroscience and cancer is an emerging field with significant implications for understanding tumor biology and the innovation in therapeutic approaches. Increasing evidence suggests that neurological functions are connected with tumorigenesis. In particular, the peripheral and central nervous systems, synapse, neurotransmitters, and neurotrophins affect tumor progression and metastasis through various regulatory approaches and the tumor immune microenvironment. In this review, we summarized the neurological functions that affect tumorigenesis and metastasis, which are controlled by the central and peripheral nervous systems. We also explored the roles of neurotransmitters and neurotrophins in cancer progression. Moreover, we examined the interplay between the nervous system and the tumor immune microenvironment. We have also identified drugs that target the nervous system for cancer treatment. In this review we present the work supporting that therapeutic agent targeting the nervous system could have significant potential to improve cancer therapy.
Collapse
Affiliation(s)
- Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Bai Hu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ye Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| |
Collapse
|
2
|
Louie AD, Huntington KE, Lee Y, Mompoint J, Wu LJ, Lee S, Miner TJ, El-Deiry WS. TRAIL receptor agonist TLY012 in combination with PD-1 inhibition promotes tumor regression in an immune-competent mouse model of pancreatic ductal adenocarcinoma. Am J Cancer Res 2025; 15:286-298. [PMID: 39949937 PMCID: PMC11815385 DOI: 10.62347/roat5658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/12/2025] [Indexed: 02/16/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an immunosuppressed, apoptosis-resistant phenotype. TLY012 is pegylated recombinant Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL), an orphan drug for chronic pancreatitis and systemic sclerosis. Innate immune TRAIL signaling suppresses cancer. We hypothesized that the combination of immune checkpoint-blocking anti-PD-1 antibody and TLY012 would have synergistic anti-tumor efficacy in immune-competent PDAC-bearing mice. PDAC tumor-bearing C57Bl/6 mice treated with 10 mg/kg anti-mouse PD-1 antibody twice weekly and 10 mg/kg TLY012 three times weekly had reduced tumor growth and tumor volume at 70 days compared to either drug alone (all P < 0.005). B-cell activating factor (BAFF), which promotes PDAC tumors, decreased to 44% of control mice with dual treatment at 7 days and remained decreased at 3 months. Long-term dual treatment showed the highest plasma levels of proinflammatory cytokines interferon-gamma (average 5.6 times control level, P=0.046), CCL5 (average 14.1 times control level, P=0.048), and interleukin-3 (IL-3, average 71.1 times control level, P=0.0053). Flow cytometry showed trends toward decreased circulating regulatory T cells, increased NK cells, and a higher proportion of CD8+ T cells within tumors in the dual treatment group. In summary, the combination of anti-PD-1 and TLY012 prevented the growth of PDAC in an immunocompetent mouse model while increasing tumor-infiltrating CD8+ T cells, decreasing circulating T-regulatory cells and altering plasma cytokine expression of CCL5, interferon-gamma, and IL-3 to promote proinflammatory, antitumor effects. Combining TLY012 and anti-mouse PD-1 modifies immune cell and cytokine levels to induce a more proinflammatory immune environment that contributes to decreased PDAC tumor growth.
Collapse
Affiliation(s)
- Anna D Louie
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI 02912, USA
- Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health SystemProvidence, RI 02912, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI 02912, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI 02912, USA
| | - Kelsey E Huntington
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI 02912, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI 02912, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI 02912, USA
| | - Young Lee
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI 02912, USA
| | - Jared Mompoint
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI 02912, USA
| | - Laura Jinxuan Wu
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI 02912, USA
| | - Seulki Lee
- D&D Pharmatech4th Floor, I&C Building 24, Pangyo-ro 255 beon-gil, Bundang-gu Seongnam-si, Gyeonggi-do 13486, South Korea
| | - Thomas J Miner
- Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health SystemProvidence, RI 02912, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI 02912, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI 02912, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI 02912, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI 02912, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI 02912, USA
- Hematology/Oncology Division, Department of Medicine, Lifespan and Brown UniversityProvidence, RI 02912, USA
| |
Collapse
|
3
|
Deng Q, Chen L, Zhang G, Liu L, Luo SM, Gao X. TRIAL-based combination therapies in cancers. Int Immunopharmacol 2024; 138:112570. [PMID: 38971105 DOI: 10.1016/j.intimp.2024.112570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) shows promising therapeutic potential in cancer treatment as it is able to trigger extrinsic apoptotic pathways by binding to the cognate death receptor, causing broad-spectrum apoptosis in cancer cells with negligible toxicity to normal cells. However, the majority of cancers display resistance to TRAIL, limiting its clinical utility. Overcoming resistance to TRAIL therapies remains a challenge in the development of effective anti-cancer strategies. To address the limitations of TRAIL therapy, a viable alternative approach involves combining TRAIL with more potent drugs compared to monotherapy. This combination strategy aims to induce synergistic effects or sensitize drug-resistant cancer cells. This review provides an overview of relevant modalities of TRAIL combination therapy, highlighting different drug classes. The findings demonstrate that combining TRAIL with other agents can effectively counteract resistance observed with TRAIL therapies in cancer. These findings lay a foundation for future advancements in TRAIL-based therapies for treating various cancers.
Collapse
Affiliation(s)
- Qiumin Deng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Luxuan Chen
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gui Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Langxia Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shi-Ming Luo
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China.
| | - Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Masum AA, Aoki S, Rahman MM, Hisamatsu Y. Chemical synthetic approaches to mimic the TRAIL: promising cancer therapeutics. RSC Med Chem 2024; 15:d4md00183d. [PMID: 39246747 PMCID: PMC11376135 DOI: 10.1039/d4md00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
Apoptosis is programmed cell death that eliminates undesired cells to maintain homeostasis in metazoan. Aberration of this process may lead to cancer genesis. The tumor necrosis factor related apoptosis inducing ligand (TRAIL) induces apoptosis in cancer cells after ligation with death receptors (DR4/DR5) while sparing most normal cells. Therefore, strategies to induce apoptosis in cancer cells by mimicking the TRAIL emerge as a promising therapeutic tool. Hence, approaches are taken to develop TRAIL/DR-based cancer therapeutics. The recombinant soluble TRAIL (rhTRAIL) and death receptor agonistic antibodies were produced and tested pre-clinically and clinically. Pre-clinical and clinical trial data demonstrate that these therapeutics are safe and relatively well tolerated. But some of these therapeutics failed to exert adequate efficacy in clinical settings. Besides these biotechnologically derived therapeutics, a few chemically synthesized therapeutics are reported. Some of these therapeutics exert considerable efficacy in vitro and in vivo. In this review, we will discuss chemically synthesized TRAIL/DR-based therapeutics, their chemical and biological behaviour, design concepts and strategies that may contribute to further improvement of TRAIL/DR-based therapeutics.
Collapse
Affiliation(s)
- Abdullah-Al Masum
- Department of Pharmaceutical Sciences, North South University Bashundhara R/A Dhaka-1229 Bangladesh
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science 2641 Yamazaki, Noda-shi Chiba 278-8510 Japan
- Research Institute for Science and Technology, Tokyo University of Science 2641 Yamazaki, Noda-shi Chiba 278-8510 Japan
- Research Institute for Biomedical Sciences, Tokyo University of Science 2641 Yamazaki, Noda-shi Chiba 278-8510 Japan
| | - Md Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University Bashundhara R/A Dhaka-1229 Bangladesh
| | - Yosuke Hisamatsu
- Graduate School of Pharmaceutical Sciences, Nagoya City University Mizuho-Ku Nagoya 467-8603 Japan
| |
Collapse
|
5
|
Paraghamian SE, Qiu J, Hawkins GM, Zhao Z, Sun W, Fan Y, Zhang X, Suo H, Hao T, Prabhu VV, Allen JE, Zhou C, Bae-Jump V. A novel dopamine receptor D2 antagonist (ONC206) potentiates the effects of olaparib in endometrial cancer. Cancer Biol Ther 2023; 24:2202104. [PMID: 37069726 PMCID: PMC10115124 DOI: 10.1080/15384047.2023.2202104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023] Open
Abstract
Poly ADP-ribose polymerase (PARP) inhibitors are effective therapies for cancer patients with homologous recombination (HR) deficient tumors. The imipridone ONC206 is an orally bioavailable dopamine receptor D2 antagonist and mitochondrial protease ClpP agonist that has anti-tumorigenic effects in endometrial cancer via induction of apoptosis, activation of the integrated stress response and modulation of PI3K/AKT signaling. Both PARP inhibitors and imipridones are being evaluated in endometrial cancer clinical trials but have yet to be explored in combination. In this manuscript, we evaluated the effects of the PARP inhibitor olaparib in combination with ONC206 in human endometrioid endometrial cancer cell lines and in a genetically engineered mouse model of endometrial cancer. Our results showed that simultaneous exposure of endometrial cancer cells to olaparib and ONC206 resulted in synergistic anti-proliferative effects and increased cellular stress and apoptosis in both cell lines, compared to either drug alone. The combination treatment also decreased expression of the anti-apoptotic protein Bcl-2 and reduced phosphorylation of AKT and S6, with greater effects compared to either drug alone. In the transgenic model of endometrial cancer, the combination of olaparib and ONC206 resulted in a more significant reduction in tumor weight in obese and lean mice compared to ONC206 alone or olaparib alone, together with a considerably decreased Ki-67 and enhanced H2AX expression in obese and lean mice. These results suggest that this novel dual therapy may be worthy of further exploration in clinical trials.
Collapse
Affiliation(s)
- Sarah E. Paraghamian
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jianqing Qiu
- Department of Obstetrics and Gynecology, the Second Hospital of Shandong University, Jinan, China
| | - Gabrielle M. Hawkins
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ziyi Zhao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Obstetrics and Gynecology, the Second Hospital of Shandong University, Jinan, China
| | - Yali Fan
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xin Zhang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hongyan Suo
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Tianran Hao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Chang WI, Honeyman JN, Zhang J, Lin C, Sharma A, Zhou L, Oliveira J, Tapinos N, Lulla RR, Prabhu VV, El-Deiry WS. Novel combination of imipridones and histone deacetylase inhibitors demonstrate cytotoxic effect through integrated stress response in pediatric solid tumors. Am J Cancer Res 2023; 13:6241-6255. [PMID: 38187038 PMCID: PMC10767354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Abstract
There is a demonstrated need for new chemotherapy options in pediatric oncology, as pediatric solid tumors continue to plateau at 60% with event-free survival. Imipridones, a novel class of small molecules, represent a potential new therapeutic option, with promising pre-clinical data and emerging clinical trial data in adult malignancies. ONC201, ONC206, and ONC212 are imipridones showing pro-apoptotic anti-cancer response. Using cell viability assays, and protein immunoblotting, we were able to demonstrate single-agent efficacy of all 3 imipridones inducing cell death in pediatric solid tumor cell lines, including osteosarcoma, malignant peripheral nerve sheath tumors, Ewing sarcoma (EWS), and neuroblastoma. ONC201 displayed IC50 values for non-H3K27M-mutated EWS cell lines ranging from 0.86 µM (SK-N-MC) to 2.76 µM (RD-ES), which were comparable to the range of IC50 values for H3K27M-mutated DIPG cells lines (range 1.06 to 1.56 µM). ONC212 demonstrated the highest potency in single-agent cell killing, followed by ONC206, and ONC201. Additionally, pediatric solid tumor cells were treated with single-agent therapy with histone deacetylase inhibitors (HDACi) vorinostat, entinostat, and panobinostat, showing cell killing with all 3 HDACi drugs, with panobinostat showing the greatest potency. We demonstrate that dual-agent therapy with combinations of imipridones and HDACi lead to synergistic cell killing and apoptosis in all pediatric solid tumor cell lines tested, with ONC212 and panobinostat combinations demonstrating maximal potency. The imipridones induced the integrated stress response with ATF4 and TRAIL receptor upregulation, as well as reduced expression of ClpX. Hyperacetylation of H3K27 was associated with synergistic killing of tumor cells following exposure to imipridone plus HDAC inhibitor therapies. Our results introduce a novel class of small molecules to treat pediatric solid tumors in a precision medicine framework. Use of impridones in pediatric oncology is novel and shows promising pre-clinical efficacy in pediatric solid tumors, including in combination with HDAC inhibitors.
Collapse
Affiliation(s)
- Wen-I Chang
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | - Joshua N Honeyman
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Division of Pediatric Surgery, Department of Surgery, Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | - Jun Zhang
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Claire Lin
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Aditi Sharma
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Janice Oliveira
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | - Nikos Tapinos
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Neurosurgery, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
| | - Rishi R Lulla
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | | | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
- Division of Hematology/Oncology, Department of Medicine, Lifespan and Brown UniversityProvidence, RI, USA
| |
Collapse
|
7
|
Parker CS, Zhou L, Prabhu VV, Lee S, Miner TJ, Ross EA, El-Deiry WS. ONC201/TIC10 plus TLY012 anti-cancer effects via apoptosis inhibitor downregulation, stimulation of integrated stress response and death receptor DR5 in gastric adenocarcinoma. Am J Cancer Res 2023; 13:6290-6312. [PMID: 38187068 PMCID: PMC10767330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
Gastric adenocarcinoma typically presents with advanced stage when inoperable. Chemotherapy options include non-targeted and toxic agents, leading to poor 5-year patient survival outcomes. Small molecule ONC201/TIC10 (TRAIL-Inducing Compound #10) induces cancer cell death via ClpP-dependent activation of the integrated stress response (ISR) and up-regulation of the TRAIL pathway. We previously found in breast cancer, pancreatic cancer and endometrial cancer that ONC201 primes tumor cells for TRAIL-mediated cell death through ISR-dependent upregulation of ATF4, CHOP and TRAIL death receptor DR5. We investigated the ability of ONC201 to induce apoptosis in gastric adenocarcinoma cells in combination with recombinant human TRAIL (rhTRAIL) or PEGylated trimeric TRAIL (TLY012). AGS (caspase 8-, KRAS-, PIK3CA-mutant, HER2-amplified), SNU-1 (KRAS-, MLH1-mutant, microsatellite unstable), SNU-5 (p53-mutant) and SNU-16 (p53-mutant) gastric adenocarcinoma cells were treated with ONC201 and TRAIL both in cell culture and in vivo. Gastric cancer cells showed synergy following dual therapy with ONC201 and rhTRAIL/TLY012 (combination indices < 0.6 at doses that were non-toxic towards normal fibroblasts). Synergy was observed with increased cells in the sub-G1 phase of the cell cycle with dual ONC201 plus TRAIL therapy. Increased PARP, caspase 8 and caspase 3 cleavage after ONC201 plus TRAIL further documented apoptosis. Increased cell surface expression of DR5 with ONC201 therapy was observed by flow cytometry, and immunoblotting revealed ONC201 upregulation of the ISR, ATF4, and CHOP. We observed downregulation of anti-apoptotic cIAP-1 and XIAP in all cells except AGS, and cFLIP in all cells except SNU-16. We tested the regimen in an organoid model of human gastric cancer, and in murine sub-cutaneous xenografts using AGS and SNU-1 cells. Our results suggest that ONC201 in combination with TRAIL may be an effective and non-toxic option for the treatment of gastric adenocarcinoma by inducing apoptosis via activation of the ISR, increased cell surface expression of DR5 and down-regulation of inhibitors of apoptosis. Our results demonstrate in vivo anti-tumor effects of ONC201 plus TLY012 against gastric cancer that could be further investigated in clinical trials.
Collapse
Affiliation(s)
- Cassandra S Parker
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health SystemProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
| | | | - Seulki Lee
- D&D Pharmatech Inc.Bundang-gu, Seongnam-si, Korea
| | - Thomas J Miner
- Department of Surgery, Warren Alpert Medical School of Brown University and Lifespan Health SystemProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
| | - Eric A Ross
- Fox Chase Cancer CenterPhiladelphia, PA, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, Warren Alpert Medical School of Brown UniversityProvidence, RI, USA
- Legorreta Cancer Center, Brown UniversityProvidence, RI, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer InstituteProvidence, RI, USA
- Department of Pathology and Laboratory Medicine, Brown UniversityProvidence, RI, USA
- Division of Hematology/Oncology, Department of Medicine, Lifespan and Brown UniversityProvidence, RI, USA
| |
Collapse
|
8
|
Daglish SCD, Fennell EMJ, Graves LM. Targeting Mitochondrial DNA Transcription by POLRMT Inhibition or Depletion as a Potential Strategy for Cancer Treatment. Biomedicines 2023; 11:1598. [PMID: 37371693 PMCID: PMC10295849 DOI: 10.3390/biomedicines11061598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription of the mitochondrial genome is essential for the maintenance of oxidative phosphorylation (OXPHOS) and other functions directly related to this unique genome. Considerable evidence suggests that mitochondrial transcription is dysregulated in cancer and cancer metastasis and contributes significantly to cancer cell metabolism. Recently, inhibitors of the mitochondrial DNA-dependent RNA polymerase (POLRMT) were identified as potentially attractive new anti-cancer compounds. These molecules (IMT1, IMT1B) inactivate cancer cell metabolism through reduced transcription of mitochondrially-encoded OXPHOS subunits such as ND1-5 (Complex I) and COI-IV (Complex IV). Studies from our lab have discovered small molecule regulators of the mitochondrial matrix caseinolytic protease (ClpP) as probable inhibitors of mitochondrial transcription. These compounds activate ClpP proteolysis and lead to the rapid depletion of POLRMT and other matrix proteins, resulting in inhibition of mitochondrial transcription and growth arrest. Herein we present a comparison of POLRMT inhibition and ClpP activation, both conceptually and experimentally, and evaluate the results of these treatments on mitochondrial transcription, inhibition of OXPHOS, and ultimately cancer cell growth. We discuss the potential for targeting mitochondrial transcription as a cancer cell vulnerability.
Collapse
Affiliation(s)
| | | | - Lee M. Graves
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.C.D.D.); (E.M.J.F.)
| |
Collapse
|
9
|
Di Cristofano F, George A, Tajiknia V, Ghandali M, Wu L, Zhang Y, Srinivasan P, Strandberg J, Hahn M, Sanchez Sevilla Uruchurtu A, Seyhan AA, Carneiro BA, Zhou L, Huntington KE, El-Deiry WS. Therapeutic targeting of TRAIL death receptors. Biochem Soc Trans 2023; 51:57-70. [PMID: 36629496 PMCID: PMC9988005 DOI: 10.1042/bst20220098] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023]
Abstract
The discovery of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) along with its potent and selective antitumor effects initiated a decades-long search for therapeutic strategies to target the TRAIL pathway. First-generation approaches were focused on the development of TRAIL receptor agonists (TRAs), including recombinant human TRAIL (rhTRAIL) and TRAIL receptor-targeted agonistic antibodies. While such TRAIL pathway-targeted therapies showed promise in preclinical data and clinical trials have been conducted, none have advanced to FDA approval. Subsequent second-generation approaches focused on improving upon the specific limitations of first-generation approaches by ameliorating the pharmacokinetic profiles and agonistic abilities of TRAs as well as through combinatorial approaches to circumvent resistance. In this review, we summarize the successes and shortcomings of first- and second-generation TRAIL pathway-based therapies, concluding with an overview of the discovery and clinical introduction of ONC201, a compound with a unique mechanism of action that represents a new generation of TRAIL pathway-based approaches. We discuss preclinical and clinical findings in different tumor types and provide a unique perspective on translational directions of the field.
Collapse
Affiliation(s)
- Francesca Di Cristofano
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Vida Tajiknia
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Laura Wu
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Yiqun Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Praveen Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Jillian Strandberg
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Marina Hahn
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Ashley Sanchez Sevilla Uruchurtu
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Benedito A. Carneiro
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital and Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Kelsey E. Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- The Joint Program in Cancer Biology, Brown University and the Lifespan Health System, Providence, RI 02903, U.S.A
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Pathobiology Graduate Program, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
- Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital and Brown University, Providence, RI 02903, U.S.A
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, U.S.A
| |
Collapse
|
10
|
Fennell EMJ, Aponte-Collazo LJ, Wynn JD, Drizyte-Miller K, Leung E, Greer YE, Graves PR, Iwanowicz AA, Ashamalla H, Holmuhamedov E, Lang H, Karanewsky DS, Der CJ, Houry WA, Lipkowitz S, Iwanowicz EJ, Graves LM. Characterization of TR-107, a novel chemical activator of the human mitochondrial protease ClpP. Pharmacol Res Perspect 2022; 10:e00993. [PMID: 35929764 PMCID: PMC9354705 DOI: 10.1002/prp2.993] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022] Open
Abstract
We recently described the identification of a new class of small‐molecule activators of the mitochondrial protease ClpP. These compounds synthesized by Madera Therapeutics showed increased potency of cancer growth inhibition over the related compound ONC201. In this study, we describe chemical optimization and characterization of the next generation of highly potent and selective small‐molecule ClpP activators (TR compounds) and demonstrate their efficacy against breast cancer models in vitro and in vivo. We selected one compound (TR‐107) with excellent potency, specificity, and drug‐like properties for further evaluation. TR‐107 showed ClpP‐dependent growth inhibition in the low nanomolar range that was equipotent to paclitaxel in triple‐negative breast cancer (TNBC) cell models. TR‐107 also reduced specific mitochondrial proteins, including OXPHOS and TCA cycle components, in a time‐, dose‐, and ClpP‐dependent manner. Seahorse XF analysis and glucose deprivation experiments confirmed the inactivation of OXPHOS and increased dependence on glycolysis following TR‐107 exposure. The pharmacokinetic properties of TR‐107 were compared with other known ClpP activators including ONC201 and ONC212. TR‐107 displayed excellent exposure and serum t1/2 after oral administration. Using human TNBC MDA‐MB‐231 xenografts, the antitumor response to TR‐107 was investigated. Oral administration of TR‐107 resulted in a reduction in tumor volume and extension of survival in the treated compared with vehicle control mice. ClpP activation in vivo was validated by immunoblotting for TFAM and other mitochondrial proteins. In summary, we describe the identification of highly potent new ClpP agonists with improved efficacy against TNBC, through targeted inactivation of OXPHOS and disruption of mitochondrial metabolism.
Collapse
Affiliation(s)
- Emily M J Fennell
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lucas J Aponte-Collazo
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joshua D Wynn
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kristina Drizyte-Miller
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Elisa Leung
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yoshimi Endo Greer
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul R Graves
- Department of Radiation Oncology, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | | | - Hani Ashamalla
- Department of Radiation Oncology, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Ekhson Holmuhamedov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russian Federation
| | - Henk Lang
- Madera Therapeutics LLC, Chapel Hill, North Carolina, USA
| | | | - Channing J Der
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Walid A Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Lee M Graves
- Department of Pharmacology and the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|