1
|
Capriati M, Hao C, D'Cruz SC, Monfort C, Chevrier C, Warembourg C, Smagulova F. Genome-wide analysis of sex-specific differences in the mother-child PELAGIE cohort exposed to organophosphate metabolites. Sci Rep 2023; 13:8003. [PMID: 37198424 DOI: 10.1038/s41598-023-35113-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
In recent decades, the detrimental effects of environmental contaminants on human health have become a serious public concern. Organophosphate (OP) pesticides are widely used in agriculture, and the negative impacts of OP and its metabolites on human health have been demonstrated. We hypothesized that exposure to OPs during pregnancy could impose damaging effects on the fetus by affecting various processes. We analyzed sex-specific epigenetic responses in the placenta samples obtained from the mother-child PELAGIE cohort. We assayed the telomere length and mitochondrial copy numbers using genomic DNA. We analyzed H3K4me3 by using chromatin immunoprecipitation followed by qPCR (ChIP‒qPCR) and high-throughput sequencing (ChIP-seq). The human study was confirmed with mouse placenta tissue analysis. Our study revealed a higher susceptibility of male placentas to OP exposure. Specifically, we observed telomere length shortening and an increase in γH2AX levels, a DNA damage marker. We detected lower histone H3K9me3 occupancy at telomeres in diethylphosphate (DE)-exposed male placentas than in nonexposed placentas. We found an increase in H3K4me3 occupancy at the promoters of thyroid hormone receptor alpha (THRA), 8-oxoguanine DNA glycosylase (OGG1) and insulin-like growth factor (IGF2) in DE-exposed female placentas. H3K4me3 occupancy at PPARG was increased in both male and female placentas exposed to dimethylphosphate (DM). The genome-wide sequencing of selected samples revealed sex-specific differences induced by DE exposure. Specifically, we found alterations in H3K4me3 in genes related to the immune system in female placenta samples. In DE-exposed male placentas, a decrease in H3K4me3 occupancy at development-related, collagen and angiogenesis-related genes was observed. Finally, we observed a high number of NANOG and PRDM6 binding sites in regions with altered histone occupancy, suggesting that the effects were possibly mediated via these factors. Our data suggest that in utero exposure to organophosphate metabolites affects normal placental development and could potentially impact late childhood.
Collapse
Affiliation(s)
- Martina Capriati
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Chunxiang Hao
- School of Medicine, Linyi University, Linyi, 276000, China
| | - Shereen Cynthia D'Cruz
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Christine Monfort
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Cecile Chevrier
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Charline Warembourg
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Fatima Smagulova
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
2
|
Dinami R, Petti E, Porru M, Rizzo A, Ganci F, Sacconi A, Ostano P, Chiorino G, Trusolino L, Blandino G, Ciliberto G, Zizza P, Biroccio A. TRF2 cooperates with CTCF for controlling the oncomiR-193b-3p in colorectal cancer. Cancer Lett 2022; 533:215607. [PMID: 35240232 DOI: 10.1016/j.canlet.2022.215607] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
The Telomeric Repeat binding Factor 2 (TRF2), a key protein involved in telomere integrity, is over-expressed in several human cancers and promotes tumor formation and progression. Recently, TRF2 has been also found outside telomeres where it can affect gene expression. Here we provide evidence that TRF2 is able to modulate the expression of microRNAs (miRNAs), small non-coding RNAs altered in human tumors. Among the miRNAs regulated by TRF2, we focused on miR-193b-3p, an oncomiRNA that positively correlates with TRF2 expression in human colorectal cancer patients from The Cancer Genome Atlas dataset. At the mechanistic level, the control of miR-193b-3p expression requires the cooperative activity between TRF2 and the chromatin organization factor CTCF. We found that CTCF physically interacts with TRF2, thus driving the proper positioning of TRF2 on a binding site located upstream the miR-193b-3p host-gene. The binding of TRF2 on the identified region is necessary for promoting the expression of miR-193b3p which, in turn, inhibits the translation of the onco-suppressive methyltransferase SUV39H1 and promotes tumor cell proliferation. The translational relevance of the oncogenic properties of miR-193b-3p was confirmed in patients, in whom the association between TRF2 and miR-193b-3p has a prognostic value.
Collapse
Affiliation(s)
- Roberto Dinami
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Eleonora Petti
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Manuela Porru
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Angela Rizzo
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Federica Ganci
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Paola Ostano
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, Biella, 13900, Italy
| | - Giovanna Chiorino
- Cancer Genomics Lab, Fondazione Edo ed Elvo Tempia, via Malta 3, Biella, 13900, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, Strada Provinciale 142, Candiolo, TO, 10060, Italy; Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute, FPO - IRCCS, Strada Provinciale 142, Candiolo, TO, 10060, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Gennaro Ciliberto
- Scientific Direction, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy
| | - Pasquale Zizza
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy.
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS - Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome, 00144, Italy.
| |
Collapse
|
3
|
Effect of SUV39H1 Histone Methyltransferase Knockout on Expression of Differentiation-Associated Genes in HaCaT Keratinocytes. Cells 2020; 9:cells9122628. [PMID: 33297464 PMCID: PMC7762351 DOI: 10.3390/cells9122628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Keratinocytes undergo a complex differentiation process, coupled with extensive changes in gene expression through which they acquire distinctive features indispensable for cells that form the external body barrier—epidermis. Disturbed epidermal differentiation gives rise to multiple skin diseases. The involvement of epigenetic factors, such as DNA methylation or histone modifications, in the regulation of epidermal gene expression and differentiation has not been fully recognized yet. In this work we performed a CRISPR/Cas9-mediated knockout of SUV39H1, a gene-encoding H3K9 histone methyltransferase, in HaCaT cells that originate from spontaneously immortalized human keratinocytes and examined changes in the expression of selected differentiation-specific genes located in the epidermal differentiation complex (EDC) and other genomic locations by RT-qPCR. The studied genes revealed a diverse differentiation state-dependent or -independent response to a lower level of H3K9 methylation. We also show, by means of chromatin immunoprecipitation, that the expression of genes in the LCE1 subcluster of EDC was regulated by the extent of trimethylation of lysine 9 in histone H3 bound to their promoters. Changes in gene expression were accompanied by changes in HaCaT cell morphology and adhesion.
Collapse
|
4
|
SUV39H1 regulates the progression of MLL-AF9-induced acute myeloid leukemia. Oncogene 2020; 39:7239-7252. [PMID: 33037410 PMCID: PMC7728597 DOI: 10.1038/s41388-020-01495-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/11/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Epigenetic regulations play crucial roles in leukemogenesis and leukemia progression. SUV39H1 is the dominant H3K9 methyltransferase in the hematopoietic system, and its expression declines with aging. However, the role of SUV39H1 via its-mediated repressive modification H3K9me3 in leukemogenesis/leukemia progression remains to be explored. We found that SUV39H1 was down-regulated in a variety of leukemias, including MLL-r AML, as compared with normal individuals. Decreased levels of Suv39h1 expression and genomic H3K9me3 occupancy were observed in LSCs from MLL-r-induced AML mouse models in comparison with that of hematopoietic stem/progenitor cells. Suv39h1 overexpression increased leukemia latency and decreased the frequency of LSCs in MLL-r AML mouse models, while Suv39h1 knockdown accelerated disease progression with increased number of LSCs. Increased Suv39h1 expression led to the inactivation of Hoxb13 and Six1, as well as reversion of Hoxa9/Meis1 downstream target genes, which in turn decelerated leukemia progression. Interestingly, Hoxb13 expression is up-regulated in MLL-AF9-induced AML cells, while knockdown of Hoxb13 in MLL-AF9 leukemic cells significantly prolonged the survival of leukemic mice with reduced LSC frequencies. Our data revealed that SUV39H1 functions as a tumor suppressor in MLL-AF9-induced AML progression. These findings provide the direct link of SUV39H1 to AML development and progression.
Collapse
|
5
|
Bannoehr J, Balmer P, Stoffel MH, Jagannathan V, Gaschen V, Kühni K, Sayar B, Drögemüller M, Howald D, Wiener DJ, Leeb T, Welle MM, Müller EJ, Roosje PJ. Abnormal keratinocyte differentiation in the nasal planum of Labrador Retrievers with hereditary nasal parakeratosis (HNPK). PLoS One 2020; 15:e0225901. [PMID: 32119674 PMCID: PMC7051081 DOI: 10.1371/journal.pone.0225901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/14/2019] [Indexed: 01/16/2023] Open
Abstract
Hereditary nasal parakeratosis (HNPK) is an inherited disorder described in Labrador Retrievers and Greyhounds. It has been associated with breed-specific variants in the SUV39H2 gene encoding a histone 3 methyltransferase involved in epigenetic silencing. Formalin-fixed biopsies of the nasal planum of Labrador Retrievers were screened by immunofluorescence microscopy for the presence and distribution of epidermal proliferation and differentiation markers. Gene expression of these markers was further analysed using RNA sequencing (RNA-seq) and ultrastructural epidermal differences were investigated by electron microscopy. Differentiation of the nasal planum in the basal and suprabasal epidermal layers of HNPK-affected dogs (n = 6) was similar compared to control dogs (n = 6). In the upper epidermal layers, clear modifications were noticed. Loricrin protein was absent in HNPK-affected nasal planum sections in contrast to sections of the same location of control dogs. However, loricrin was present in the epidermis of paw pads and abdominal skin from HNPK dogs and healthy control dogs. The patterns of keratins K1, K10 and K14, were not markedly altered in the nasal planum of HNPK-affected dogs while the expression of the terminal differentiation marker involucrin appeared less regular. Based on RNA-seq, LOR and IVL expression levels were significantly decreased, while KRT1, KRT10 and KRT14 levels were up-regulated (log2fold-changes of 2.67, 3.19 and 1.71, respectively) in HNPK-affected nasal planum (n = 3) compared to control dogs (n = 3). Electron microscopical analysis revealed structural alterations in keratinocytes and stratum corneum, and disrupted keratinocyte adhesions and distended intercellular spaces in lesional samples (n = 3) compared to a sample of a healthy control dog (n = 1). Our findings demonstrate aberrant keratinocyte terminal differentiation of the nasal planum of HNPK-affected Labrador Retrievers and provide insights into biological consequences of this inactive SUV39H2 gene variant.
Collapse
Affiliation(s)
- Jeanette Bannoehr
- Division of Clinical Dermatology, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Pierre Balmer
- Division of Clinical Dermatology, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Michael H. Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Véronique Gaschen
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kathrin Kühni
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Beyza Sayar
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Clinical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
| | | | - Denise Howald
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dominique J. Wiener
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Monika M. Welle
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane J. Müller
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Clinical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Clinic for Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Petra J. Roosje
- Division of Clinical Dermatology, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Ghosh K, O'Neil K, Capell BC. Histone modifiers: Dynamic regulators of the cutaneous transcriptome. J Dermatol Sci 2017; 89:226-232. [PMID: 29279287 DOI: 10.1016/j.jdermsci.2017.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/02/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022]
Abstract
By regulating the accessibility of the genome, epigenetic regulators such as histone proteins and the chromatin-modifying enzymes that act upon them control gene expression. Proper regulation of this "histone code" allows for the precise control of transcriptional networks that are essential for establishing and maintaining cell fate and identity, disruption of which may drive carcinogenesis. How these dynamic epigenetic regulators contribute to both skin homeostasis and disease is only beginning to be understood. Here we provide an update of the current understanding of histone modifiers in the skin. Indeed, as one of the most innovative and rapidly expanding areas in all of medicine, it is clear that epigenome-targeting therapies hold great promise for the treatment of dermatological diseases in the coming years.
Collapse
Affiliation(s)
- Kanad Ghosh
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kyle O'Neil
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Brian C Capell
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA; Departments of Dermatology and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Carvalho Alves-Silva J, do Amaral Rabello D, Oliveira Bravo M, Lucena-Araujo A, Madureira de Oliveira D, Morato de Oliveira F, Magalhaes Rego E, Pittella-Silva F, Saldanha-Araujo F. Aberrant levels of SUV39H1 and SUV39H2 methyltransferase are associated with genomic instability in chronic lymphocytic leukemia. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:654-661. [PMID: 28833505 DOI: 10.1002/em.22128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/08/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Chromosomal alterations are commonly detected in patients with chronic lymphocytic leukemia (CLL) and impact disease pathogenesis, prognosis, and progression. Telomerase expression (hTERT), its activity and the telomere length are other important predictors of survival and multiple outcomes in CLL. SUV39H and SUV420H enzymes are histone methyltransferases (HMTases) involved in several cellular processes, including regulation of telomere length, heterochromatin organization, and genome stability. Here, we investigated whether SUV39H1, SUV39H2, SUV420H1, SUV420H2, and hTERT are associated with genomic instability of CLL. SUV39H (1/2), SUV420H (1/2), and hTERT expression was determined in 59 CLL samples by real time PCR. In addition, ZAP-70 protein expression was evaluated by Flow Cytometry and patients' karyotype was defined by Cytogenetic Analysis. Low expression of SUV39H1 was associated with the acquisition of altered and complex karyotypes. Conversely, high expression of SUV39H2 correlated with cytogenetic abnormalities in CLL patients. The pattern of karyotypic alterations differed in samples with detectable or undetectable hTERT expression. Furthermore, hTERT expression in CLL showed a correlation with transcript levels of SUV39H2, which, in part, can explain the association between SUV39H2 expression and cytogenetic abnormalities. Moreover, SUV39H1 correlated with SUV420H1 expression while SUV420H2 was associated with all other investigated HMTases. Our data show that the differential expression of SUV39H1 and SUV39H2 is associated with genomic instability and that the modulation of these HMTases can be an attractive approach to prevent CLL evolution. Environ. Mol. Mutagen. 58:654-661, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juliana Carvalho Alves-Silva
- Laboratório de Patologia Molecular do Câncer, Universidade de Brasília, Av. L2 Norte, Brasília, DF, 70.910-900, Brasil
| | - Doralina do Amaral Rabello
- Laboratório de Patologia Molecular do Câncer, Universidade de Brasília, Av. L2 Norte, Brasília, DF, 70.910-900, Brasil
| | - Martha Oliveira Bravo
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Av. L2 Norte, Brasília, DF, 70.910-900, Brasil
| | - Antônio Lucena-Araujo
- Laboratório de Hematologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, Recife, PE, 50670-901, Brasil
| | - Diego Madureira de Oliveira
- Laboratório de Patologia Molecular do Câncer, Universidade de Brasília, Av. L2 Norte, Brasília, DF, 70.910-900, Brasil
| | - Fábio Morato de Oliveira
- Laboratório de Hematologia, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14.048-900, Brasil
| | - Eduardo Magalhaes Rego
- Laboratório de Hematologia, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP, 14.048-900, Brasil
| | - Fábio Pittella-Silva
- Laboratório de Patologia Molecular do Câncer, Universidade de Brasília, Av. L2 Norte, Brasília, DF, 70.910-900, Brasil
| | - Felipe Saldanha-Araujo
- Laboratório de Patologia Molecular do Câncer, Universidade de Brasília, Av. L2 Norte, Brasília, DF, 70.910-900, Brasil
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Av. L2 Norte, Brasília, DF, 70.910-900, Brasil
| |
Collapse
|
8
|
Maizels Y, Elbaz A, Hernandez-Vicens R, Sandrusy O, Rosenberg A, Gerlitz G. Increased chromatin plasticity supports enhanced metastatic potential of mouse melanoma cells. Exp Cell Res 2017; 357:282-290. [PMID: 28551377 DOI: 10.1016/j.yexcr.2017.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/17/2022]
Abstract
Metastasis formation is strongly dependent on the migration capabilities of tumor cells. Recently it has become apparent that nuclear structure and morphology affect the cellular ability to migrate. Previously we found that migration of melanoma cells is both associated with and dependent on global chromatin condensation. Therefore, we anticipated that tumor progression would be associated with increased chromatin condensation. Interestingly, the opposite has been reported for melanoma. In trying to resolve this contradiction, we show that during growth conditions, tumor progression is associated with global chromatin de-condensation that is beneficial for faster proliferation. However, upon induction of migration, in both low- and high-metastatic mouse melanoma cells chromatin undergoes condensation to support cell migration. Our results reveal that throughout tumor progression induction of chromatin condensation by migration signals is maintained, whereas the organization of chromatin during growth conditions is altered. Thus, tumor progression is associated with an increase in chromatin dynamics.
Collapse
Affiliation(s)
- Yael Maizels
- Department of Molecular Biology, Faculty of Life Sciences, Ariel University, Israel
| | - Adi Elbaz
- Department of Molecular Biology, Faculty of Life Sciences, Ariel University, Israel
| | | | - Oshrat Sandrusy
- Department of Molecular Biology, Faculty of Life Sciences, Ariel University, Israel
| | - Anna Rosenberg
- Department of Molecular Biology, Faculty of Life Sciences, Ariel University, Israel
| | - Gabi Gerlitz
- Department of Molecular Biology, Faculty of Life Sciences, Ariel University, Israel.
| |
Collapse
|
9
|
Mallm JP, Rippe K. Aurora Kinase B Regulates Telomerase Activity via a Centromeric RNA in Stem Cells. Cell Rep 2015; 11:1667-78. [PMID: 26051938 DOI: 10.1016/j.celrep.2015.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/28/2015] [Accepted: 05/11/2015] [Indexed: 11/29/2022] Open
Abstract
Non-coding RNAs can modulate histone modifications that, at the same time, affect transcript expression levels. Here, we dissect such a network in mouse embryonic stem cells (ESCs). It regulates the activity of the reverse transcriptase telomerase, which synthesizes telomeric repeats at the chromosome ends. We find that histone H3 serine 10 phosphorylation set by Aurora kinase B (AURKB) in ESCs during the S phase of the cell cycle at centromeric and (sub)telomeric loci promotes the expression of non-coding minor satellite RNA (cenRNA). Inhibition of AURKB induces silencing of cenRNA transcription and establishment of a repressive chromatin state with histone H3 lysine 9 trimethylation and heterochromatin protein 1 accumulation. This process results in a continuous shortening of telomeres. We further show that AURKB interacts with both telomerase and cenRNA and activates telomerase in trans. Thus, in mouse ESCs, telomere maintenance is regulated via expression of cenRNA in a cell-cycle-dependent manner.
Collapse
Affiliation(s)
- Jan-Philipp Mallm
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Bioquant Center, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| | - Karsten Rippe
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Bioquant Center, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| |
Collapse
|