1
|
Fakir S, Barabutis N. Involvement of ATF6 in Octreotide-Induced Endothelial Barrier Enhancement. Pharmaceuticals (Basel) 2024; 17:1604. [PMID: 39770448 PMCID: PMC11677134 DOI: 10.3390/ph17121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Endothelial hyperpermeability is the hallmark of severe disease, including sepsis and acute respiratory syndrome (ARDS). The development of medical countermeasures to treat the corresponding illness is of utmost importance. Synthetic somatostatin analogs (SSA) are FDA-approved drugs prescribed in patients with neuroendocrine tumors, and they act via growth hormone (GH) suppression. Preclinical investigations suggest that Octreotide (OCT) alleviates Lipopolysaccharide (LPS)-induced injury. The aim of the study is to investigate the involvement of activating transcription factor 6 (ATF6) in the protective effects of OCT in endothelial dysfunction. To the best of our knowledge, the available information on that topic is limited. Methods: Human lung microvascular endothelial cells (HULEC-5a) and bovine pulmonary artery endothelial cells (BPAEC) which expressed elevated levels of ATF6 due to AA147 were exposed to OCT or vehicle. Protein expression, endothelial permeability, and reactive oxygen species (ROS) generation were assessed utilizing Western blot analysis, Fluorescein isothiocyanate (FITC)-Dextran assay, and Dichlorofluorescein diacetate measurements, respectively. Results: Our observations suggest that ATF6 activation significantly improves OCT-induced endothelial barrier enhancement. This combination led to increased expression of binding immunoglobulin protein (BiP) and glucose-regulated protein 94 (Grp94), which are downstream unfolded protein response (UPR) targets. Moreover, ATF6 activation prior to OCT treatment resulted in decreased activation of myosin light chain 2 (MLC2) and cofilin; and reduced reactive oxygen species (ROS) generation. ATF6 activation enhanced the anti-inflammatory effects of OCT, as reflected in the suppression of transducer and activator of transcription (STAT) 1, STAT3, and P38 phosphorylation. Conclusions: Our findings suggest that ATF6 activation prior to OCT treatment enhances the beneficial effects of OCT in the endothelium.
Collapse
Affiliation(s)
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| |
Collapse
|
2
|
Kumazoe M, Fujimura Y, Shimada Y, Onda H, Hatakeyama Y, Tachibana H. Fustin suppressed melanoma cell growth via cAMP/PKA-dependent mechanism. Biosci Biotechnol Biochem 2024; 88:900-907. [PMID: 38835135 DOI: 10.1093/bbb/zbae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Melanoma, a cancer arising from melanocytes, requires a novel treatment strategy because of the ineffectiveness of conventional therapies in certain patients. Fustin is a flavanonol found in young fustic (Cotinus coggygria). However, little is known about its antimelanoma effects. Our study demonstrates that fustin suppresses the growth of B16 melanoma cells. Phalloidin staining of cytoskeletal actin revealed that fustin induced a conformational change in the actin structure of melanoma cells, accompanied by suppressed phosphorylation of myosin regulatory light chain 2 (MLC2), a regulator of actin structure. Furthermore, the protein kinase A (cAMP-dependent protein kinase) inhibitor H89 completely attenuated fustin-induced downregulation of phosphorylated myosin phosphatase targeting subunit 1, which is involved in dephosphorylation of MLC2. In a mouse model, administration of fustin suppressed tumor growth in B16 melanoma cells without adverse effects. In conclusion, our findings suggest that fustin effectively suppresses melanoma cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yu Shimada
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hiroaki Onda
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yui Hatakeyama
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Müller L, Keil R, Glaß M, Hatzfeld M. Plakophilin 4 controls the spatio-temporal activity of RhoA at adherens junctions to promote cortical actin ring formation and tissue tension. Cell Mol Life Sci 2024; 81:291. [PMID: 38970683 PMCID: PMC11335210 DOI: 10.1007/s00018-024-05329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
Plakophilin 4 (PKP4) is a component of cell-cell junctions that regulates intercellular adhesion and Rho-signaling during cytokinesis with an unknown function during epidermal differentiation. Here we show that keratinocytes lacking PKP4 fail to develop a cortical actin ring, preventing adherens junction maturation and generation of tissue tension. Instead, PKP4-depleted cells display increased stress fibers. PKP4-dependent RhoA localization at AJs was required to activate a RhoA-ROCK2-MLCK-MLC2 axis and organize actin into a cortical ring. AJ-associated PKP4 provided a scaffold for the Rho activator ARHGEF2 and the RhoA effectors MLCK and MLC2, facilitating the spatio-temporal activation of RhoA signaling at cell junctions to allow cortical ring formation and actomyosin contraction. In contrast, association of PKP4 with the Rho suppressor ARHGAP23 reduced ARHGAP23 binding to RhoA which prevented RhoA activation in the cytoplasm and stress fiber formation. These data identify PKP4 as an AJ component that transduces mechanical signals into cytoskeletal organization.
Collapse
Affiliation(s)
- Lisa Müller
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany.
| | - René Keil
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| |
Collapse
|
4
|
Hu S, Meng K, Wang T, Qu R, Wang B, Xi Y, Yu T, Yuan Z, Cai Z, Tian Y, Zeng C, Wang X, Zou W, Fu X, Li L. Lung cancer cell-intrinsic IL-15 promotes cell migration and sensitizes murine lung tumors to anti-PD-L1 therapy. Biomark Res 2024; 12:40. [PMID: 38637902 PMCID: PMC11027539 DOI: 10.1186/s40364-024-00586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND IL-15 plays a vital role in enhancing NK cell- and T-cell-mediated antitumor immune responses; however, the direct effect of IL-15 on tumor cells has not been fully elucidated. Herein, we investigated the effect of IL-15 on lung adenocarcinoma cells. METHODS Silencing and overexpression techniques were used to modify endogenous IL-15 expression in tumor cells. Transwell assays were used to assess tumor cell migration and invasion; a live-cell analysis system was used to evaluate cell motility; cellular morphological changes were quantified by confocal fluorescence microscopy; the molecular mechanisms underlying the effect of IL-15 on tumor cells were analyzed by western blotting; and RhoA and Cdc42 activities were evaluated by a pulldown assay. NCG and C57BL/6 mouse models were used to evaluate the functions of IL-15 in vivo. RESULTS Cancer cell-intrinsic IL-15 promoted cell motility and migration in vitro and metastasis in vivo via activation of the AKT-mTORC1 pathway; however, exogenous IL-15 inhibited cell motility and migration via suppression of the RhoA-MLC2 axis. Mechanistic analysis revealed that both the intracellular and extracellular IL-15-mediated effects required the expression of IL-15Rα by tumor cells. Detailed analyses revealed that the IL-2/IL-15Rβ and IL-2Rγ chains were undetected in the complex formed by intracellular IL-15 and IL-15Rα. However, when exogenous IL-15 engaged tumor cells, a complex containing the IL-15Rα, IL-2/IL-15Rβ, and IL-2Rγ chains was formed, indicating that the differential actions of intracellular and extracellular IL-15 on tumor cells might be caused by their distinctive modes of IL-15 receptor engagement. Using a Lewis lung carcinoma (LLC) metastasis model, we showed that although IL-15 overexpression facilitated the lung metastasis of LLC cells, IL-15-overexpressing LLC tumors were more sensitive to anti-PD-L1 therapy than were IL-15-wild-type LLC tumors via an enhanced antitumor immune response, as evidenced by their increased CD8+ T-cell infiltration compared to that of their counterparts. CONCLUSIONS Cancer cell-intrinsic IL-15 and exogenous IL-15 differentially regulate cell motility and migration. Thus, cancer cell-intrinsic IL-15 acts as a double-edged sword in tumor progression. Additionally, high levels of IL-15 expressed by tumor cells might improve the responsiveness of tumors to immunotherapies.
Collapse
Affiliation(s)
- Shaojie Hu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Kelin Meng
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Tianlai Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Rirong Qu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Boyu Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Yu Xi
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Taiyan Yu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Zhiwei Yuan
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Zihao Cai
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Yitao Tian
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Chenxi Zeng
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Xue Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Wenbin Zou
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Xiangning Fu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China.
| | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Shinada M, Kato D, Motegi T, Tsuboi M, Ikeda N, Aoki S, Iguchi T, Li T, Kodera Y, Ota R, Hashimoto Y, Takahashi Y, Chambers J, Uchida K, Kato Y, Nishimura R, Nakagawa T. Podoplanin Drives Amoeboid Invasion in Canine and Human Mucosal Melanoma. Mol Cancer Res 2023; 21:1205-1219. [PMID: 37493578 DOI: 10.1158/1541-7786.mcr-22-0929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/09/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Mucosal melanoma metastasizes at an early stage of the disease in human and dog. We revealed that overexpression of podoplanin in tumor invasion fronts (IF) was related to poor prognosis of dogs with mucosal melanoma. Moreover, podoplanin expressed in canine mucosal melanoma cells promotes proliferation and aggressive amoeboid invasion by activating Rho-associated kinase (ROCK)-myosin light chain 2 (MLC2) signaling. PDPN-ROCK-MLC2 signaling plays a role in cell-cycle arrest and cellular senescence escape as a mechanism for regulating proliferation. Podoplanin induces amoeboid invasion in the IFs of mouse xenografted tumor tissues, similar to canine mucosal melanoma clinical samples. We further identified that podoplanin expression was related to poor prognosis of human patients with mucosal melanoma, and human mucosal melanoma with podoplanin-high expression enriched gene signatures related to amoeboid invasion, similar to canine mucosal melanoma. Overall, we propose that podoplanin promotes canine and human mucosal melanoma metastasis by inducing aggressive amoeboid invasion and naturally occurring canine mucosal melanoma can be a novel research model for podoplanin expressing human mucosal melanoma. IMPLICATIONS Podoplanin could be a new therapeutic target to restrict the metastatic dissemination of canine and human mucosal melanoma.
Collapse
Affiliation(s)
- Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoki Motegi
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - Masaya Tsuboi
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - Namiko Ikeda
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Susumu Aoki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takaaki Iguchi
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshio Li
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuka Kodera
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Ota
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Hashimoto
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - Yosuke Takahashi
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Guz M, Jeleniewicz W, Cybulski M. Interactions between circRNAs and miR-141 in Cancer: From Pathogenesis to Diagnosis and Therapy. Int J Mol Sci 2023; 24:11861. [PMID: 37511619 PMCID: PMC10380543 DOI: 10.3390/ijms241411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
The function of non-coding RNAs (ncRNAs) in the pathogenesis and development of cancer is indisputable. Molecular mechanisms underlying carcinogenesis involve the aberrant expression of ncRNAs, including circular RNAs (circRNAs), and microRNAs (miRNAs). CircRNAs are a class of single-stranded, covalently closed RNAs responsible for maintaining cellular homeostasis through their diverse functions. As a part of the competing endogenous RNA (ceRNAs) network, they play a central role in the regulation of accessibility of miRNAs to their mRNA targets. The interplay between these molecular players is based on the primary role of circRNAs that act as miRNAs sponges, and the circRNA/miRNA imbalance plays a central role in different pathologies including cancer. Herein, we present the latest state of knowledge about interactions between circRNAs and miR-141, a well-known member of the miR-200 family, in malignant transformation, with emphasis on the biological role of circRNA/miR-141/mRNA networks as a future target for novel anti-cancer therapies.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marek Cybulski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Shang JZ, Li SR, Li XQ, Zhou YT, Ma X, Liu L, Niu D, Duan X. Simazine perturbs the maturational competency of mouse oocyte through inducing oxidative stress and DNA damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113105. [PMID: 34954678 DOI: 10.1016/j.ecoenv.2021.113105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Simazine is a triazine pesticides that typically detected in ground water and soil, and can reportedly affect reproductive health in humans and animals. However, the effect of simazine on female germ cell development remains unclear. In the present study, we observed that simazine exposure decreased oocyte maturation competence and embryonic developmental capacity. Importantly, simazine exposure disrupted microtubule stability and actin polymerization, resulting in failure of spindle assembly and migration. In addition, simazine exposure impaired mitochondrial function and cytosolic Ca2+ homeostasis in both oocyte and 2-cell embryos, thus increasing the levels of reactive oxygen species (ROS). Moreover, simazine exposure induced DNA damage and early apoptosis during oocyte maturation. Collectively, our results demonstrate that simazine exposure-induced mitochondrial dysfunction and apoptosis are major causes of poor oocytes quality.
Collapse
Affiliation(s)
- Jian-Zhou Shang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Shi-Ru Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiao-Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu-Ting Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Lu Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
8
|
Effects of Short-Term Inhibition of Rho Kinase on Dromedary Camel Oocyte In Vitro Maturation. Animals (Basel) 2020; 10:ani10050750. [PMID: 32344840 PMCID: PMC7277376 DOI: 10.3390/ani10050750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Our results revealed, for the first time, that short-term inhibition of Rho-associated protein kinases (ROCK) for 4 h prior to in vitro maturation (IVM) in a biphasic IVM approach improved oocyte nuclear maturation, producing more MII oocyte, through modulating the expression of cytokinesis- and antiapoptosis-related mRNA transcripts. This positive result suggests ROCK inhibitor as a potential candidate molecule to exploit in the control of oocyte meiotic maturation. Abstract This is the first report on a biphasic in vitro maturation (IVM) approach with a meiotic inhibitor to improve dromedary camel IVM. Spontaneous meiotic resumption poses a major setback for in vitro matured oocytes. The overall objective of this study was to improve in vitro maturation of dromedary camel oocytes using ROCK inhibitor (Y-27632) in a biphasic IVM to prevent spontaneous meiotic resumption. In the first experiment, we cultured immature cumulus–oocyte complexes (COCs, n = 375) in a prematuration medium supplemented with ROCK inhibitor (RI) for 2 h, 4 h, 6 h, and 24 h before submission to normal in vitro maturation to complete 28 h. The control was cultured for 28 h in the absence of RI. In the first phase of experiment two, we cultured COCs (n = 480) in the presence or absence (control) of RI for 2 h, 4 h, 6 h, and 24 h, and conducted real-time relative quantitative PCR (qPCR) on selected mRNA transcripts. The same was done in the second phase, but qPCR was done after completion of normal IVM. Assessment of nuclear maturation showed that pre-IVM for 4 h yielded an increase in MII oocyte (54.67% vs. 26.6% of control; p < 0.05). As expected, the same group showed the highest degree (2) of cumulus expansion. In experiment 2, qPCR results showed significantly higher expression of ACTB and BCL2 in the RI group treated for 4 h when compared with the other groups. However, their relative quantification after biphasic IVM did not reveal any significant difference, except for the positive response of BCL2 and BAX/BCL2 ratio after 4 and 6 h biphasic IVM. In conclusion, RI prevents premature oocyte maturation and gave a significantly positive outcome during the 4 h treatment. This finding is a paradigm for future investigation on dromedary camel biphasic IVM and for improving the outcome of IVM in this species.
Collapse
|
9
|
Ma X, Liu A, Liu W, Wang Z, Chang N, Li S, Li J, Hou Y, Bai G. Analyze and Identify Peiminine Target EGFR Improve Lung Function and Alleviate Pulmonary Fibrosis to Prevent Exacerbation of Chronic Obstructive Pulmonary Disease by Phosphoproteomics Analysis. Front Pharmacol 2019; 10:737. [PMID: 31333459 PMCID: PMC6620478 DOI: 10.3389/fphar.2019.00737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has been a major public health problem and is still a formidable challenge for clinicians. It is urgent to find new compounds for minimizing the risk of disease progression and exacerbation especially in the early phase of COPD. A traditional Chinese medicine (TCM) formula, Chuan Bei Pi Pa dropping pills (CBPP), was tested in this study to investigate its potential mechanisms in preventing the exacerbation of COPD. Phosphoproteomics analysis for a smog stimulated early stage COPD mice model was employed to detect the underlying molecular mechanisms of CBPP. In addition, protein–protein interaction (PPI) and bioinformatics analyses were included to analyze the key proteins and predict the key bioactive compounds. The results indicated that peiminine (PEI) target epidermal growth factor receptor (EGFR) prevented the exacerbation of COPD by inhibiting the EGFR signaling pathway, and ursolic acid (UA) can alleviate inflammation disorders via inhibition of CASP3 on mitogen-activated protein kinase (MAPK) signaling pathway. After in vivo and in vitro evaluations, we revealed that PEI from CBPP, as a lead compound, can improve lung function and alleviate pulmonary fibrosis by acting on the EGFR and MLC2 signaling pathways. Furthermore, the approach described here is an effective way to analyze and identify the bioactive ingredients from a mixture by functional proteomics analysis.
Collapse
Affiliation(s)
- Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Aina Liu
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Zhihua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Nianwei Chang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Suyun Li
- First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Jiansheng Li
- First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Duan X, Zhang HL, Wu LL, Liu MY, Pan MH, Ou XH, Sun SC. Involvement of LIMK1/2 in actin assembly during mouse embryo development. Cell Cycle 2018; 17:1381-1389. [PMID: 29943641 DOI: 10.1080/15384101.2018.1482138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
LIMKs (LIMK1 and LIMK2) are serine/threonine protein kinases that involve in various cellular activities such as cell migration, morphogenesis and cytokinesis. However, its roles during mammalian early embryo development are still unclear. In the present study, we disrupted LIMK1/2 activity to explore the functions of LIMK1/2 during mouse early embryo development. We found that p-LIMK1/2 mainly located at the cortex of each blastomeres from 2-cell to 8-cell stage, and p-LIMK1/2 also expressed at morula and blastocyst stage in mouse embryos. Inhibition of LIMK1/2 activity by LIMKi 3 (BMS-5) at the zygote stage caused the failure of embryo early cleavage, and the disruption of LIMK1/2 activity at 8-cell stage caused the defects of embryo compaction and blastocyst formation. Fluorescence staining and intensity analysis results demonstrated that the inhibition of LIMK1/2 activity caused aberrant cortex actin expression and the decrease of phosphorylated cofilin in mouse embryos. Taken together, we identified LIMK1/2 as an important regulator for cofilin phosphorylation and actin assembly during mouse early embryo development.
Collapse
Affiliation(s)
- Xing Duan
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Hao-Lin Zhang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Lan-Lan Wu
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Meng-Yao Liu
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Meng-Hao Pan
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Xiang-Hong Ou
- b Fertility Preservation Lab, Reproductive Medicine Center , Guangdong Second Provincial General Hospital , Guangzhou , China
| | - Shao-Chen Sun
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
11
|
Shah JS, Sabouni R, Cayton Vaught KC, Owen CM, Albertini DF, Segars JH. Biomechanics and mechanical signaling in the ovary: a systematic review. J Assist Reprod Genet 2018; 35:1135-1148. [PMID: 29691711 PMCID: PMC6063820 DOI: 10.1007/s10815-018-1180-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/05/2018] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Mammalian oogenesis and folliculogenesis share a dynamic connection that is critical for gamete development. For maintenance of quiescence or follicular activation, follicles must respond to soluble signals (growth factors and hormones) and physical stresses, including mechanical forces and osmotic shifts. Likewise, mechanical processes are involved in cortical tension and cell polarity in oocytes. Our objective was to examine the contribution and influence of biomechanical signaling in female mammalian gametogenesis. METHODS We performed a systematic review to assess and summarize the effects of mechanical signaling and mechanotransduction in oocyte maturation and folliculogenesis and to explore possible clinical applications. The review identified 2568 publications of which 122 met the inclusion criteria. RESULTS The integration of mechanical and cell signaling pathways in gametogenesis is complex. Follicular activation or quiescence are influenced by mechanical signaling through the Hippo and Akt pathways involving the yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), phosphatase and tensin homolog deleted from chromosome 10 (PTEN) gene, the mammalian target of rapamycin (mTOR), and forkhead box O3 (FOXO3) gene. CONCLUSIONS There is overwhelming evidence that mechanical signaling plays a crucial role in development of the ovary, follicle, and oocyte throughout gametogenesis. Emerging data suggest the complexities of mechanotransduction and the biomechanics of oocytes and follicles are integral to understanding of primary ovarian insufficiency, ovarian aging, polycystic ovary syndrome, and applications of fertility preservation.
Collapse
Affiliation(s)
- Jaimin S Shah
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Texas at Houston Health Science Center, Houston, TX, USA
| | - Reem Sabouni
- Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kamaria C Cayton Vaught
- Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences and Women's Health Research, Baltimore, MD, USA
| | - Carter M Owen
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - James H Segars
- Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences and Women's Health Research, Baltimore, MD, USA.
- Gynecology and Obstetrics, 720 Rutland Avenue/Ross 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
He SW, Xu BH, Liu Y, Wang YL, Chen MH, Xu L, Liao BQ, Lui R, Li FP, Lin YH, Fu XP, Fu BB, Hong ZW, Liu YX, Qi ZQ, Wang HL. SKAP2 regulates Arp2/3 complex for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes. Cell Cycle 2017; 16:2272-2281. [PMID: 28933599 PMCID: PMC5788478 DOI: 10.1080/15384101.2017.1380126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
SKAP2 (Src kinase-associated phosphoprotein 2), a substrate of Src family kinases, has been suggested to be involved in actin-mediated cellular processes. However, little is known about its role in mouse oocyte maturation. In this study, we thus investigated the expression, localization, and functions of SKAP2 during mouse oocyte asymmetric division. SKAP2 protein expression was detected at all developmental stages in mouse oocytes. Immunofluorescent staining showed that SKAP2 was mainly distributed at the cortex of the oocytes during maturation. Treatment with cytochalasin B in oocytes confirmed that SKAP2 was co-localized with actin. Depletion of SKAP2 by injection with specific short interfering RNA caused failure of spindle migration, polar body extrusion, and cytokinesis defects. Meanwhile, the staining of actin filaments at the oocyte membrane and in the cytoplasm was significantly reduced after these treatments. SKAP2 depletion also disrupted actin cap and cortical granule-free domain formation, and arrested a large proportion of oocytes at the telophase stage. Moreover, Arp2/3 complex and WAVE2 expression was decreased after the depletion of SKAP2 activity. Our results indicate that SKAP2 regulates the Arp2/3 complex and is essential for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes.
Collapse
Affiliation(s)
- Shu-Wen He
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Bai-Hui Xu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,g Department of Workshop 25, Shangdong new time Pharmaceutical Company Limited , Shangdong , China
| | - Yu Liu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Ya-Long Wang
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Ming-Huang Chen
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China.,c Department of Gynaecology and Obstetrics , Zhongshan Hospital , Xiamen, Fujian , China
| | - Lin Xu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Bao-Qiong Liao
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Rui Lui
- c Department of Gynaecology and Obstetrics , Zhongshan Hospital , Xiamen, Fujian , China.,d Department of Gynaecology and Obstetrics , Zhongxin Hospital , Qingdao, Shangdong , China
| | - Fei-Ping Li
- b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China.,f Department of Life Science, Biological College, Southwest Forestry University , Kunming , China
| | - Yan-Hong Lin
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,e Department of Gynaecology and Obstetrics , the First Clinical Medical College, Fujian Medical University , Fuzhou , China
| | - Xian-Pei Fu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Bin-Bin Fu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Zi-Wei Hong
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Yu-Xin Liu
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Zhong-Quan Qi
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| | - Hai-Long Wang
- a Organ Transplantation Institute, Medical College, Xiamen University , Xiamen, Fujian , China.,b Fujian Key Laboratory of Organ and Tissue Regeneration , Xiamen, Fujian , China
| |
Collapse
|
13
|
Wang H, Guo J, Lin Z, Namgoong S, Oh JS, Kim NH. Filamin A is required for spindle migration and asymmetric division in mouse oocytes. FASEB J 2017; 31:3677-3688. [PMID: 28487281 DOI: 10.1096/fj.201700056r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/17/2017] [Indexed: 11/11/2022]
Abstract
Dynamic changes in the actin network are crucial for the cortical migration of spindles and establishment of polarity, to ensure asymmetric division during meiotic maturation. In this study, filamin A (FLNA) was found to be an essential actin regulator that controlled spindle migration and asymmetric division during oocyte meiosis. FLNA was localized in the cytoplasm and enriched at the cortex and near the chromosomes. Knockdown of FLNA impaired meiotic asymmetric division and spindle migration with a decrease in the amount of cytoplasmic actin mesh and cortical actin levels. Moreover, FLNA knockdown reduced the phosphorylation of cofilin and Rho kinase (ROCK) near the spindle. Similar phenotypes, such as decreased filament actin levels, impaired spindle migration and polar body extrusion, were observed when active cofilin (S3A) was overexpressed or ROCK was inhibited. Notably, we found that FLNA and ROCK interacted directly in mouse oocytes. Taken together, our results show that FLNA plays crucial roles in asymmetric division during meiotic maturation by regulating ROCK-cofilin-mediated actin reorganization.-Wang, H., Guo J., Lin, Z., Namgoong, S., Oh, J. S., Kim, N.-H. Filamin A is required for spindle migration and asymmetric division in mouse oocytes.
Collapse
Affiliation(s)
- HaiYang Wang
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea
| | - Jing Guo
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea
| | - ZiLi Lin
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, South Korea;
| |
Collapse
|