1
|
Martins TS, Correia M, Pinheiro D, Lemos C, Mendes MV, Pereira C, Costa V. Sit4 Genetically Interacts with Vps27 to Regulate Mitochondrial Function and Lifespan in Saccharomyces cerevisiae. Cells 2024; 13:655. [PMID: 38667270 PMCID: PMC11049076 DOI: 10.3390/cells13080655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The Sit4 protein phosphatase plays a key role in orchestrating various cellular processes essential for maintaining cell viability during aging. We have previously shown that SIT4 deletion promotes vacuolar acidification, mitochondrial derepression, and oxidative stress resistance, increasing yeast chronological lifespan. In this study, we performed a proteomic analysis of isolated vacuoles and yeast genetic interaction analysis to unravel how Sit4 influences vacuolar and mitochondrial function. By employing high-resolution mass spectrometry, we show that sit4Δ vacuolar membranes were enriched in Vps27 and Hse1, two proteins that are part of the endosomal sorting complex required for transport-0. In addition, SIT4 exhibited a negative genetic interaction with VPS27, as sit4∆vps27∆ double mutants had a shortened lifespan compared to sit4∆ and vps27∆ single mutants. Our results also show that Vps27 did not increase sit4∆ lifespan by improving protein trafficking or vacuolar sorting pathways. However, Vps27 was critical for iron homeostasis and mitochondrial function in sit4∆ cells, as sit4∆vps27∆ double mutants exhibited high iron levels and impaired mitochondrial respiration. These findings show, for the first time, cross-talk between Sit4 and Vps27, providing new insights into the mechanisms governing chronological lifespan.
Collapse
Affiliation(s)
- Telma S. Martins
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (M.C.); (D.P.); (C.L.); (M.V.M.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Miguel Correia
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (M.C.); (D.P.); (C.L.); (M.V.M.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Denise Pinheiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (M.C.); (D.P.); (C.L.); (M.V.M.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carolina Lemos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (M.C.); (D.P.); (C.L.); (M.V.M.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta Vaz Mendes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (M.C.); (D.P.); (C.L.); (M.V.M.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Clara Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (M.C.); (D.P.); (C.L.); (M.V.M.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vítor Costa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (T.S.M.); (M.C.); (D.P.); (C.L.); (M.V.M.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Leite AC, Costa V, Pereira C. Mitochondria and the cell cycle in budding yeast. Int J Biochem Cell Biol 2023; 161:106444. [PMID: 37419443 DOI: 10.1016/j.biocel.2023.106444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
As centers for energy production and essential biosynthetic activities, mitochondria are vital for cell growth and proliferation. Accumulating evidence suggests an integrated regulation of these organelles and the nuclear cell cycle in distinct organisms. In budding yeast, a well-established example of this coregulation is the coordinated movement and positional control of mitochondria during the different phases of the cell cycle. The molecular determinants involved in the inheritance of the fittest mitochondria by the bud also seem to be cell cycle-regulated. In turn, loss of mtDNA or defects in mitochondrial structure or inheritance often lead to a cell cycle delay or arrest, indicating that mitochondrial function can also regulate cell cycle progression, possibly through the activation of cell cycle checkpoints. The up-regulation of mitochondrial respiration at G2/M, presumably to fulfil energetic requirements for progression at this phase, also supports a mitochondria-cell cycle interplay. Cell cycle-linked mitochondrial regulation is accomplished at the transcription level and through post-translational modifications, predominantly protein phosphorylation. Here, we address mitochondria-cell cycle interactions in the yeast Saccharomyces cerevisiae and discuss future challenges in the field.
Collapse
Affiliation(s)
- Ana Cláudia Leite
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC, Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Vítor Costa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC, Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Clara Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC, Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal.
| |
Collapse
|
3
|
Müller H, Lesur A, Dittmar G, Gentzel M, Kettner K. Proteomic consequences of TDA1 deficiency in Saccharomyces cerevisiae: Protein kinase Tda1 is essential for Hxk1 and Hxk2 serine 15 phosphorylation. Sci Rep 2022; 12:18084. [PMID: 36302925 PMCID: PMC9613766 DOI: 10.1038/s41598-022-21414-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
Hexokinase 2 (Hxk2) of Saccharomyces cerevisiae is a dual function hexokinase, acting as a glycolytic enzyme and being involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by phosphorylation of Hxk2 at serine 15, which has been attributed to the protein kinase Tda1. To explore the role of Tda1 beyond Hxk2 phosphorylation, the proteomic consequences of TDA1 deficiency were investigated by difference gel electrophoresis (2D-DIGE) comparing a wild type and a Δtda1 deletion mutant. To additionally address possible consequences of glucose repression/derepression, both were grown at 2% and 0.1% (w/v) glucose. A total of eight protein spots exhibiting a minimum twofold enhanced or reduced fluorescence upon TDA1 deficiency was detected and identified by mass spectrometry. Among the spot identities are-besides the expected Hxk2-two proteoforms of hexokinase 1 (Hxk1). Targeted proteomics analyses in conjunction with 2D-DIGE demonstrated that TDA1 is indispensable for Hxk2 and Hxk1 phosphorylation at serine 15. Thirty-six glucose-concentration-dependent protein spots were identified. A simple method to improve spot quantification, approximating spots as rotationally symmetric solids, is presented along with new data on the quantities of Hxk1 and Hxk2 and their serine 15 phosphorylated forms at high and low glucose growth conditions. The Δtda1 deletion mutant exhibited no altered growth under high or low glucose conditions or on alternative carbon sources. Also, invertase activity, serving as a reporter for glucose derepression, was not significantly altered. Instead, an involvement of Tda1 in oxidative stress response is suggested.
Collapse
Affiliation(s)
- Henry Müller
- grid.4488.00000 0001 2111 7257Institute of Physiological Chemistry, Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Antoine Lesur
- grid.451012.30000 0004 0621 531XLuxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Gunnar Dittmar
- grid.451012.30000 0004 0621 531XLuxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg ,grid.16008.3f0000 0001 2295 9843Department of Life Sciences and Medicine, University of Luxembourg, 6 Avenue de Swing, 4367 Belvaux, Luxembourg
| | - Marc Gentzel
- grid.4488.00000 0001 2111 7257Center for Molecular and Cellular Bioengineering (CMCB), TP Molecular Analysis / Mass Spectrometry, Technische Universität Dresden, Tatzberg 46/47, 01307 Dresden, Germany
| | - Karina Kettner
- grid.4488.00000 0001 2111 7257Institute of Physiological Chemistry, Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
4
|
Leite AC, Martins TS, Campos A, Costa V, Pereira C. Phosphoregulation of the ATP synthase beta subunit stimulates mitochondrial activity for G2/M progression. Adv Biol Regul 2022; 85:100905. [PMID: 36030696 DOI: 10.1016/j.jbior.2022.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Mitochondrial ATP synthase is a multifunctional enzyme complex involved in ATP production. We previously reported that the ATP synthase catalytic beta subunit (Atp2p in yeast) is regulated by the 2A-like protein phosphatase Sit4p, which targets Atp2p at T124/T317 impacting on ATP synthase levels and mitochondrial respiration. Here we report that Atp2-T124/T317 is also potentially regulated by Cdc5p, a polo-like mitotic kinase. Since both Cdc5p and Sit4p have established roles in cell cycle regulation, we investigated whether Atp2-T124/T317 phosphorylation was cell cycle-related. We present evidence that Atp2p levels and phosphorylation vary during cell cycle progression, with an increase at G2/M phase. Atp2-T124/T317 phosphorylation stimulates mitochondrial membrane potential, respiration and ATP levels at G2/M phase, indicating that dynamic Atp2p phosphorylation contributes to mitochondrial activity at this specific cell cycle phase. Preventing Atp2p phosphorylation delays G2/M to G1 transition, suggesting that enhanced bioenergetics at G2/M may help meet the energetic demands of cell cycle progression. However, mimicking constitutive T124/T317 phosphorylation or overexpressing Atp2p leads to mitochondrial DNA instability, indicating that reversible Atp2p phosphorylation is critical for homeostasis. These results indicate that transient phosphorylation of Atp2p, a protein at the core of the ATP production machinery, impacts on mitochondrial bioenergetics and supports cell cycle progression at G2/M.
Collapse
Affiliation(s)
- Ana Cláudia Leite
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Telma Silva Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Ana Campos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal
| | - Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Clara Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal.
| |
Collapse
|
5
|
Mirisola MG, Longo VD. Yeast Chronological Lifespan: Longevity Regulatory Genes and Mechanisms. Cells 2022; 11:cells11101714. [PMID: 35626750 PMCID: PMC9139625 DOI: 10.3390/cells11101714] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
S. cerevisiae plays a pivotal role as a model system in understanding the biochemistry and molecular biology of mammals including humans. A considerable portion of our knowledge on the genes and pathways involved in cellular growth, resistance to toxic agents, and death has in fact been generated using this model organism. The yeast chronological lifespan (CLS) is a paradigm to study age-dependent damage and longevity. In combination with powerful genetic screening and high throughput technologies, the CLS has allowed the identification of longevity genes and pathways but has also introduced a unicellular “test tube” model system to identify and study macromolecular and cellular damage leading to diseases. In addition, it has played an important role in studying the nutrients and dietary regimens capable of affecting stress resistance and longevity and allowing the characterization of aging regulatory networks. The parallel description of the pro-aging roles of homologs of RAS, S6 kinase, adenylate cyclase, and Tor in yeast and in higher eukaryotes in S. cerevisiae chronological survival studies is valuable to understand human aging and disease. Here we review work on the S. cerevisiae chronological lifespan with a focus on the genes regulating age-dependent macromolecular damage and longevity extension.
Collapse
Affiliation(s)
- Mario G. Mirisola
- Department of Surgery, Oncology and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
- Correspondence: (M.G.M.); (V.D.L.)
| | - Valter D. Longo
- Department of Biological Sciences, Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Correspondence: (M.G.M.); (V.D.L.)
| |
Collapse
|
6
|
Song J, Liu X, Li R. Sphingolipids: Regulators of azole drug resistance and fungal pathogenicity. Mol Microbiol 2020; 114:891-905. [PMID: 32767804 DOI: 10.1111/mmi.14586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/14/2022]
Abstract
In recent years, the role of sphingolipids in pathogenic fungi, in terms of pathogenicity and resistance to azole drugs, has been a rapidly growing field. This review describes evidence about the roles of sphingolipids in azole resistance and fungal virulence. Sphingolipids can serve as signaling molecules that contribute to azole resistance through modulation of the expression of drug efflux pumps. They also contribute to azole resistance by participating in various microbial pathways such as the unfolded protein response (UPR), pH-responsive Rim pathway, and pleiotropic drug resistance (PDR) pathway. In addition, sphingolipid signaling and eisosomes also coordinately regulate sphingolipid biosynthesis in response to azole-induced membrane stress. Sphingolipids are important for fungal virulence, playing roles during growth in hosts under stressful conditions, maintenance of cell wall integrity, biofilm formation, and production of various virulence factors. Finally, we discuss the possibility of exploiting fungal sphingolipids for the development of new therapeutic strategies to treat infections caused by pathogenic fungi.
Collapse
Affiliation(s)
- Jinxing Song
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| | - Xiao Liu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| |
Collapse
|
7
|
Activation of SNF1/AMPK mediates the mitochondrial derepression, resistance to oxidative stress and increased lifespan of cells lacking the phosphatase Sit4p. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118660. [PMID: 31991152 DOI: 10.1016/j.bbamcr.2020.118660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 01/23/2020] [Indexed: 01/17/2023]
|
8
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
9
|
Szatkowska R, Garcia-Albornoz M, Roszkowska K, Holman SW, Furmanek E, Hubbard SJ, Beynon RJ, Adamczyk M. Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1. Biochem J 2019; 476:1053-1082. [PMID: 30885983 PMCID: PMC6448137 DOI: 10.1042/bcj20180701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
Abstract
Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analysis of the effects of altered RNAP III activity on the Saccharomyces cerevisiae proteome and metabolism under glucose-rich conditions. We show for the first time that RNAP III is tightly coupled to the glycolytic system at the molecular systems level. Decreased RNAP III activity or the absence of the RNAP III negative regulator, Maf1 elicit broad changes in the abundance profiles of enzymes engaged in fundamental metabolism in S. cerevisiae In a mutant compromised in RNAP III activity, there is a repartitioning towards amino acids synthesis de novo at the expense of glycolytic throughput. Conversely, cells lacking Maf1 protein have greater potential for glycolytic flux.
Collapse
Affiliation(s)
- Roza Szatkowska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Manuel Garcia-Albornoz
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, U.K
| | - Katarzyna Roszkowska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Stephen W Holman
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Emil Furmanek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Simon J Hubbard
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, U.K
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Malgorzata Adamczyk
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
10
|
Ohama T. The multiple functions of protein phosphatase 6. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:74-82. [DOI: 10.1016/j.bbamcr.2018.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/21/2018] [Accepted: 07/18/2018] [Indexed: 12/26/2022]
|
11
|
Brás IC, Tenreiro S, Silva AM, Outeiro TF. Identification of novel protein phosphatases as modifiers of alpha-synuclein aggregation in yeast. FEMS Yeast Res 2018; 18:5113455. [DOI: 10.1093/femsyr/foy108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/30/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Walweg 33, 37073 Goettingen, Germany
| | - Sandra Tenreiro
- CEDOC – Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n˚ 6, 6-A Edifício CEDOC II 1150-082 Lisboa, Portugal
| | - Andreia M Silva
- CEDOC – Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n˚ 6, 6-A Edifício CEDOC II 1150-082 Lisboa, Portugal
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Walweg 33, 37073 Goettingen, Germany
- CEDOC – Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n˚ 6, 6-A Edifício CEDOC II 1150-082 Lisboa, Portugal
- Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Goettingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
12
|
Pereira C, Pereira AT, Osório H, Moradas-Ferreira P, Costa V. Sit4p-mediated dephosphorylation of Atp2p regulates ATP synthase activity and mitochondrial function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:591-601. [PMID: 29719209 DOI: 10.1016/j.bbabio.2018.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/13/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022]
Abstract
Sit4p is a type 2A-related protein phosphatase in Saccharomyces cerevisiae involved in a wide spectrum of cellular functions, including the glucose repression of mitochondrial transcription. Here we report that Sit4p is also involved in post-translational regulation of mitochondrial proteins and identified 9 potential targets. One of these, the ATP synthase (FoF1 complex) beta subunit Atp2p, was characterized and two phosphorylation sites, T124 and T317, were identified. Expression of Atp2p-T124 or T317 phosphoresistant versions in sit4Δ cells decreased Atp2p phosphorylation confirming these as Sit4p-regulated sites. Moreover, Sit4p and Atp2p interacted both physically and genetically. Mimicking phosphorylation at T124 or T317 increased Atp2p levels, resulting in higher abundance/activity of ATP synthase. Similar changes were observed in sit4Δ cells in which Atp2p is endogenously more phosphorylated. Expression of Atp2-T124 or T317 phosphomimetics also increased mitochondrial respiration and ATP levels and extended yeast lifespan. These results suggest that Sit4p-mediated dephosphorylation of Atp2p-T124/T317 downregulates Atp2p alongside with ATP synthase and mitochondrial function. Combination of transcriptional with post-translational regulation during fermentative growth may allow for a more efficient Sit4p repression of mitochondrial respiration.
Collapse
Affiliation(s)
- Clara Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal.
| | - Andreia T Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal
| | - Hugo Osório
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Portugal; Departamento de Patologia e Oncologia, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Pedro Moradas-Ferreira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Vítor Costa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal.
| |
Collapse
|
13
|
Eskes E, Wilms T, Winderickx J. Hexokinase 2; Tangled between sphingolipid and sugar metabolism. Cell Cycle 2016; 15:3016-3017. [PMID: 27459680 DOI: 10.1080/15384101.2016.1215698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Elja Eskes
- a Functional Biology, Department of Biology, KU Leuven , Heverlee , Belgium
| | - Tobias Wilms
- a Functional Biology, Department of Biology, KU Leuven , Heverlee , Belgium
| | - Joris Winderickx
- a Functional Biology, Department of Biology, KU Leuven , Heverlee , Belgium
| |
Collapse
|
14
|
Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Biogerontology 2016; 18:3-34. [PMID: 27804052 DOI: 10.1007/s10522-016-9666-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
Aging is a multifactorial process determined by molecular, cellular and systemic factors and it is well established that advancing age is a leading risk factor for several neurodegenerative diseases. In fact, the close association of aging and neurodegenerative disorders has placed aging as the greatest social and economic challenge of the 21st century, and age-related diseases have also become a key priority for countries worldwide. The growing need to better understand both aging and neurodegenerative processes has led to the development of simple eukaryotic models amenable for mechanistic studies. Saccharomyces cerevisiae has proven to be an unprecedented experimental model to study the fundamental aspects of aging and to decipher the intricacies of neurodegenerative disorders greatly because the molecular mechanisms underlying these processes are evolutionarily conserved from yeast to human. Moreover, yeast offers several methodological advantages allowing a rapid and relatively easy way of establishing gene-protein-function associations. Here we review different aging theories, common cellular pathways driving aging and neurodegenerative diseases and discuss the major contributions of yeast to the state-of-art knowledge in both research fields.
Collapse
|